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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirement for the degree of Doctor of Philosophy 

 
 

FORCED CONVECTION NANOFLUIDS THROUGH CORRUGATED 
BACKWARD FACING STEP CHANNELS USING NUMERICAL ANALYSIS 

 
 

By 
 
 

KAFEL ABDULAZEEZ MOHAMMED 
 
 

November 2017 
 
 

Chairman :   Abd. Rahim Abu Talib, PhD, PE 
Faculty :   Engineering 
 
 
Due to the importance of heat exchangers in various engineering applications, it is 
crucial to develop compact, lightweight heat exchangers with high thermal efficiency 
and low manufacturing cost. Much effort has been made to significantly enhance heat 
transfer and this can be achieved by designing corrugated walls for the heat exchanger 
channels. For this purpose, corrugated backward facing step wall is one of the many 
suitable techniques to enhance the heat transfer in heat exchangers. When fluid flows 
in a corrugated facing wall, the flow becomes disturbed due to growing re-circulation 
regions near the corrugated wall, which enhances the mixing of fluid as well as heat 
transfer. In this research, numerical modelling is carried out using ANSYS/FLUENT 
15.0 software. The continuity, momentum and energy equations are discretized and 
solved using the finite volume method. The SIMPLE algorithm scheme is applied to 
link the pressure and velocity fields inside the domain. In the current work, the flow 
and heat transfer of nanofluids in corrugated facing channels are examined 
numerically. Five different types of nanofluids such as Al2O3, CuO, SiO2, ZnO and 
Hamzel® silica aerogel-water with nanoparticle diameters in the range of 25 to 80 nm 
and the range of nanoparticle volume fraction from 0 to 4% are examined. The effects 
of geometrical parameters such as the amplitude height and wavelength of corrugated 
facing step channels in addition to the effect of Reynolds number on the flow and 
thermal fields are presented and analyzed. Comparisons of the numerical results with 
those available in the literature have been presented and a good agreement between 
the results is observed. The Reynolds number is varied between 100–1,500 and 5,000–
20,000 for laminar and turbulent flows, respectively. 
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In general, the average Nusselt number and pressure drop increase with an increase in 
the amplitude height and nanoparticle concentration. However, there is a decrease in 
these parameters with an increase in the wavelength and nanoparticle diameter. The 
silicon dioxide-water nanofluid provides the best thermal hydraulic performance. The 
trapezoidal corrugated facing step channel provides the best thermal-hydraulic 
performance at an amplitude height of 4 mm, followed by the triangular corrugated 
facing step channel. The simulation results conform well with those in the literature. 

Simulations are also conducted to examine the effect of nanoparticle concentration (0, 
1, and 4%) and channel shape on the average Nusselt number and pressure drop for 
Hamzel® silica aerogel-water nanofluid in the laminar flow region. This novel 
nanofluid is a promising working fluid for heat exchangers due to its significant heat 
transfer enhancement when coupled with the trapezoidal corrugated facing step 
channel. This is indeed expected because of the high thermal conductivity and low 
density of this nanofluid. 

The Nusselt number enhancement ratio reached to 80% and 85% when using 
Hamzel® silica aerogel-water in the trapezoidal-corrugate at Nanoparticle 
concentrations of 1% and 4% respectively. The trapezoidal-corrugate provides the 
highest thermal-hydraulic performance at amplitude height of 4mm and 2cm 
wavelength flowed by a triangle having the same property. 
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Abstrak tesis yang dipersembahkan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

 
 
NANOBENDALIR PEROLAKAN PAKSA MELALUI SALURAN LANGKAH 

BERALUN MENGHADAP KE BELAKANG MENGGUNAKAN 
SIMULASI BERANGKA 

 
Oleh 

 
 

KAFEL ABDULAZEEZ MOHAMMED 
 
 

