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Utilization of lignocellulosic OPEFB fiber has tremendously seen in Malaysia 
due to the cellulose and hemicellulose content. Conversion of these biopolymers 
into valuable products remains a challenging task with the presence of the 
recalcitrant lignin and scattering silica bodies on the fiber surface. Therefore, this 
study investigates the mechanical behaviour of the complex lignocellulosic 
OPEFB fiber containing silica bodies and provide an in-depth understanding of 
the delignification of OPEFB by fungi for further bioconversion into wide range 
of biomaterial applications. The microstructure of silica bodies on OPEFB fiber 
surface was modelled using finite element method, based on the results obtained 
from scanning electron microscope (SEM) images, tensile tests and X-ray 
microtomography (micro-CT) images.  Silica body geometry, possible 
anisotropy/ orthotropy, debonding between the interface of the silica body and 
fiber, fiber thickness and presence of vascular bundle in the OPEFB were 
investigated through 2D and 3D models and analysed by commercial finite 
element software, Abaqus.  
 
 
In 2D model, silica bodies contribute on integrity or strength of the fiber, 
however, in the 3D model, the effect of silica bodies on the elasticity of the fiber 
was insignificant when the thickness of the fiber is larger than 0.2 mm. In the 
developed representative volume element (RVE) and micro-CT models, the 
simulation results show that the difference of the fiber model with and without 
silica bodies are larger under shear than compression and tension. However, in 
comparison to geometrical effect (silica bodies), lignin, cellulose, and 
hemicellulose components of the fiber are responsible for the complex 
mechanical and interface behavior of oil palm fibers.  
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Hence, screening and isolation of lignin degrading fungi for deconstruction of 
lignin polymer in OPEFB was carried out.  About 47 isolated fungi collected from 
environmental samples with six fungi were able to decolorize selective agar 
media, indicating possible presence of lignin-degrading enzymes; laccase and 
peroxidases. The highest producer of ligninolytic enzymes was identified as 
Pycnoporus sanguineus which able to utilize raw OPEFB fiber through solid state 
fermentation (SSF) with an increment of 1.37 folds of ligninolytic enzymes 
production as compared to submerged fermentation (SmF). Optimization study 
of different substrate pre-treatments (sodium hydroxide, Soxhlet extraction), 
incubation temperatures (20-40°C), ABTS concentrations (0-4%) and substrate 
amounts (3-15 g) on ligninolytic enzymes production was carried out. Results 
showed that the optimum conditions for P. sanguineus to produce highest laccase 
(15.49 U/g) with Klason lignin removal at 7.11% were using extractive-free 
OPEFB fiber, incubation temperature at 30°C, supplemented with 4 mM of ABTS 
and with 10 g of substrate loading size. Effectiveness of P. sanguineus for OPEFB 
degradation was further evaluated with the different ratio of fiber, fungi and 
palm oil mill effluent (POME) sludge as inoculum.  
 
 
The relationship between structural OPEFB fiber degradation and 
delignification process by P. sanguineus was studied through tensile testing data, 
enzymatic and lignin component data, and micro-CT images. The highest total 
lignin loss (35.81%) and total phenolic content produced (78.03%) was 
determined at a condition ratio of fiber to fungi (60:40), yielding of laccase and 
MnP of 0.18 and 0.02, respectively while production rate of laccase and MnP 
were 0.98 U/g/d and 0.11 U/g/d, respectively. Micro-CT results revealed that 
the delignification process damaged the fiber based on the volume reduction 
data where 14.11% of volume reduction was observed with treated fiber while 
11.21% volume reduction was achieved with untreated fiber. It is suggested that 
P. sanguineus could be a potential lignin degrader of OPEFB fiber before being 
manipulated for other valuable products production.  
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Penggunaan sisa lignoselulosa gentian tandan kelapa sawit kosong (OPEFB) 
sangat banyak di Malaysia kerana kandungan selulosa dan hemiselulosa. 
Penukaran biopolimer ini kepada produk bernilai telah terhalang oleh 
kehadiran lignin dan partikel silika di permukaan gentian. Oleh itu, kajian 
penyelidikan tingkah laku mekanikal gentian OPEFB kompleks yang 
mengandungi partikel silika dijalankan dan memberi kefahaman proses 
penguraian lignin dalam OPEFB oleh kulat untuk seterusnya melalui proses 
biopenukaran kepada pelbagai jenis aplikasi biomaterial. Mikrostruktur partikel 
silika di gentian OPEFB telah disimulasi dengan menggunakan kaedah ‘finite 
element’ berdasarkan keputusan dari gambar imbasan mikroskop elektron 
(IME), ujian tegangan dan mikro-tomografi (mikro-CT). Geometri partikel silika, 
kebarangkalian anisotrophy/ orthotropy, peleraian ikatan antara permukaan 
partikel silika dan gentian, ketebalan gentian, dan kehadiran bukaan “vascular 
bundle’ telah dikaji menggunakan model 2D dan 3D didalam perisian komersil 
“finite element”, Abaqus.  
 
