
 
 

UNIVERSITI PUTRA MALAYSIA 
 

EFFECTS OF COLONIZATION OF AN ENDOPHYTIC FUNGUS, 
Hendersonia toruloidea ON THIAMINE BIOSYNTHESIS IN OIL PALM 

SEEDLINGS (Elaeis guineensis Jacq.) 
 

 
 
 
 
 
 
 
 
 

AMIRAH NOR BT. KAMARUDIN 
 
 
 
 
 
 
 
 
 
 
 
 

FBSB 2018 6 
 
 
 
 
 



©
 C

O
P

U
P
MEFFECTS OF COLONIZATION OF AN ENDOPHYTIC FUNGUS, 

Hendersonia toruloidea ON THIAMINE BIOSYNTHESIS IN OIL PALM 
SEEDLINGS (Elaeis guineensis Jacq.) 

By

AMIRAH NOR BT. KAMARUDIN 

Thesis Submitted to School of Graduate Studies, Universiti Putra Malaysia, in 
Fulfilment of the Requirements for the Degree of Master of Science 

October 2017



©
 C

O
P

U
P
M

ii

COPYRIGHT

All materials contained within the thesis including without limitation text, logos, 
icons, photographs and all other artworks are copyright material of Univeristi Putra 
Malaysia unless otherwise stated. Use may be made of any material contained within 
the thesis for non-commercial purposes from copyright holder. Commercial use of 
materials may only be made with the express, prior, written permission of Universiti 
Putra Malaysia. 

Copyright©Universiti Putra Malaysia.



©
 C

O
P

U
P
M

i 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirement for the degree of Master of Science 

EFFECTS OF COLONIZATION OF AN ENDOPHYTIC FUNGUS, 
Hendersonia toruloidea ON THIAMINE BIOSYNTHESIS IN OIL PALM 

SEEDLINGS (Elaeis guineensis Jacq.) 

By

AMIRAH NOR BT KAMARUDIN 

October 2017 

Chairman : Zetty Norhana Binti Balia Yusof, PhD 
Faculty : Biotechnology and Biomolecular Sciences 

Thiamine, or vitamin B1 plays an indispensable role in many metabolic reactions. 
Besides that, thiamine is also associated with the induction of systemic acquired 
resistance (SAR) in plants and having a role in boosting plant’s immunity and defense 
system. In Malaysia, oil palm productivity is hampered by basal stem rot disease 
caused by a pathogenic fungus, Ganoderma boninense and proper disease 
management have yet to be discovered. Application of endophytes as biocontrol agent 
is a promising measure to prevent the disease. Hendersonia toruloidea is an 
endophytic fungus originally isolated from oil palm roots which have been shown to 
have excellent biocontrol activity in oil palm seedlings. Previous studies showed that 
this endophyte is able to suppress G. boninense infection in oil palm seedlings. This 
work aimed to investigate the responses in oil palm seedlings, specifically on the 
expressions of thiamine biosynthesis genes upon application of H. toruloidea. Seven 
months old oil palm seedlings were inoculated with H. toruloidea and microscopy 
analyses were carried out to visualize the colonization of the fungus. Total RNA was 
extracted from oil palm leaves at day 1, 7, 15 and 30 post inoculation. Quantitative 
real-time PCR (qPCR) was performed to measure the level of expression of four key 
thiamine biosynthesis genes, namely THI4, THIC, TH1 and TPK. The results showed 
of up to 12-fold of increase in the expression of all gene transcripts at day 1 post 
inoculation. At subsequent days of day 7, day 15 and 30 post inoculation, the relative 
expression of these genes were shown to be downregulated. Thiamine accumulation 
was observed via HPLC analysis at day 7 post inoculation and subsequently attenuated 
until day 30. This work provides first evidence of enhancement of thiamine 
biosynthesis by endophytic colonization in oil palm and suggesting the role of 
thiamine in stress protection in oil palm seedlings.
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Vitamin B1 memainkan peranan yang penting dalam metabolisma dalam semua 
kehidupan. Selain itu, vitamin B1 juga terlibat dalam induksi rintangan sistemik dalam 
tumbuhan dan memainkan peranan penting dalam immuniti dan pertahanan 
tumbuhan. Di Malaysia, produktiviti kelapa sawit adalah terjejas disebabkan oleh 
penyakit pereputan pangkal akar yang disebabkan oleh kulat Ganoderma boninense.
Namun, pengawalan terbaik dan efektif terhadap kulat Ganoderma boninense belum 
dikenalpasti. Pengawalan penyakit BSR telah dilakukan dengan menggunakan agen 
kawalan biologi iaitu melalui penggunaan endofit terhadap anak pokok kelapa sawit. 
Kulat Hendersonia toruloidea merupakan kulat endofit yang telah dijumpai dalam 
akar kelapa sawit dan telah menunjukkan keberkesanan yang memberangsangkan 
terhadap kawalan penyakit BSR. Oleh itu, kajian ini bertujuan untuk menyelidiki 
kesan kolonisasi kulat endofit H. toruloidea terhadap biosintesis vitamin B1 di dalam 
anak pokok kelapa sawit. Kulat endofit H. toruloidea telah diinokulasi ke atas anak 
benih kelapa sawit berusia 7 bulan di nurseri. Analisa mikroskopi telah dijalankan 
untuk mengkaji kolonisasi kulat endofit di dalam akar kelapa sawit. RNA telah 
diekstrak daripada daun kelapa sawit pada hari ke 1, 7, 15 dan 30 hari usai inokulasi. 
Tindak balas rangkaian polimerase secara secara kuantitatif masa sebenar (qPCR) 
telah dijalankan untuk melihat pengkspresan empat gen biosintesis B1 yang utama 
iaitu THI4, THIC, TH1 dan TPK. Hasil penemuan menunjukkan pengekspresan gen 
biosintesis vitamin B1 meningkat sehingga 12 kali ganda. Selepas 15 dan 30 hari usai 
inokulasi, pengekspresan gen vitamin B1 telah menurun. Analisa HPLC menunjukkan 
kolonisasi kulat endofit telah menyebabkan pengumpulan metabolit vitamin B1 di 
dalam daun kelapa sawit. Hasil kajian ini berjaya menunjukkan kolonisasi H. 
toruloidea meningkatkan biosintesis vitamin B1 di dalam pokok dan mencadangkan 
peranan vitamin B1 dalam perlindungan kelapa sawit terhadap tekanan.  
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        CHAPTER 1

