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Faculty : Engineering 

The advancement of mode-locked fiber laser (MLFL) in femtosecond range has 

wide applications especially in biomedical sciences. For instance, femtosecond 

lasers are employed for cancer treatment at cellular level. MLFL is achieved by 

mode-locking regime with an appropriate mode-locker. Over the past few years, 

researchers have shown substantial interest in fabricating efficient saturable 

absorbers (SAs) as passive mode-locker due to its minimal weight, mechanically 

stable and highly nonlinear properties. Two-dimensional materials are popular for 

SA fabrication due to broadband and almost wavelength independent absorption. 

However, fabrication techniques to incorporate two-dimensional material in SAs 

involve tedious procedures especially wet chemicals. This research work focuses 

on the generation of femtosecond pulses utilizing two different types of sandwich-

structured SA; graphene-polymethyl-methacrylate (PMMA) thin-film and 

graphene nanoplatelet (GNP) powder. The graphene/PMMA-SA is made through 

simple transfer procedure of the thin-film on a fiber ferrule. On the other hand, the 

GNP-SA is realized by mechanical exfoliation technique of GNP powder on a fiber 

ferrule. The optical characterization shows that graphene/PMMA-SA possesses 

larger modulation depth and lower insertion loss as compared to GNP-SA, thus 

leading to stronger saturable absorption for pulse shaping mechanism. The main 

aspect of the study is to validate the fabrication techniques through enhanced laser 

architectures in erbium-doped fiber laser (EDFL); single- and dual-lasing output. 

The cavity optimization is carried out for both lasing operation in order to achieve 

stable mode-locking operation in femtosecond range. For the optimized setup, the 

EDFL with graphene/PMMA saturable absorber is able to generate around 700 fs 

at approximately 1556 nm wavelength range. For dual-lasing MLFL generation, its 

main challenge is to have a balance net cavity gain at different wavelengths. For 

erbium materials, the interested lasing wavelengths are about 1530 nm and 1560 

nm within its emission range. In order to minimize the complexity of configuration, 
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most of the optical components are shared between these two lasing wavelengths. 

This research work proposes laser architectures that utilize common gain medium 

and SA. Two red/blue wavelength division multiplexers are employed to provide a 

mechanism to split/combine these two wavelength ranges. Based on the proposed 

laser architectures, lasing directions are also investigated; unidirectional and 

bidirectional. The optimized pulse width of 730 fs and 870 fs are obtained at 1530 

nm and 1560 nm, respectively. These findings are achieved with the bidirectional 

MLFL architecture incorporating graphene/PMMA-SA. The achievement of this 

research work solves the limitation of optical pulses measured in picosecond range 

from previous works, while new architectures of dual-lasing mode-locked EDFLs 

are successfully designed and executed. 
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By

LAU KUEN YAO 

November 2017 

Pengerusi : Mohd. Adzir b. Mahdi, PhD 
Fakulti : Kejuruteraan 

Kemajuan laser gentian penguncian mod (MLFL) dalam rangkaian femto-saat 

menjadi topik yang hangat terutamanya dalam aplikasi sains bio-perubatan. 

Contohnya, laser gentian ini diamalkan dalam rawatan kanser pada tahap sel 

dengan kepersisan tinggi. MLFL dicapai oleh rejim penguncian mod yang 

menggabungkan penyerap tepu (SA) yang bersesuaian. Semenjak beberapa tahun 

belakangan ini, para penyelidik telah menunjukkan minat dalam menghasilkan SA 

pasif yang mudah diserap dengan ciri-ciri ringan, stabil and sifat tidak linear yang 