November 2017 
 
 
Pengerusi :   Abd. Rahim Abu Talib, PhD, PE 
Fakulti :   Kejuruteraan   
 
 
Oleh kerana pentingnya penukar haba di dalam pelbagai aplikasi kejuruteraan, adalah 
mustahak untuk membangunkan penukar haba yang padat, ringan dengan kecekapan 
haba yang tinggi dan kos pembuatan yang rendah. Banyak usaha telah dibuat untuk 
meningkatkan pemindahan haba dengan ketara dan ini dapat dicapai dengan 
merekabentuk dinding beralun untuk saluran penukar haba. Untuk tujuan ini, suatu 
dinding langkah permukaan beralun merupakan salah satu daripada beberapa teknik 
yang sesuai untuk meningkatkan pemindahan haba dalam penukar haba. Apabila 
bendalir mengalir di dinding permukaan beralun, aliran itu akan terganggu kerana 
kawasan peredaran-semula yang semakin meningkat berhampiran dinding beralun, 
yang akan meningkatkan pencampuran bendalir serta pemindahan haba.  Dalam kajian 
ini, pemodalan berangka dilakukan menggunakan perisian ANSYS/FLUENT.  
Kesinambungan, momentum dan persamaan tenaga didiskretkan dan diselesaikan 
dengan menggunakan kaedah isi padu terhingga. Skema algoritma SIMPLE 
digunakan untuk menghubungkan medan tekanan dan halaju dalam domain. Dalam 
kajian semasa ini, aliran dan pemindahan haba nanobendalir dalam saluran permukaan 
beralun diperiksa secara berangka. Lima jenis nanobendalir yakni Al2O3, CuO, SiO2, 
ZnO dan aerogel silika Hamzel®-air dengan garis pusat nanozarah  dalam lingkungan 
(25 , 40, 60, 80) nm dan pecahan isipadu nanozarah dari (0%, 1% 2%, 3%, 4%) 
diperiksa. Kesan parameter geometri seperti amplitud, ketinggian dan panjang 
gelombang saluran langkah permukaan beralun selain daripada kesan nombor 
Reynolds ke atas aliran dan medan haba dibentangkan dan dianalisis. Perbandingan 
keputusan berangka dengan yang terdapat di dalam literature telah dibentangkan dan 
persetujuan yang baik antara hasilnya diperhatikan. Nombor Reynolds dibeza-bezakan 
antara masing-masing 100-1,500 dan 5,000-20,000 untuk aliran lamina dan bergelora. 
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Secara umumnya, nombor purata Nusselt dan penurunan tekanan meningkat dengan 
peningkatan ketinggian amplitud dan kepekatan nanozarah. Walau bagaimanapun, 
terdapat penurunan parameter-parameter ini dengan peningkatan panjang gelombang 
dan garis pusat nanozarah. Nanobendalir silikon SiO2-air memberi prestasi hidraulik 
termal terbaik. Saluran langkah permukaan beralun berbentuk trapezium memberi  
prestasi termal-hidraulik terbaik pada ketinggian amplitud 4 mm, diikuti dengan 
saluran langkah permukaan beralun  segi tiga.  Keputusan simulasi mengikut dengan 
baikna keputusan yang ada di dalam literatur. 

Simulasi juga dijalankan untuk mengkaji kesan kepekatan nanozarah (0, 1, dan 4%) 
dan bentuk saluran ke atas nombor purata Nusselt dan penurunan tekanan untuk 
nanobendalir aerogel silika Hamzel®-air di kawasan aliran lamina.  Nanobendalir 
baru ini adalah bendalir bekerja yang membawa harapan untuk penukar haba 
disebabkan oleh peningkatan pemindahan haba yang ketara apabila digabung dengan 
saluran langkah permukaan beralun trapezium. Ini sememangnya disangkakan kerana 
kekonduksian termal yang tinggi dan ketumpatan rendah nanobendalir ini. 

