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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirements for the degree of Doctor of Philosophy 
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By 
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February 2018 

Chairman :   Nor Mariah binti Adam, PhD, PE 

Faculty :   Engineering 

A mixer is a device for mixing the proper amount of fuel with air before admission 

to the combustion chamber. Although an air–fuel mixer easily converts a diesel 

engine into a dual-fuel engine, and a petrol engine to a bi engine, the problem with 

gaseous mixers is the inability to prepare a homogeneous mixture of air and 

gaseous fuel at various engine speeds, and weak performance in controlling the 

AFR (air-fuel ratio) at various engine speeds. According to previous studies, no 

mixer has yet been designed for mixing H-CNG-air for tri-fuel engines (H-CNG-

Diesel engines). Moreover, the existing available mixers were unable to work 

under different engine modes (such as dual fuel or bi engine), different capacities 

of engine, or different mix of gaseous fuels. In this present work, a new air–H-

CNG mixer was designed and developed to be suitable for mixing air with 

(Hydrogen), (CNG) and (HCNG)  under different modes (bi-engine, dual fuel 

engine, tri-fuel engine). In addition, this new mixer will allow super homogeneous 

mixing for gaseous fuels with air according to different engine speeds. The new 

mixer has been designed such that the mixer can be easily connected with an 

Electronic Control Unit (ECU) for accurate control of the air–gaseous fuel ratio 

for different engine speeds. The methodology includes theoretical analysis, 

numerical analysis and experimental work to validate the results of the numerical 

study. In the numerical part, 14 models of mixers with 116 cases were computer 

simulated to investigate the effects on the homogeneity and distribution of the 

mixture according to diameter size, location, and number of holes. The 

performance of the new mixer models was studied using (ANSYS FLUENT) with 

different air–gas fuel ratios (six cases), using a fully open valve, and with an 

engine speed of 4000 rpm. The results of the simulation indicated that the lowest 

UI (uniformity index) values compared with other models were obtained for a 

gaseous fuel range between 0.651 and 0.5107 using the different gaseous fuels 

with the existing mixer. By contrast, the highest UI values range between 0.954 
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and 0.939, and were obtained using the different gaseous fuels with model 6/case 

47. The simulation results show that the new mixer exhibits superior performance 

in terms of achieving a homogenous mixture (CNG–air, H-air, and HCNG–air) at 

various engine speeds; the UI values range between 0.9336 and 0.967 under 

different AFRCNG, (0.941 to 0.974) under different AFRH, and (0.935 to 0.971) 

under AFRHCNG. Moreover, the new mixer shows a high level of accuracy in 

controlling the AFR according to the engine speed. In the practical investigation, 

the new air–fuel mixer (model 6, case 47) was fabricated based on the numerical 

analysis, and also on the new design for the movable mechanism, which consists 

of a small bevel gear, a large bevel gear, a power screw, a valve, bolts and seals. 

According to the numerical and practical results for the new mixer under different 

engine speeds (1000–4000), and an air–CNG ratio of 34.15, a meaningful 

agreement is reached between the experimental and numerical values for AFRCNG 

(R2 = 0.96 and CoV = 0.001494). In the theoretical part, two empirical models 

were proposed to estimate the UI of the gaseous fuel inside the new mixer models, 

and the valve displacements inside the new mixer model (model 6, case 47) based 

on the PSO technique. The results of the empirical models demonstrate the power 

of the PSO technique to solve the problem of heterogeneous mixtures inside the 

mixer, and to control the AFR inside the mixer, thereby enhancing the engine 

performance. 

  



© C
OPYRIG

HT U
PM

 

iii 

 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

 

REKA BENTUK PENGADUN CNG-H-UDARA HOMOGEN UNTUK ENJIN 

TIGA-BAHAN API MENGGUNA KAEAAH PENGOPTIMUM SWARM 

PARTIKAL 

 

 

Oleh 
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Fakulti :   Kejuruteraan 
 

 