 
Dalam model 2D, partikel silika menyumbang kepada integriti gentian, 
manakala dalam model 3D kesan partikel silika kepada kekenyalan gentian 
tidak signifikan pada ketebalan gentian melebihi 0.2 mm. Dalam model 
‘representative volume element’ (RVE) dan model mikro-CT, keputusan simulasi 
menunjukkan perbezaan model gentian dengan dan tanpa partikel silika adalah 
besar di bawah mod ricih berbanding mampatan dan tegangan. Walau 
bagaimanapun, jika dibanding dengan kesan geometri (partikel silika), 
komponen lignin, selulosa dan hemiselulosa bertanggungjawab kepada 
tingkahlaku mekanikal dan antara permukaan yang kompleks pada gentian 
kelapa sawit.  
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Oleh itu, penyaringan dan pemencilan kulat pengurai lignin dijalankan untuk 
menguraikan polimer lignin dalam OPEFB. Sebanyak 47 kulat dikutip dari 
kawasan sekitar dan enam kulat mampu menyah-warna agar media saringan 
menunjukkan kehadiran enzim pengurai lignin; laccase dan peroksida. Kulat 
yang menghasilkan enzim tertinggi dipilih dan dikenali sebagai Pycnoporus 
sanguineus yang mampu menguraikan gentian OPEFB dan menghasilkan enzim 
yang tinggi melalui fermentasi fasa pepejal iaitu peningkatan sebanyak 1.37 kali 
ganda berbanding dengan fermentasi fasa terendam. Kajian pengoptimuman 
menggunakan pelbagai pra-rawatan substrat (natrium hidroksida, 
pengestrakan Soxhlet), suhu pengeraman (20-40°), kepekatan ABTS (0-4%) dan 
jumlah substrat (3-15 g) kepada penghasilan enzim ligninolitik dijalankan. 
Keputusan menunjukkan keadaan optimum penghasilan enzim laccase tertinggi 
(15.49 U/g) dengan penyingkiran Klason lignin sebanyak 7.11% oleh P. 
sanguineus adalah menggunakan gentian OPEFB bebas ekstraktif, suhu 
pengeraman 30°C, dibekalkan 4 mM ABTS dan dengan menggunakan 10 g 
substrat.  
 
