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Automotive suspension system provides comfort by isolation ground vibration from 
passenger. An active system consists of vehicle mass, spring, damper and actuator. 
The response of vehicle is measured by the amplitude and frequency of its vertical 
displacement. The response depends on the parameters such as vehicle mass, spring 
stiffness, damping coefficient, force and time. The equation of motion relating the 
response with the parameters is complex. The solution can be obtained either by 
analytical, numerical and/or experimental methods. The analytical method is limited 
to simple cases, whereas experimental method is costly. Hence, numerical method, 
namely, the Direct Transcription (DT) and Global Search (GS) can be used. In the 
present work the GS method is used. The results are compared with analytical, DT 
and experimental. 

The objective of global optimization is to find the globally best solution of (possibly 
nonlinear) models, in the (possible or known) presence of multiple local optima. 
Formally, global optimization seeks global solution of a constrained optimization 
model. Nonlinear models are ubiquitous in many applications, e.g., in advanced 
engineering design, co-design problems, biotechnology, data analysis, environmental 
management, financial planning, process control, risk management, scientific 
modeling, and others. Their solution often requires a global search approach. 

Spring stiffness and damping coefficient were determined using GS optimization 
approach with a control input force was applied directly to the active suspension 
system. 
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A design methodology for optimizing the passive suspension parameters was 
developed and illustrated on 1/4 car model. The dynamics of the suspension system 
were analyzed as the control force value is increased gradually. The optimization 
numerical results were simulated in time and frequency domains. 

A very important results of the research was that there are fundamental trade-offs 
between ride quality and road holding that are independent of suspension type or 
design due to the value of the damping ratio.  

GS Simulations in time and frequency domains were conducted comparing the 
optimized passive and active suspensions under the same performance index and 
single bump sinusoidal road profile. It was shown that the active suspension can 
provide significant performance improvements over the passive suspension and 
comparable to the active suspension obtained by DT in terms of spring stiffness and 
damping coefficient. 

An experimental test rig was to validate the optimal numerical results and the 
dynamic responses in frequency domain. 

The analytical simulations were investigated. It was found that the optimal active 
suspension system in the absence of the control force showed less sprung mass 
acceleration overshoot and settling time, compared to optimal passive suspension 
system and DT model. In the frequency domain, the frequency response in terms of 
natural frequency obtained for GS is 1.26 Hz, DT is 1.35 Hz and experimental is 
1.32 Hz. The percentage error between experiment and GS is 4.18% and between 
experiment and DT is 2.6%. For magnitude, GS gave 5.63 dB, DT gave 8.56 and 
experiment is 13.12 dB. The difference between GS and experiment is 57.1% and 
DT and experiment is 0.348%. 
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Sistem gantungan automotif memberikan keselesaan melalui pemencilan getaran 
jalan dari penumpang. Sebuah sistem aktif terdiri daripada berat kenderaan, pegas, 
peredam dan penggerak. Tindakbalas kenderaan diukur secara amplitud dan 
kekerapan anjakan menegak . Tindakbalas bergantung kepada pembolehubah seperti 
berat kenderaan, kekakuan pegas, pekali redaman, daya dan masa. Persamaan 
gerakan yang mengaitkan tindakbalas dengan pembolehubah adalahrumit. 
Penyelesaiannya boleh dibuat sama ada melalui kaedah analisis, berangkadan / atau 
ujikaji. Kaedah analisis adalah terhad kepada kes mudah, sedangkan kaedah ujikaji 
adalah mahal. Oleh itu, kaedah berangka, iaitu Transkripsi Langsung (DT) dan 
Carian Global (GS) boleh digunakan. Dalam kerja ini, kaedah GS digunakan. 
Hasilnya dibandingkan dengan analisis, DT dan ujikaji. 

Objektif pengoptimuman global ialah untuk mencari model penyelesaian terbaik, 
dengan kehadiran pelbagai keadaan optimum setempat. Model tak linar banyak 
penggunaannya seperti dalam reka bentu kejuruteraan automotif termaju, analisis 
data, kawalan proses dan permodelan saintifik. Penyelesaian masalah tersebut 
memerlukan kaedah carian global. 