Nisbah peningkatan Nombor Nusselt mencapai 80% dan 85% apabila menggunakan 
silika aerogel Hamzel®-air di dalam trapezium-beralun dengan kepekatan nanozarah  
di paras 1% dan 4% masing-masing. Trapezium-beralun memberi prestasi terma-
hidraulik tertinggi pada ketinggian amplitud 4 mm dan 2 cm panjang dialirkan oleh 
segi tiga  yang  mempunyai ciri yang sama. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Studies on heat transfer enhancement of heat exchangers have received much attention 
in recent years since it is imperative to design heat exchangers with high thermal 
efficiency. Knowledge on heat transfer enhancement is essential in order to develop 
compact, lightweight heat exchangers with high thermal efficiency and low 
manufacturing cost. Nanofluids have garnered much attention in recent years for use 
as coolants in various industrial applications. This new class of heat transfer fluids 
contain pendent nanoparticles with high suspension stability compared with fluids in 
which the particles are within the millimetre or micrometre range (Fuskele, V., & 
Sarviya, R. M. 2017). Heat transfer fluids such as water, ethylene glycol, glycerine, 
and engine oil play an important role in many industrial applications. Many studies 
have been published regarding heat transfer and fluid flow of flows through channels 
with facing steps (Mohammed et al., 2017). The effects of boundary conditions, fluid 
type, and geometry on heat transfer enhancement have been investigated. Researchers 
have also developed ways to improve the accuracy of numerical predictions for 
convective heat transfer and fluid flow characteristics of flows in facing step channels 
(Heshmati et al., 2014). These data are vital for industrial heating and cooling 
applications where flows through channels with sudden expansion or contraction are 
common. In this regard, numerical and experimental studies have been carried out 
over the years for laminar and turbulent flows. Studies have shown that using 
nanofluids in corrugated channels enhances heat transfer with a slight pressure drop. 
The heat transfer enhancement potential of these fluids in corrugated channels enable 
engineers to develop highly effective and compact heat transfer exchangers to suit a 
variety of industrial applications such as transportation, electronic cooling systems, 
chemical processes, combustion chambers, turbine blade cooling, environmental 
control systems, and high-performance heat exchangers. Figure 1.1 shows the various 
types of plate-fin heat exchangers (Webb, 1984). 
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Figure 1.1 :  Various types of plate-fin heat exchangers: (a) plain triangular fins, 
(b) plain trapezoidal fins, (c) offset strip fins, (d) wavy fins, (e) rectangular fins, 
and (f) perforated fins (Webb, 1984) 

 
 
Owing to the escalating energy demands in the last few decades, much effort has been 
made to study and improve the thermal performance of heat exchangers. Improving 
the thermal performance by means of corrugated facing step channels is insufficient 
to fulfil industrial requirements. Nanofluids have attracted much attention because of 
their great potential as coolants in various heat transfer systems. This modern class of 
heat transfer fluids consists of pendant nanoparticles with high suspension stability 
compared with fluids containing micrometre and millimetre-sized particles. Heat 
transfer fluids such as ethylene glycol, water, glycerine, and engine oil play a vital role 
in various industrial applications. Much effort has also been made to develop compact 
and lightweight heat exchangers with high thermal efficiency and low manufacturing 
cost. 

1.2 Heat transfer enhancement techniques 

The need for high-performance heat exchangers has driven researchers to improve 
heat transfer enhancement techniques. One of the conventional techniques involves 
reducing the thermal impedance by increasing the heat exchanger surface area or 
decreasing the thermal boundary layer thickness on the heat exchanger surface. 
However, increasing the surface area increases the volume or mass of the heat transfer 

(a) 
(b) (c) 

(f) (e) (d) 
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fluid and heat exchanger. The thermal boundary layer thickness is reduced by 
generating vortices. There are two types of heat transfer enhancement techniques: (1) 
active and (2) passive. Active techniques require an external power (e.g. surface and 
fluid vibrations) and an electrostatic domain. In contrast, passive techniques do not 
require the application of external power for heat transfer enhancement, and heat 
transfer is enhanced by using a rough surface, extended surfaces (fins), displaced 
promoters, vortex flow devices, and fluid additives (nanofluids). This research is 
focused on integrating two passive techniques in order to enhance heat transfer of heat 
exchangers. Figure 1.2 shows a summary of the techniques used for heat transfer 
enhancement (Sidik, N. et al., 2017). 

 

Figure 1.2 : Summary of heat transfer enhancement techniques (Sidik, N. 2017). 