tinggi untuk mencapai operasi penguncian mod. Walau bagaimanapun, teknik 

fabrikasi untuk mengamalkan bahan dua dimensi dalam SA melibatkan langkah-

langkah rumit terutamanya penggunaan bahan kimia basah. Kajian ini bertumpu 

pada penajaan MLFL dengan membentuk dua SA berstruktur sandwic yang 

mempunyai seni bina yang tidak rumit. SA ini menggabungkan bahan graphene 

terdiri daripada filem nipis yang berstruktur lapisan graphene berpusat di atas 

polimetil-methacrylate (PMMA) dan serbuk graphene nanoplatelet (GNP). SA 

berunsur graphene/PMMA dibentuk melalui prosedur pemindahan filem tipis pada 

ferrule serat. Serentak itu, SA berunsur GNP direalisasikan dengan teknik 

pengelasan mekanikal serbuk GNP pada ferrule serat. Keputusan pencirian SA 

menunjukkan bahawa graphene/PMMA-SA mempunyai kehilangan sisipan yang 

lebih rendah dan kedalaman modulasi yang lebih tinggi berbanding dengan GNP-

SA. Rentetan itu, ciri ini menyebabkan penyerapan yang lebih kuat untuk menjana 

denyutan laser. Aspek utama kajian ini adalah untuk megesahkan teknik fabrikasi 

melalui seni bina laser yang dipertingkat dalam laser serat erbium-doped (EDFL) 

melalui pengeluaran tunggal dan dwi-lasing. Pengoptimuman kedua-dua rongga 

laser dijalankan untuk mencapai operasi pengendapan mod stabil dalam julat 

femto-saat. Rongga EDFL yang dioptimumkan dengan penyerap graphene/PMMA 

dapat menjana 700 fs pada panjang gelombang dalam lingkungan 1556 nm. 

Cabaran utama untuk generasi dwi-lasing MLFL merupakan pencapaian 
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keseimbangan keuntungan rongga bersih pada panjang gelombang yang berlainan. 

Panjang gelombang yang merit untuk bahan erbium merupakan 1530 nm dan 1560 

nm. Banyak komponen optik dalam rongga dwi-lasing MLFL dikongsi pada 

kedua-dua gelombang panjang ini untuk meringankan kerumitan konfigurasi. Kerja 

penyelidikan ini mencadangkan seni bina laser yang menggunakan medium 

keuntungan biasa dan SA pada laluan perkongsian bahan optik. Dua multiplexer 

bahagian gelombang merah/biru digunakan untuk membelah dan menggabungkan 

dua julat panjang gelombang ini. Berdasarkan seni bina laser yang dicadangkan, 

arahan lasing juga disiasat sama ada satu arah ataupun dwi-arah. Lebar optik 

denyutan optimum diperolehi dengan pencapaian 730 fs dan 870 fs pada 1530 nm 

dan 1560 nm masing-masing. Penemuan ini dicapai dengan seni bina MLFL dua 

hala menggunakan graphene/PMMA-SA. Natijahnya, pencapaian kajian ini 

menyelesaikan batasan optik denyutan yang hanya menghasilkan piko-saat 

daripada kerja-kerja lain manakala seni bina rongga dwi-MLFL telah direka dan 

dilaksanakan dengan sempurna. 
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CHAPTER 1 

INTRODUCTION  

1.1 Overview 

Ultrashort pulse lasers in the order of few femtoseconds attract substantial research 

efforts in modern times due to their vast applications. For instance, micro-

processing, biomedical diagnoses, optics communication, optical metrology, and 

optical signal processing are routinely applied with femtosecond lasers [1, 2]. In 

medical field, three-dimensional image of human retina, blood vessels and skin 

epidermal layers are operated with femtosecond laser sources [3]. In molecular 

science, the gaseous atoms and molecules are probed and manipulated by the 

femtosecond laser-induced optical frequency combs [4]. In astrophysics, the 

spectrometers are accurately calibrated by the femtosecond lasers, which results in 

the Doppler Shift measurement of stellar objects within 1cm/s error deviation [5].

In high energy application, femtosecond lasers are generally used for timing 

synchronization in large-scale accelerator to generate coherent X-ray pulses in 

free-electron laser systems [6].

Ultrashort pulse lasers performance is highly attractive at 1.5 µm region due to 

broad gain bandwidth depending on the composition of fiber core and on the 

inversion level. In this wavelength range, erbium-doped fiber (EDF) has emerged 

as a strong candidate for gain medium owing to its large gain bandwidth of 

typically tens of nanometers. Erbium ions provide signal amplification around 

1550 nm wavelength which creates substantial research contribution for arrays of 

pulsed laser applications. 