 
Kecekapan P.sanguineus untuk menguraikan gentian OPEFB dikaji lebih 
mendalam dengan menggunakan pelbagai nisbah gentian, kulat dan enap 
cemar dari sisa efluen kilang sawit (POME) sebagai inokulum. Hubungan antara 
penguraian struktur gentian OPEFB dan proses penguraian lignin oleh P. 
sanguineus dikaji melalui data ujian tegangan, enzim dan data komponen lignin, 
dan imej mikro-CT. Penyingkiran tertinggi lignin (35.81%) dan jumlah 
kandungan fenolik yang terhasil (78.03%) dikenalpasti pada keadaan nisbah 
gentian kepada kulat (60:40) menghasilkan laccase dan MnP masing-masing 0.18 
dan 0.02, manakala kadar penghasilan laccase dan MnP masing-masing adalah 
0.98 U/g/d dan 0.11 U/g/d. Keputusan mikro-CT menunjukkan proses 
penguraian lignin telah merosakkan gentian berdasarkan data pengurangan 
isipadu di mana 14.11% pengurangan isipadu telah diperolehi dari gentian 
terawat manakala 11.21% pengurangan isipadu diperolehi dari gentian yang 
tidak terawat. Ini membuktikan P. sanguineus berpotensi untuk menjadi kulat 
pengurai lignin gentian OPEFB sebelum gentian ini dimanipulasi untuk 
kegunaan pembuatan produk berharga.  
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CHAPTER 1 
 
 

INTRODUCTION 

 
 
1.1 Lignin degradation of OPEFB 
 
 
Malaysia is blessed with valuable oil palm tree plantation where it has been as 
one of the major exporter of palm oil in the world where total oil palm planted 
area reported was 5.39 million hectares where it covered more than 73% of 
agricultural land that makes oil palm as a potential renewable biomass to be 
exploited for better use (Awaluddin et al., 2015). About 95.38 million tonnes of 
fresh fruit oil palm bunches were processed and the estimation of oil palm 
biomass generated from its process was 40.55 milliom tonnes (Loh, 2017). Oil 
palm empty fruit bunch (OPEFB) alone were contribute about 7.34 million 
tonnes where current practice of OPEFB manipulation involves incineration of 
OPEFB to produce bunch ash and further applied as soil conditioner and soil 
fertilizer and straight dumping on the field as soil mulching agent (Zainudin et 
al., 2012).  
 
 
Some researchers have maximized the usage of OPEFB fibers as part of 
biocomposite materials in construction industries (Hassan et al., 2010) while 
some researchers use OPEFB as the main feedstock in bioconversion process 
into value added products such as fermentable sugars (Abu Bakar et al., 2012; 
Zainudin et al., 2012), biofuel (Sudiyani and Hermiati, 2010; Nieves et al., 2011), 
organic acids (Akhtar et al., 2014) and others. The cellulose and hemicelluloses 
is the most intriguing materials in the utilizing of the OPEFB as potential 
feedstock for the production of biofuel (Jeon et al., 2014; Kim and Kim, 2013), 
biochemicals (Reeb et al., 2014; Katinonkul et al., 2012). However, the 
utilization of cellulose and hemicellullose is hindered with the high content of 
lignin.  
 
 
Lignin makes up of 15-40% of the dry matter of woody plant gives the rigidity 
and strength to cell walls and resilient towards degradation (Naseem et al., 
2016). It is a highly stable biopolymer made of three cross-linked 
phenylpropane units and it present interlocking the cellulose and 
hemicelluloses polymers with strong ether bonds (C-O-C) and normal 
hydrogen bonds (C-C). Degradation of lignin in lignocellulosic biomass has 
been reported using various methods; 1) physical pretreatment such as by high 
pressure steam (Baharuddin et al., 2013); 2) chemical pretreatments by sodium 
hydroxide (Palamae et al., 2017; Zulkiple et al., 2016; Muryanto et al., 2015); 
and 3) biological pretreatment by fungal and ligninolytic enzyme. A number of 
fungi (white and brown rot) and some bacteria are effective as a lignin 
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degrader due to their ability to produce lignolytic enzymes. Ligninolytic 
enzymes can be categorized as peroxidases (lignin peroxidase, manganese 
peroxidase, versatile peroxidase) and oxidative enzymes (laccase) could 
depolymerize the lignin polymers into smaller compounds through oxidative 
and electron transfer process (Bugg and Rahmanpour et al., 2015). Lignin can 
be precipitated as droplets on the surface of cellulose and hemicellulose, 
making them less accessible to enzymes attack. Hence, lignin removal is crucial 
in further utilization of cellulose and hemicellulose as it tends to adsorb the 
hydrolytic enzymes more easily and consequently reduce the effectiveness of 
the hydrolytic enzymes to access the cellulose and hemicellulose sites (Mishra 
et al., 2017; Li et al., 2009).  
 