Kekakuan pegas dan pekali redaman telah ditentukan dengan menggunakan 
pendekatan pengoptimuman GS dengan satu kawalan daya masukan dikenakan 
secara langsung keatas sistem gantungan aktif. 
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Kaedah rekabentuk untuk mengoptimumkan parameter gantungan pasif telah 
dibangunkan dan ditunjukkan pada model 1/4 kereta. Dinamik sistem gantungan 
telah dianalisis dengan menaikkan nilai daya kawalan secara beransur-ansur. Hasil 
pengoptimuman berangka telah disimulasikan dalam domain masa kekerapan. 

Dapatan yang sangat penting dari penyelidikan ini ialah terdapat pertukaran asas 
antara kualiti perjalanan dan penetap jalan yang bebas daripada jenis atau reka 
bentuk gantungan kerana nisbah nilai redaman. 

Simulasi GS dalam domain masa dan kekerapan telah dijalankan dengan 
membandingkan gantungan pasif dan aktif yang telah dioptimumkan di bawah 
indeks prestasi yang sama dan profil jalan sinusoidal yang tunggal. Didapati bahawa 
gantungan aktif dapat memberikan peningkatan prestasi yang bererti melebihi 
gantungan pasif dan dibandingkan dengan gantungan aktif yang diperoleh secara DT 
dari segi kekakuan pegas dan pekali redaman. 

Sebuah rig ujikaji telah digunakan untuk pengesahan keputusan dari pengoptimuman 
berangka dan tindakbalas dinamik dalam domain kekerapan. 

Analisis simulasi telah dijalankan. Didapati bahawa pengoptimuman  sistem 
gantungan aktif dengan ketiadaan daya kawalan menunjukkan pengurangan pecutan 
lajak jisim terpegas dan masa pengenapan, berbanding dengan pengoptimuman 
sistem gantungan pasif dan model DT. Dalam domain kekerapan, tindak balas 
kekerapan dari segi kekerapan tabii yang diperolehi secara GS adalah 1.26 Hz, DT 
adalah 1.35 Hz dan ujikaji adalah 1.32 Hz. Peratusan ralat antara ujikaji dan GS 
adalah 4.18% dan antara ujikaji dan DT adalah 2.6%. Untuk magnitud, GS 
memberikan 5.63 dB, DT memberikan 8.56 dan ujikaji adalah 13.12 dB. Perbezaan 
antara GS dan ujikaji adalah 57.1% dan; DT dan eksperimen adalah 34.8%. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

Automotive suspension systems are designed to provide ride comfort and handling. 
It is also designed to isolate the vibration from the road to passenger. The road 
usually is not smooth. For passenger comfort, ideally, the vehicle should not oscillate 
vertically. However, in reality, the amplitude of vibration acceleration and frequency 
needs to be limited to the value tolerate to humans. The basic system consists of 
mass of vehicle, spring and damper. The response of vehicle travelling in forward 
direction is usually measured by the frequency and amplitude of its vertical 
displacement. The response depends on the values of vehicle mass, spring stiffness 
and damping coefficient. The values are determined such critical damping occurs 
and no resonance. For fixed values, the system is said to be passive. Passive system 
has many disadvantages because it can solely of energy of storage and dissipation 
elements (spring and damper). However; these passive elements can transmit forces 
that depend on relative vehicle chassis/tire motion, without the ability to introduce 
external energy that can generate forces which depend on absolute vehicle chassis 
motion. 

To overcome the drawback of passive suspension systems, automotive active 
suspensions have attracted aroused a great deal of interest due to their potential to 
improve the traditional ride quality and handling trade-off. The automotive industry 
has begun to seriously consider modulated, semi active and full active suspensions, 
and have produced promising prototype systems. In general these systems have been 
developed by "cut and try" methods using prototype vehicles as test beds (Butsuen, 
1989). This approach usually leads to sub-optimal performance and is also very 
expensive. The resulting design is often very sensitive to environmental changes and 
vehicle aging. It also has the disadvantage that because of the development 
procedure, only a few people are familiar with the control software resulting in great 
difficulty if the system changes are required. A design methodology is needed that 
would allow much of the design to be done by computer aided design methods and 
only the final "tuning" and verification achieved by prototype testing. 