© C
OPYRIG

HT U
PM

 

 
4 
 

Vortex generators such as fins, ribs, and wings fixed onto the heat transfer surface 
have been successfully used to enhance heating or cooling in thermal systems such as 
gas turbines, heat exchangers, and electronic devices. These vortex generators serve 
as obstacles that generate three-dimensional swirl flow and secondary vortices which 
disturbs the growth of the viscous sub-layer and increase the rate of heat transfer. The 
need for non-circular ducts (e.g. trapezoidal and triangular ducts) with low pressure 
drop (Edalati et al., 2016) has motivated researchers to use fluids with high thermal 
conductivities such as nanofluids in order to increase the thermal performance of these 
ducts. 

1.3 Research motivation 

Flow separation and reattachment phenomena take place in many thermal systems and 
much effort has been made in the last decade to understand the hydrodynamics and 
thermal aspects of these phenomena. However, there is a lack of in-depth studies in 
this area, which forms the motivation of this research. Furthermore, nanofluid flows 
in corrugated facing step channels in turbulent flow conditions (with flow separation) 
are typically excluded from thermal analysis not only because of the complexity of 
these flows, but also due to the high computational and experimental resources 
required to study the problem. To date, there is a lack of in-depth studies concerning 
nanofluid flows in corrugated facing step channels. Hence, this research provides 
comprehensive data on these flows which will assist thermal designers in designing 
heat exchangers with high thermal efficiency, in which nanofluids are used as the 
working fluids. 

1.4 Problem statement 

Owing to the escalating energy demands in the last few decades, much effort has been 
made to study and improve the thermal performance of heat exchangers. However, 
improving thermal performance by means of corrugated backward facing step 
channels is not sufficient to fulfil all industrial requirements. 

Nanofluids have attracted much attention because of their great potential as coolants 
in various industrial applications. This modern class of heat transfer fluids consists of 
pendant nanoparticles with superior suspension stability compared with fluids 
containing particles within the micrometre or millimetre range. Heat transfer fluids 
such as ethylene glycol, water, glycerine, and engine oil play a vital role in industrial 
applications, and there is a critical need to develop compact and lightweight heat 
exchangers with high thermal efficiency and low manufacturing cost. 

Currently, there is no perfect heat exchanger. More work need to be done to enhance 
the heat transfer. Enhancement techniques using facing step geometry (26%), surface 
roughness (35%), and liquid additive (5%). Combination of the above techniques 
surface roughness + liquid additive (40%), while facing step geometry + liquid 
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additive (31%). For all of these enhancement techniques the industry still feel that is 
not enough and we are looking for more than 50% enhancement. 

1.4.1 Proposed New Channel Design 

Figure 1.3. Present the new Proposed of triangle and trapezoidal wall compound with 
facing-step geometry, the length of wave is (Lw) and the amplitude height is (a). Note 
the step height is kept constant 

 
Figure 1.3 : Corrugated backward facing step channels 
 
 
1.5 Research hypotheses 

To carry out research work associated with the problem statement and objective, some 
assumption and research hypothesis will be formulated as a guideline. Basic 
assumptions that will be adapted in this work are that the corrugated facing step 
channels will enhance heat transfer. The analysis will assume the corrugated facing 
step channels will increase pressure drop and skin friction coefficient and Nanofluids 
will enhance heat transfer in corrugated facing step channels. 

1.6 Aim of the work 

This study aims to study the double effect of combined the corrugated wall and 
different type of nanofluids in back ward facing step channel in the heat transfer 
enhancement  and answer the following questions : 

a. What is the best geometry, amplitude height and wavelength for the 
triangular and trapezoidal corrugated facing step channels? 
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b. Which amplitude height and wavelength gives the best thermal hydraulic 
performance for the triangular and trapezoidal corrugated facing step 
channels? 

c. Which nanofluid gives the best thermal hydraulic performance? 
d. What is the ideal nanoparticle diameter? 
e. What happens when the nanoparticle concentration is increased? 
f. Which flow (laminar or turbulent) results in significant heat transfer 

enhancement? 
g. Which flow (laminar or turbulent) results in a significant increase in the 

pressure drop? 
h. Based on the performance evaluation criteria, is the combination of 

corrugated wall and nanofluids in triangular and trapezoidal corrugated 
facing step channels more than unity? 