 
In addition, OPEFB fiber has some distinct features on its fiber surface, where 
random scattering protrusion silica bodies are found. These silica bodies are 
embedded half-way through the fiber surface, and it is made of silica oxide 
(SiO2). It has been reported that silica bodies play a big role in providing 
mechanical support, strength and rigidity of the plant (Neethirajan et al., 2009; 
Ma and Yamaji, 2006). The presence of silica bodies in plant has been 
numerously studied especially on fermentable sugar production (Nurul 
Hazirah et al., 2016; Shamsudin et al., 2012). However, to this date, there are 
limited studies investigates the role of silica bodies in providing strength and 
rigidity towards plant particularly for oil palm tree. This issue, however, will 
be addressed and explained in this thesis focusing the presence of silica bodies 
on OPEFB fiber.  
 
 
1.2 Oil palm fiber biomechanics 

 
 

Micromechanics is a study of materials by understanding the interaction 
between constituent materials at microscopic level. Theoretically, it helps to 
compute and predict the behavior, properties and failure mechanisms of the 
materials. The main idea of micromechanics is to replace the original material 
with imaginary microscopic material so that the analysis of the original 
material could be understand and simplified (Yu, 2016). Micromechanics study 
have been used widely in building of materials as such each properties and 
behavior of the building material will be simulated and the overall 
performance of the material will be evaluated. A simple way to witness the 
micromechanics study is when natural fiber is used as reinforcement to other 
composite materials. The behavior of fibers will be simulated at various 
conditions and barriers and success and failure mechanisms of the overall 
materials will be evaluated. The micromechanics study of natural fibers like 
woody and plant cells have been well established (Hayot et al., 2012; Burgert 
and Dunlop, 2011). However, very limited studies are available in the literature 
that involves the study of the silica bodies on OPEFB fiber and their 
contributions to the mechanical behavior of OPEFB fiber. Only recently, there 
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are studies on micromechanics of oil palm fiber performed by a research group 
in UPM. Hanipah et al. (2016) and Xiang et al. (2015) utilized numerical 
approach of micromechanics of oil palm fiber and revealed the viscoelastic 
properties as evident from stress relaxation curves. Likewise, in another study 
conducted by Wang et al. (2014), finite element analyses study of royal palm at 
tissue level was performed where cellular structure of the palm was 
reconstructed with polynomial area weighted tessellation model in order to 
simulate the vascular tissue behavior and area ratio and parameter ratio of 
adjacent cells were calculated and compared.  
 
 
Deeper understanding and investigations of oil palm fiber cellular and tissue 
structure could be performed with both numerical and analytical 
micromechanics approaches. The behavior, properties, response and failure 
mechanisms could be understood and explored. This is essential especially if 
the utilization of oil palm fiber in composites or any other purposes are 
required if one aims to utilize it in its most possible way. 
 
 
1.3 Problem statements 

 
 

Micromechanics study of silica bodies on OPEFB fiber and its contribution on 
the fiber integrity has yet been studied, where this information could provide 
the fundamental background on its behavior, properties as well as other 
mechanisms. Up to date, there are no detailed models available that discuss the 
mechanics of the oil palm fiber specifically with silica bodies. Hence, 
development of model through numerical and analytical methods of 
micromechanics is essential to predict the behavior of the fiber by providing an 
in depth understanding of the effects of silica bodies physiologies and 
structures towards the fiber strength and therefore, may contribute to the 
decision of the degree of pretreatment for silica bodies removal needed 
especially in industries with natural fibers utilization like biocomposites and 
fiber bioconversion process. By knowing this information, it would minimize 
the energy, time and money spent on the silica bodies removal treatment 
process.  This studies also provides deeper understanding of silica bodies and 
role of OPEFB fiber as a bioresources material, and the models could also be 
used for other natural fiber modelling as well.  
 