Pengadun ialah suatu alat untuk mencampurkan sejumlah bahan api yang sesuai 

dengan udara sebelum masuk ke ruang pembakaran. Walaupun pengadun udara-

bahan api mudah menukarkan enjin diesel ke enjin dwi-bahan api dan enjin petrol 

untuk menjadi dwi-enjin, masalah dengan pengadun gas adalah 

ketidakupayaannya menyediakan adunan homogen udara dan bahan api gas pada 

pelbagai kelajuan enjin dan prestasi yang lemah mengawal AFR (nisbah udara-

bahan api) pada pelbagai kelajuan enjin. Menurut kajian-kajian lampau, tidak ada 

pengadun yang direka untuk mencampurkan H-CNG-Udara untuk enjin-enjin 

tiga-bahan api (enjin H-CNG-Diesel). Selain itu, pengadun-pengadun yang ada 

tidak dapat bekerja di bawah mod enjin yang berbeza (enjin dwi-bahan api, enjin 

dwi), kapasiti enjin yang berbeza dan bahan api gas yang berlainan. Di dalam 

kajian ini, pengadun udara-H2-CNG yang baru telah direka dan dibangunkan 

untuk menjadi sesuai bagi mencampurkan udara dengan (Hidrogen), (CNG) dan 

(HCNG) di bawah mod-mod berbeza (dwi-enjin, enjin dua bahan api, enjin tiga-

bahan api). Sebagai tambahan pengadun baru ini akan memberikan pencampuran 

superhomogen untuk bahan api gas dengan udara mengikut kelajuan enjin.  

Pengadun baru ini direka dengan cara yang tertentu di mana pengadun boleh 

dengan mudah disambungkan dengan Unit Kawalan Elektronik (ECU) untuk 

mengawal dengan tepat nisbah udara-bahan api bergas untuk kelajuan enjin yang 

berbeza. Metodologi kajian merangkumi analisis teori, analisis berangka dan kerja 

eksperimen untuk mengesahkan hasil dari kajian berangka. Di dalam bahagian 

berangka, 14 model pengadun dengan 116 kes dicipta untuk menyiasat kesan saiz 

diameter, lokasi, dan bilangan lubang di dalam pengadun ke atas kehomogenan 

dan agihan campuran dengan menggunakan suatu perisian. Prestasi model 

pengadun baru telah dikaji dengan menggunakan (ANSYS FLUENT) dengan 

nisbah udara-bahan api gas yang berbeza (enam kes), injap terbuka sepenuhnya, 
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dan dengan kelajuan enjin 4000 rpm. Keputusan simulasi menunjukkan bahawa 

nilai UI (indeks keseragaman) terendah berbanding dengan model-model lain bagi 

bahan api gas berjulat antara 0.651 dan 0.510776 untuk bahan api bergas yang 

berbeza yang telah diperoleh dengan menggunakan pengadun yang sedia ada.  

Sebaliknya, nilai UI tertinggi berjulat di antara 0.954 dan 0.939 dengan bahan api 

bergas yang berbeza yang telah diperoleh dengan menggunakan model 6/kes 47. 

Keputusan simulasi menunjukkan bahawa pengadun baru itu menunjukkan 

prestasi lebih baik dari segi mencapai campuran homogen (CNG-udara, H-udara, 

dan HCNG-udara) pada pelbagai kelajuan enjin; yang mana, nilai UI berjulat 

antara 0.9336 dan 0.967 dengan AFRCNG yang berbeza, (0.941-0.974) dengan 

AFRH berbeza dan (0.935-0.971) dengan AFRHCNG. Tambahan pula, pengadun 

baru tersebut menunjukkan ketepatan yang tinggi untuk mengawal AFR mengikut 

kelajuan enjin. Dari segi praktikal, pengadun udara-bahan api baru itu (model 6 

kes 47) telah dibuat berdasarkan analisis berangka dan juga berdasarkan reka 

bentuk baru untuk mekanisme mekanikal boleh gerak yang terdiri daripada suatu 

gear serong kecil, gear serong besar, skru kuasa, injap, bolt dan kedap. Menurut 

keputusan berangka dan eksperimen untuk pengadun baru itu dengan  kelajuan 

enjin yang berbeza (1000-4000) dan nisbah udara-CNG 34.15, persetujuan yang 

bermakna telah dicapai antara nilai eksperimen dan berangka untuk AFRCNG (R2= 

0.96 dan CoV = 0.001494). Di bahagian teori, dua model empirikal (dua 

persamaan) dicadangkan untuk menganggarkan UI bahan api bergas di dalam  

pengadun model baru dan anjakan injap di dalam model pengadun baru (model 6 

kes 47) berdasarkan teknik PSO. Hasil model-model empiris menunjukkan kuasa 

teknik PSO untuk menyelesaikan masalah campuran heterogen di dalam pengadun 

dan untuk mengendalikan AFR di dalam pengadun, dengan itu meningkatkan 

prestasi enjin. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

In recent years, fossil fuels have suffered from a sudden rise in prices because of 

reserve and supply limitations combined with considerable increases in demand 

for petroleum fuels resulting from industrialization. This sudden price increase is 

also a growing concern for developing nations because they expend a significant 

part of their national income to import petroleum products every year. Aiming to 

address the above concerns, researchers worldwide are searching for alternative 

fuels for engines (Bora et al., 2013; Bose et al., 2013). Diesel engines emit higher 

levels of nitrogen oxides (NOx) and particulate matter (PM) than spark engines 

due to high localized temperatures and combustion with a heterogeneous air-fuel 

mixture, respectively. The exhaust produced is of concern because of its impact 

on visibility and its potential health hazards (Alrazen et al., 2016a; Chintala and 

Subramanian, 2013; Zhou et al., 2014).  