Femtosecond pulses are generated from passively mode-locked (ML) regime 

employing appropriate saturable absorbers (SAs) in fiber laser cavities. The first 

semiconductor-based SA was demonstrated with semiconductor saturable absorber 

mirror (SESAM) by Keller et al. in 1992 for mode-locking operation [7]. SESAM 

shows excellent performance in terms of its possibility for defect engineering and 

micro-fabrication growth [8]. However, complex fabrication and packaging of 

cost-ineffective SESAM such as post-growth processing in ion implantation 

reduces the device response time [9, 10]. In addition, SESAM has limited 

operating wavelength range or narrow tuning range of few tens nm, which is not 

suitable for the broadband tunable pulse generation [11]. The limitation of SESAM 

has encouraged the findings of carbon nanotube (CNT) SA as an alternative. CNT 

shows superior properties such as sub-picosecond recovery time, mechanically and 

environmentally robust, low saturation intensity, non-costly, and ease of 

integration into optical system [10]. Nevertheless, the strict requirement for 

diameter and chirality control of CNT-SA for energy bandgap design makes CNT 
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typically less competent and thus encourages the efforts of discovering other new 

materials as SA for fiber laser system [9, 12]. For instance, stringent requirement 

of concentration and thickness control of single-walled carbon nanotube (SWCNT) 

is required to produce stable mode-locked pulse operation as reported in [13]. In 

addition, multi-walled carbon nanotube (MWCNT) generates broader optical pulse 

width than the SWCNT due to larger nonlinear saturated absorption as 

demonstrated in [14].

In regards to this, graphene has been reported by Bao et al. [15] to be a potential 

candidate as an SA that possesses ultrafast non-linear saturable absorption and 

gapless linear dispersion of Dirac electrons [16, 17, 18]. Under low electron 

excitation intensity, photons are absorbed and electrons are excited from lower 

Dirac cone to upper Dirac cone for a typical graphene Fermi-Dirac cone. If there is 

no further excitation to saturate the absorption process, the negatively-charge 

carriers will recombine with the hole in the valence band to form a balanced Fermi-

Dirac distribution. With higher excitation intensity whereby more photons react 

with graphene atoms, the photo-generated carriers are tremendously excited, thus, 

filling the states near the edge of valence band and conduction band completely. In 

this case, no absorption can take place at the edges of conduction band and valence 

band since no two electrons can fill in the same state [19]. As a result, the saturable 

absorption status is achieved to support optical pulses generation. 

1.2 Problem Statement and Motivation 

SA-based mode-locked erbium-doped fiber laser (EDFL) is an attractive aspect due 

to its stability and simple structure. Based on recent publications, graphene is one 

of popular materials that have been utilized as the SA in mode-locked EDFLs. 

Among SA structures, the most common one is the sandwich-structured SA owing 

to its fabrication simplicity [9]. This SA requires a nanomaterial-based thin film to 

be placed between two fiber ferrules. The light interaction occurs within the fiber 

core which is layered by this thin film. Most graphene thin films compose of 

graphene/polymer composites. In this case, an appropriate solvent to disperse 

graphene powder is important to form the composite with polymer. On the other 

hand, some solvents utilized to disperse graphene powder such as ethanol and 

dimethyl-formamide do not dissolve in polymer easily. Furthermore the orientation 

of graphene layers in composites is uncontrollable. From reported works, the 

characteristics of graphene-based SA are highly dependent on the number of layers 

[20]. In general, the SA performance is deteriorated with higher number of 

graphene layers. Therefore, it is very important to control the graphene layer 

orientation for this thin-film based SA. 

Since the discovery of graphene, the mechanical exfoliation technique using a 

scorch tape becomes famous. The technique can be utilized to imprint nanomaterial 

directly on a substrate. For sandwich-structured SA, this technique can be applied. 
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The advantage of this technique as compared to the thin-film, it does not require 

any polymer hosts and dissolving solvents. The utilization of graphene nanoplatelet 

(GNP) as sandwich-structured SA has been recently reported. However, the pulse 

width of optical pulses is only limited to picosecond range only. This is due to the 

low modulation depth of GNP-SA which reflects to the high number of stacking 

GNPs. Hence, the fabrication technique of imprinted GNP on a fiber ferrule can be 

further enhanced to achieve femtosecond pulses.  