 
 
1.7 Research objectives 

The main objectives of this research are set as follows in order to verify the hypotheses 
proposed in this research: 

 To develop numerical models of corrugated facing step channels. 
 To validate present study result with numerical and experimental result 

available in literature. 
 To analyse the convective heat transfer, pressure drop, and skin friction 

coefficient of flows in corrugated facing step channels in laminar and 
turbulent flow conditions. 

 To investigate the effect of different nanofluids and corrugated facing step 
channels on heat transfer enhancement. 

 
 

1.8 Scope of research 

The design of the plate heat exchangers is highly required to find the optimal structure 
of these devices. Currently, the flow and heat transfer characteristics of nanofluids in 
corrugated backward facing step channels are numerically investigated. Therefore, the 
scope of the current study is as follows: 

1. The amplitude height of the VG is set at 1, 2, 3, and 4 mm with respect to 
the axial flow to keep the research in the domain of backward facing step. 

2. In the mathematical modeling, the Low Reynolds number k-ε model of 
Launder and Sharma (1974) was employed to simulate the turbulent flow 
regime. 

3. The single-phase models were employed in the mathematical modeling to 
simulate the convective heat transfer of nanofluid flow in corrugated 
backward facing step channel (Armaly et al., 2003). 
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4. The effect of mass transfer (by means of chemical reactions, phase 
changes, mass dissipation, transpiration, etc.) are neglected and only 
energy transfer by means of convective heat transfer is considered (Kays 
et al., 1984). 

5. Thermophysical properties such as thermal conductivity, diffusivity and 
specific heat for three types of silica aerogel Nano-powders have been 
experimentally measured. 

6. Fourteen VG geometries (triangular and trapezoidal) are examined, 
whereby the amplitude height is set at 1, 2, 3, and 4 mm and the 
wavelength is set at 2, 4, 5, and 10 cm. 

7. Water is used as the base working fluid Tzeng et al., (2007). 
8. Five types of nanofluids are studied: Al2O3-water, SiO2-water, ZnO-

water, and CuO-water nanofluids in addition to novel nanofluid 
(Hamzel® silica aerogel-water), which has never been used before in heat 
transfer studies. 

9. The research is carried out for four nanoparticle concentrations: 1, 2, 3, 
and 4%.(Heshmati, 2014) 

10. The research is conducted for four nanoparticle diameters: 25, 40, 60, and 
80 nm. (Heshmati, 2014) 

11. The Reynolds number (Re) is varied from 100 to 1,500 for laminar flow 
and from 5,000 to 20,000 for turbulent flow Ahmed et al. (2015). 

 
 

1.9 Novelty of the research 

To the best of the author’s knowledge, there are no reported studies to date regarding 
the effect of nanofluids and corrugated backward facing step wall on heat transfer 
enhancement, and this research fulfils this gap in the existing body of knowledge. In 
addition, there are no studies on the effect of constant and variable properties on the 
Nusselt number, pressure drop, and skin friction coefficient. Furthermore, a numerical 
study is carried out on a novel nanofluid (Hamzel® silica aerogel-water nanofluid), 
which has never been used before in heat transfer studies. 

1.10 Layout of the thesis 

The chapters of this thesis are organized as the following manner: Chapter 2 provides 
an extensive review of literatures in the field of heat transfer enhancement using vortex 
generators and nanofluids and their applications. The advantages, disadvantages, 
problems and challenges of nanofluids are also presented. Chapter 3 includes the 
details of the problem domain, mesh generation and independency test of the mesh, 
validity of the code, boundary conditions, governing equations and method of solution 
used to obtain the numerical simulation. Testing of discretization scheme is also 
presented in this chapter. Chapter 4 presents the details of numerical results which are 
discussed thoroughly here. Finally, Chapter 5 contains the conclusion and 
recommendations for future works. 
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