Many agencies and organizations, such as the U.S. Environmental Protection 

Agency (EPA), the Intergovernmental Panel on Climate Change (IPCC), the 

International Energy Agency (IEA), and the European Union Economic Area 

(EU), are concerned with prevention of air pollution and climate change caused 

by pollutant emissions. These organizations have reported that approximately 

20%–30% of pollutant emissions originate from transport vehicles and that these 

emissions have pivotal effects on global warming and climate change. To reduce 

these effects, they have made the necessary legal arrangements, advanced 

technological developments, created several model structures, developed control 

systems, and organized traffic structures (Liu et al., 2013; Reşitoğlu et al., 2015). 

Using gaseous fuels (alternative fuels) in diesel engines under the dual-fuel mode 

(diesel as the pilot fuel and gaseous fuel as the main fuel) offers a simple way to 

reduce emissions and improve fuel economy (Abagnale et al., 2014a; Wei and 

Geng, 2016; Zhang and Song, 2015). Dual-fuel combustion dramatically lowers 

operational costs, extends maintenance intervals and engine life, and reduces NOx 

and soot emissions (Abagnale et al., 2014a; Li et al., 2016; Maghbouli et al., 2013; 

Mattarelli et al., 2014; Papagiannakis et al., 2010b; Yang et al., 2015a). 

Given its low cost and relative environmental friendliness, natural gas (NG) is a 

promising and highly attractive alternative fuel in the transportation sector. 

However, the CO and HC emission levels in compressed NG (CNG)–diesel 

engines are considerably higher than those in normal diesel engines (Demirbas, 

2010; Khan et al., 2015; Semin, 2008; Song et al., 2017; Zurbriggen et al., 2016). 
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Hydrogen (H) is also a promising renewable fuel because of its natural 

availability; it can be produced from various resources, such as fossil energy and 

biomass. Addition of H in a compression–ignition engine under a dual-fuel mode 

reduces HC, CO, and smoke emissions or particulate matter. However, the high 

combustion temperature increases NOx emissions (De Morais et al., 2013; Deb et 

al., 2015; Ghazal, 2013).  

1.2 Problem Statement 

Few studies have investigated tri-fuel engines (HCNG–diesel tri fuel engines) to 

enhance the performance of a conventional diesel engine. Adding H and methane 

(CH4) to a diesel fuel engine reportedly reduces CO/HC emissions and NOx 

formation (Zhou et al., 2014). Methane has a low flame propagation speed and 

minimal flammability, whereas H has the opposite characteristics. Thus, adding 

H can enhance methane combustion by making it useful in diesel engine 

applications. For the H—diesel dual fuel mode, rapid burning rate, increased 

diffusivity, and reduced H ignition energy destabilize combustion at increased 

engine loads, which could lead to knocking. Knocking is harmful to the 

mechanical durability and safety of engines. NG enrichment can stabilize and 

smooth the combustion of H, thereby preventing abnormal combustion. NOx 

emissions are increased significantly by the addition of H due to the high 

combustion temperature required (Alrazen et al., 2016b; Choi et al., 2005; Zhou 

et al., 2014). 

The most practical method of converting a diesel engine without many 

modifications to accept alternative gaseous fuels, is by installing a fuel–air mixer 

at the air inlet before the combustion chamber (Dahake et al., 2016; Gorjibandpy 

and Sangsereki, 2010). In this arrangement, the mixture of air and gaseous fuel 

(CNG–H) is admitted to the combustion chamber along with the air intake and 

then compressed, while the diesel is used as a pilot fuel to trigger an autoignition 

inside the combustion chamber. This dual-fuel system can be operated as 100% 

diesel or as a mixture of alternative fuel (CNG-H) and diesel. The mixing 

efficiency and accurate determination of flow characteristics are important in the 

design and control of mixing devices, particularly when turbulent flows are 

involved. For automotion, efficient mixing (i.e., homogeneity of the mixture) 

between fuel vapor and air is crucial for increased combustion efficiency and fuel 

saving (Abdul-Wahhab et al., 2015). However, homogeneity of mixtures (air and 

gaseous fuel) has not been addressed at various engine speed and AFR.  