 
Unnecessary compound and by-products formation from lignin degradation 
could be eliminated through biological treatments as it is substrate specific and 
involve no harsh chemicals. However, involvement of biological treatments 
usually lead to delayed response and achievements. Therefore, microbes with 
high production of lignin-degrading enzymes is preferred for lignin 
degradation to occur effectively. Removal of lignin is important as such it 
intensely being incorporated into emergent lignocellulose biorefineries. 
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Additionally, the mechanism of structural degradation between fungi and 
OPEFB during lignin degradation process is an intriguing subject of research 
and up to this date, there are no comprehensive studies conducted and 
discussed in the literatures. The OPEFB biodegradation studies is important 
not only to solve the solid waste disposal in Malaysia, but also to prepare the 
fiber for holocellulose utilization which would later on would be greatly useful 
for numerous valuable products generations such as biosugars, carboxymethyl 
cellulose etc.  
 
 
To fill in the gaps mentioned above, a study on micromechanics study on silica 
bodies on OPEFB fiber was conducted and the degradation of lignin by fungi 
was evaluated through structural and physico-chemical data analyses. The 
objectives of this study therefore are: 
 

1. To determine the effect of silica bodies on OPEFB fiber integrity 
through solid mechanics approach. 

2. To optimize the environmental conditions for laccase production from 
local isolated white rot fungi, P. sanguineus.  

3. To study the relationship between structural and physico-chemical 
behavior of OPEFB after degradation process by P.sanguineus.  

 
 

1.4 Scope of research and thesis structure 
 
 

This study is principally concerned about the micromechanics study of OPEFB 
and its relationship with biodegradation of OPEFB fiber by local isolated white 
rot fungi. During this research, and in depth study has been performed in 
studying the feedstock, OPEFB fiber in terms of the micromechanics behavior 
and modeling of the silica bodies onto the surfaces of the fiber. A 2D model 
was adopted to explore the effect of silica bodies’ arrangement and spiked 
geometry of silica bodies. 3D models were later developed in order to further 
investigate with the contribution of silica bodies towards fiber integrity. On the 
other hand, white rot fungi was isolated and the ability to perform the 
degradation on OPEFB was evaluated. The performance of the fungi was 
evaluated in both submerged and solid state fermentation. Based on the 
lignocellulosic content and phenol content, the fungi show some potential in 
depolymerizing the lignocellulosic content in OPEFB. Finally, the relationship 
between structural and physico-chemical behavior of degraded OPEFB fibers 
were reported and discussed in detail.   
 
 
In this thesis, there are 5 chapters will be included in which each chapter will 
explain independent topics. In the Chapter 1, a brief introduction of the overall 
research was written together with objectives of the study and the scope of the 
research. In the Chapter 2, extensive literature review was written covering 
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current available knowledge on the micromechanics of natural fiber OPEFB, 
fermentation strategies and biodegradation of lignin process through fungal 
degradation. In Chapter 3, the first objective of the study was elaborated in 
which to study the micromechanics modeling of the silica bodies on the OPEFB 
fibers where constitutive material behavior (stress-strain), 2D and 3D 
modelling were performed in order to investigate the oil palm fiber behavior. 
In the Chapter 4, the second objective of the research was explained in which to 
explore the potential of the local isolate white rotting fungi for OPEFB 
biodegradation in solid state fermentation. In the Chapter 5, the third and final 
objective was well intricate in which to study the utilization of the micro 
computed tomography in the microstructure behavior of the degraded OPEFB 
fibers and the relationship between structural and physico-chemical behavior 
of degraded OPEFB was discussed. In the final chapter, chapter 6, final 
conclusions and some of recommendations were mentioned. Appendix and 
references used in this entire study was listed at the back of the thesis. The 
overview of the experimental design reported in the thesis is provided in 
Figure 1.1. 
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Figure 1.1:  Overview of the overall experimental design  
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