1  INTRODUCTION 

Plants are sessile organisms that are inevitably exposed to unfavourable biotic and 
abiotic stresses, namely salinity, drought, and also microbial pathogens. Climate 
changes and attack by pathogenic diseases can severely hamper the productivity of 
important crop plants, including oil palm. Oil palm is one of Malaysia’s important 
commodity. However, the productivity of oil palm is threatened by basal stem rot 
disease caused by a fungus, Ganoderma boninense which resulted in major economic 
losses (Paterson, 2007; Rees et al., 2009). Current research in oil palm is accelerating 
towards finding ways to control the disease and is focusing on the detailed molecular 
mechanism in the plant-pathogenic interaction (Ho and Tan, 2014). Recently, studies 
of plant and microorganism interactions are significantly attracting interest because it 
has been demonstrated that microorganisms such as endophytes play a role in 
alleviating stresses in their host plants (Boivin et al., 2016). 

Endophytes are microorganisms that colonize the insides of plant tissues without 
causing any disease (Wilson, 1995). It is widely documented that endophytes formed 
a beneficial mutualistic relationship with plants (Hernández-Montiel et al., 2013; 
Seerangan and Thangavelu, 2014). It is suggested that plant-endophyte mutualism is 
formed through direct and indirect mechanisms. Direct mechanism include antibiosis, 
and indirect is through production of biochemical compounds that are associated to 
alleviating stresses through induced systemic resistance (ISR), thereby enhancing 
plant’s immune system and preventing pathogenic attack (Alquéres et al., 2010; Gao 
et al., 2010).  

Relatively, no studies have been done on the role of thiamine in stress protection in 
oil palm. Thiamine or vitamin B1, an enzymatic cofactor in metabolic reactions, is 
involved in plant adaptation and alleviation of biotic and abiotic stresses in plants 
(Tunc-Ozdemir et al., 2009; Rapala-Kozik et al., 2008; Goyer, 2010). It was observed 
that there was an accumulation of thiamine when the plants were subjected to salinity 
stress, oxidative stress and pathogenic attack (Rapala-Kozik et al., 2008; Tunc-
Ozdemir et al., 2009; Zhou et al., 2013). It is now understood that thiamine formed an 
indirect role in enhancing anti oxidative capacity in the plants, which is important in 
defense responses (Zhou et al., 2013). Yet, the exact mechanism of biosynthesis of 
thiamine in response to stresses is still poorly understood.  

Thiamine is involved in adaptation to biotic and abiotic stresses and application of 
endophytes enhance the synthesis of defence metabolites that is associated with 
ISR/SAR (Zheng et al.2015). This led to a hypothesis that thiamine biosynthesis in oil 
palm will be upregulated by colonisation by endophytes. In this study, the endophytic 
fungus Hendersonia toruloidea was chosen as the strain of choice due to its excellent 
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colonization ability and also its ability to suppress Ganoderma boninense disease 
infection in oil palm (Idris et al., 2013).  

1.1 Objectives 

The objectives of this study are: 

1. To determine the localization and colonisation of endophytic fungus in oil 
palm by scanning electron microscopy and transmission electron microscopy

2. To determine the level of expression of thiamine biosynthesis genes upon 
colonisation of endophytic fungus by quantitative PCR

3. To quantify the total thiamine accumulation in oil palm upon colonisation by 
endophytic fungus by HPLC 

The first objective was to perform microscopy analysis to study the colonisation and 
morphological pattern of the endophytic fungus. It was expected that the endophytic 
H. toruloidea will actively colonizing oil palm root tissues. Scanning electron 
microscopy (SEM) revealed the morphology of the H. toruloidea while transmission 
electron microscopy (TEM) was carried out to examine the structure and localisation 
of H. toruloidea in the oil palm root. 

The second objective was to determine the expressions of thiamine biosynthesis genes 
in oil palm upon successive colonisation of H. toruloidea. The successful colonization 
of endophytic fungus was hypothesized to cause an upregulation of the thiamine 
biosynthesis genes in oil palm. The gene expression study was performed using 
quantitative real time-PCR (qRT-PCR), a simple, high throughput technology that 
enable us to measure gene expression in real time. The expression of thiamine 
biosynthesis genes was examined over a time course of 1, 7, 15 and 30 days post 
inoculation and the result will reflect the changes in transcript abundances of thiamine 
biosynthesis genes upon colonization of H. toruloidea.

The third objective of this study was to measure total thiamine content in oil palm 
upon colonization of the endophytic fungus. The upregulation of thiamine 
biosynthesis genes was expected to cause the increase in total thiamine and its 
intermediates accumulation overall. It was performed using High Performance Liquid 
Chromatography (HPLC). Since gene expressions are not necessarily translated into 
functional protein, the measurement of total thiamine and its intermediate content will 
verify that thiamine biosynthesis genes are expressed to synthesise total thiamine or 
the synthesis of its intermediates might be involved in other mechanisms in the overall 
metabolic pathways. 
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