Many studies have indicated that the mixture formation of gaseous fuel with air is 

more critical than with liquid fuel due to the former’s considerably lower density 

and limited fuel penetration. Even though gaseous fuel can easily mix with air due 

to its high diffusivity, this type of fuel may have insufficient time for mixing, 

particularly at substantially high engine speeds, thereby resulting in poor mixture 

formation (Chintala and Subramanian, 2013).  
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Mixers are classified as either venturi or non-venturi. A venturi gas mixer involves 

the venturi effect, which is a particular case of Bernoulli’s principle concerned 

with mixing air and gaseous fuel so that the gaseous fuel and air enter the mixer 

without mechanical control (Ramasamy et al., 2010b; Yusaf et al., 2013; Yusaf 

and Yusoff, 2000). Meanwhile, a non-venturi mixer controls the amounts of fuel 

and air that enter the mixer by connecting the device to a butterfly valve or by 

employing another mechanical solution (Anil et al., 2006b; Banapurmath et al., 

2011; Reddy and Reddy, 2014). In addition, few researchers attempted to connect 

the mixer directly to an electronic control unit (ECU) for diesel cars (Banapurmath 

et al., 2011; Gorjibandpy and Sangsereki, 2010; Reddy and Reddy, 2014; Supee 

et al., 2014b). 

Most non-venturi mixers are suitable to work with gasoline engines under bi-

engine mode (gasoline or producer gas), whereas only some are suitable to work 

with diesel engines under the dual-fuel mode (diesel-producer gas dual-fuel 

engine). Moreover, most non-venturi mixers were designed to mix air with 

producer gas but not with other gaseous fuels. In addition, non-venturi mixers also 

cannot create homogenous mixtures nor control AFR at a variety of engine speeds 

(Anil et al., 2006b; Banapurmath et al., 2011; Reddy and Reddy, 2014).  

Few researchers investigated the effect of adding H as a third fuel to the dual-fuel 

engine (CNG–diesel)(Alrazen et al., 2016b; Chintala and Subramanian, 2013). 

Presently, no commercially available mixer that has been designed for mixing H-

CNG-Air for a tri fuel engine (H-CNG-Diesel engine) Thus, there is a need for 

designing a new mixer which is   suitable for working with tri fuel engines (CNG-

H-Diesel). The combustion efficiency, engine performance, and emission 

reduction of gases in dual-fuel engines are directly proportional to the degree of 

homogeneous mixing. These properties depend on the design (size, shape) and the 

control mechanism of the mixer. In addition, there is limited work on empirical 

equations to estimate the homogeneity of the mixture depending on different 

parameters (diameter of holes, location of hole and number of holes) that are 

governed by the design of gaseous mixer. 

1.3 Objective of Study  

The aim of this work is to design a new air–H2–CNG mixer that is suitable for 

mixing air with H, CNG, and a blend of CNG and H. This new mixer should allow 

the super homogeneous mixing of gaseous fuel with air (uniformity index (UI) > 

0.9) according to a range of engine speeds. The new mixer is developed to be 

connected easily with an ECU for the accurate control of the air–gaseous fuel ratio 

(AFR) at different engine speeds. This new mixer can work under different engine 

modes (bi- engine, dual fuel engine and tri fuel engine). The specific objectives 

of this work are as follows: 
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1. To determine the mixing characteristics of air–CNG–H and flow behaviors under 

different engine speeds and AFRs by developing predictive models (numerical 

model) through using  computational fluid dynamics (CFD). 

 

2. To propose an empirical relationship (empirical equations) to predict mixture 

homogeneity and air–gaseous ratios based on particle swarm optimization (PSO). 

 

3. To design and fabricate a new air–HCNG mixer that is suitable for mixing air 

with H, CNG, and blend of CNG and H. 

 

4. To evaluate the performance of the new fabricated air–HCNG mixer.  

 

 

1.4 Scope of Work 

1- The new air–HCNG mixer is designed for four cylinders, four strokes, and 3.2 L 

capacity, and it is suitable to work with various engine speeds (1000, 2000, 3000, 

and 4000 rpm). 