Additionally, previous researches on mode-locked fiber laser (MLFL) operated 

solely in single-lasing regime incorporating graphene-based SA, thus raising the 

opportunity to explore the potential of graphene-based SA in dual-lasing mode-

locked fiber laser performance. There are only several recent works reported on 

dual-lasing pulsed laser using a SA. For instance, CNT-SA is extensively used to 

produce dual-lasing ML laser. However, CNT shows disadvantages in generating 

dual-lasing mode-locked laser because its tube diameter is absolutely significant in 

determining the laser operating wavelength [21]. Therefore, the limitation of CNT-

SA is evaded by incorporating graphene-SA for the generation of dual-lasing 

pulsed laser. However, another conundrum that has yet to be solved is the long 

pulse width achieved in dual-lasing mode-locking at picosecond range 

incorporating graphene-based SA, which raises research gap in improving the 

pulse laser performance. 

1.3 Aim and Objective 

The main objective of this research is to generate optical pulses in femtosecond 

range using graphene-based SA through simple fabrication methods. The specific 

objectives are as follow:

I. To fabricate sandwich-structured SA using graphene/PMMA through 

thin/film transferring process.  

II. To fabricate sandwich-structured SA using GNP powder through direct 

imprinting technique. 

III. To generate femtosecond pulses in the wavelength range of 1.55 µm using 

EDFL ring cavity architecture incorporating the fabricated graphene-based 

SAs. 

IV. To design and develop dual-lasing femtosecond pulsed EDFL utilizing the 

fabricated graphene-based SAs.  
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1.4 Research Scope 

Figure 1.1 illustrates the scope of research that will be studied in this doctoral work 

which focuses on the generation of passively mode-locked fiber lasers with ring-

cavity at femtosecond range pulse width incorporating graphene-based saturable 

absorbers. The topics related to the main contribution of this work are investigated 

due to various advantages and several gaps that were filled and explored. The work 

is conducted at 1550 nm using EDF as active gain medium. 

MLFL

CNT

Graphene TI TMD BP

Graphene/PMMA GNP

Active ML Passive ML

Ring cavity

SA

SESAM

2D Materials

Linear cavity

Single-lasing

mode-locking
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mode-locking

Pulsed laser
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GVD OCR
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Figure 1.1: The scope of the research. (SESAM – semiconductor saturable 
absorber mirror; TI – topological insulator; TMD – transition metal 

dichalcogenide; BP – black phosphorus; GVD – group velocity dispersion; 
OCR – output coupling ratio). 

1.5 Thesis Organization  

This thesis consists of six chapters. The first chapter (Chapter 1) is devoted to the 

introduction of thesis. In this chapter, the application of ML laser to produce 

ultrashort pulses, problems and objectives of the research work are presented. The 

literature review is then elaborated in Chapter 2. The graphene, SA, ML scheme 

are discussed here. In addition, the pulse evolution of soliton-based ML 
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mechanisms is explained based on Nonlinear Schrodinger Equation, which is 

solved by using Split Step Fourier Method.  

Chapter 3 presents the material characterization of graphene/PMMA thin film and 

GNP powder which are used to fabricate SA. The SA fabrication procedures are 

elaborated as well. The SA fabrication is repeated to ensure its repeatability which 

is then optically characterized in terms of transmission loss and nonlinear saturable 

absorption performance. Chapter 4 and Chapter 5 describe the ML laser 

performance by introducing the SA in an EDFL cavity. In Chapter 4, dispersion 

and output laser coupling ratio are varied and studied in order to study their effects 

on the optical spectrum and pulse duration. Chapter 5 is related to the dual-lasing 

ML operation whereby the graphene-based SA is employed to generate 

simultaneous lasers at approximately 1530 nm and 1560 nm.  

In the last chapter (Chapter 6), the overall observation and findings drawn based on 

the experimental results discussed in the previous chapters is concluded. This is 

thereafter continued by the discussions on the achievements and problems met by 

the proposed works as well as recommendations for improvement that can be 

practically implemented in future studies. 
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