 

2- The new air–H–CNG mixer is designed for mixing air with H, CNG, and blend 

of CNG and H under different AFRs [AFRCNG (17.25, 19.08, 20.7, 22.89, 24.502, 

29.40, 34.1584, and 40.990), AFRH (34.39, 41.268, 89.7130, and 74.760), 

AFRHCNG (39.9821, 47.9675, 51.3157, and 60.7071)], various replacement ratios 

(RR) for gaseous fuel with diesel fuel [RR CNG (100%, 90%, 70%, and 50%), RRH 

(50% and 100%), RRHCNG (50%)], and two lambdas (1 and 1.2). AFR equations 

used are those available in the FLUENT software.  

 

3- The new air–HCNG mixer is designed for providing a homogeneous mixture of 

air and gaseous fuel (air-CNG, air-H and air-HCNG) by keeping the uniformity 

index (UI) of gaseous fuel at the outlet of new mixer higher than 0.91 at various 

engine speeds and various AFRs (Abo-Serie et al., 2016). 

 

4- Solid work software was used for modeling and designing a moveable mechanical 

mechanism inside the new air fuel mixer to control the amounts of air and fuel.  

 

5- ANSYS Workbench software (FLUENT software) was used to create new mixer 

models and investigate the mixing characteristics of air and gaseous fuel under 

different AFRs and engine speeds. The flow, pressure, velocity, AFR, and 

properties of flow inside the mixers were studied for the three cases of mixing 

(CNG–air, H–air, and CNG–H–air).  

 

6- Particle swarm optimization (PSO) was employed to estimate the uniformity 

index (UI) of the gaseous fuel (air–H, air–CNG, and HCNG–air) inside the new 

mixer models and to estimate the valve displacements inside the new mixer 

model. MATLAB was used to create an algorithm for PSO. 
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7- The existing commercial mixer and the new mixer model were tested practically 

under different engine speeds (1000–4000 rpm) and a CNG–AFR of 34.15, which 

represented 50% RR of diesel fuel with CNG fuel under a lambda value of 1, to 

validate the performance of the mixer (air flow, fuel flow, mixing quality, AFR, 

and displacement of the valve) and to validate the numerical models that were 

built in ANSYS software. 

 

8- Connecting the new mixer directly with an ECU and stepper motor are not a part 

of this study. Moreover, the linear movement of the valve inside the new mixer 

model was controlled practically by using manual rotary movement for the shaft. 

 

 

1.5 Significance of Research  

This study contributes to improve the homogeneity (UI > 0.9)  of mixture between 

air and gaseous fuel inside the mixer according to  various  engine speeds and 

control on the air and fuel ratio inside the mixer accurately at different engine 

speeds, by developing and constructing  a new air–H–CNG mixer that is suitable 

for mixing air with H, CNG, and a blend of CNG and H so that the new mixer is 

suitable for working with dual-fuel engines (diesel –H and Diesel-CNG), bi-fuel 

engines (gasoline or alternative fuels) and tri-fuel engines (H-CNG-Diesel). 

Moreover, this study contributes to build two empirical equations to predict the 

homogeneity of mixture (UI) inside the new mixer model depending on change in 

the mixer parameters (diameter of holes, location of hole and number of holes) 

that are governed the design of gaseous mixer and to estimate the valve 

displacements inside the new mixer model (model 6/ case 47) based on particle 

swarm optimization method (PSO). This work shows application of PSO to 

develop model to predict mixture homogeneity. 

1.6 Thesis Layout  

This thesis is divided into five chapters. The thesis starts with the introduction in 

Chapter1, which includes the problem statement, objectives, and scope of this 

work, significance of research and thesis layout. 

Chapter 2 presents an overview of dual-fuel engine (CNG–diesel, H–diesel, and 

CNG–diesel, and allowable replaceable ratios of alternative fuel with diesel 

engine) and air fuel mixer. This chapter shows Computational Fluid Dynamic 

(CFD) and particle swarm optimization (PSO) methods. 

Chapter 3 describes the methodology outline of this research. Firstly, the 

numerical analysis (CFD) is elaborated for modeling process (existing mixer and 

new mixer models) using the ANSYS FLUENT. Secondly, the PSO algorithm is 

elaborated for developing empirical models to estimate mixture homogeneity and 

valve displacements. Thirdly, the followed methodology in designing and 
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fabricating a new mixer model was identified. Fourthly, the method that has been 

used for practically testing the new and existing mixers was identified.  

Chapter 4 presents the results achieved from CFD simulation for numerical 

models (116 cases), PSO models (two empirical equations) and experimental tests 

for the new and existing mixers. The results were presented in graphical forms, 

tables and statistical analysis. 

Chapter 5 presents conclusions derived from this research together with 

recommendations for future research. 
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