1.2 Problem statement and motivation 

Car suspension provides ride comfort by isolating the passengers from road 
disturbances and improves handling by controlling the contact forces between the car 
chassis, tire and the road. These demands are mutually conflicting Figure 1.1. Softer 
suspension offer more comfort at the cost of degraded handling. Suspension system 
design trades these demands off by a weighted performance index function for 
optimization. However; active suspension system has two major drawbacks: 
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1) The actuators in active suspension require large power. 
2) The malfunction of the controllers may cause total system breakdown (hard 

failure) or slow degradation of the vehicle. 
 
 
The motivation behind this goal is associated with the conflicting between the ride 
comfort and road holding (Eamcharoenying, 2015). The suitability and viability of 
suspension systems are highly dependent on the spring stiffness and damping 
coefficient, the ride comfort and the road holding requirements (Fathy, 2003).  

 
 

Figure 1.1 : Suspension Compromise  
(Aly et al. 2013) 
 
 
In the present work, global optimization technique for combined the passive and 
active suspension elements based on Global Search approach was implemented.  The 
proposed method is gradient free algorithms that can overcome the nature of the 
objective function drawbacks like non-smoothness (Allison, 2014). In this study the 
used objective function is a single system that combined the three conflicting 
objectives (ride comfort, handling, and control force). Simulation algorithms in time 
domain and frequency domain were developed to predict the dynamic response 
performance of the suspension system for a sinusoidal motion to validate the 
numerical optimization algorithm results as shown in Figure 1.2. We use the speed 
bump profile shown in Figure 1.2 as the input to the quarter car model.  
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Figure 1.2 : One quarter car model  
(Hyniova, 2013) 
 

 
1.3 Aim and objectives of study 

This research aims to design a methodology for optimizing the passive suspension 
parameters; namely, mass, spring stiffness, damping coefficient and control force, 
and illustrated on a quarter car model active suspension system subject to:   

1) Dynamic constraints. 
2) Boundary constraints. 
3) Control force constraints. 
 
 
To achieve the study aim, the following objectives are as follows: 

1) To develop design framework for quarter car model based on Global Search 
method to find the numerical values for optimum spring stiffness and damper 
coefficient. The design of optimum suspension trades the ride comfort and road 
holding off by grouping them into a weighted performance function for 
optimization. 
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2) To determine the effect of control force on the suspension system dynamic 
behavior by assuming open loop control because the control input is specified 
directly and varied level of control authority. 

3) To determine the dynamic properties response in time and frequency domains for 
quarter car model that is to be driven over a speed bump at a forward velocity of 
v.  

4) To validate the quarter car optimal design algorithm for optimal spring stiffness 
and damping coefficient and dynamic response of sprung mass.  

 
 

1.4 Scope of study  

Design, simulation and modeling optimal suspension system are a demand in this 
research to investigate the dynamic response of the proposed system. GS method 
was suggested to come up with optimal spring stiffness and damping coefficient 
because it is a powerful method for searching complicated objective function spaces 
such as Lagrange term to quantify handling and comfort characteristics of the 
vehicle suspension system where the objective function provides increasingly 
detailed insights into system behaviors. 

To achieving the research demand, the research objectives were set. The first 
objective is proposed design framework. This framework combines the optimization 
algorithm outcome of the Global Search technique and the simulation techniques to 
integrate the optimal numerical values in terms of spring stiffness and damping 
coefficient and investigate the dynamic response of the proposed model in terms of 
sprung mass acceleration and suspension natural frequency. The phase stages of 
design technique were done by utilizing MATLAB numerical engine as a tool 
because it provides the needed tools in the field of optimization techniques. Results 
were obtained from the implementation of the design framework and evaluated by 
comparing the obtained results with original studies. A test rig for quarter car 
suspension system was designed to validate the optimization and simulation results.  

However; there is some limitation by assuming suspension system dynamic behavior 
is linear. Quarter car active suspension was studied on the subject have dealt with car 
model possessing linear characteristics (i.e. the damping force is proportional to the 
velocity of the mass and acts in the direction opposite to the motion, the springs are 
long enough to remain almost straight when the suspension oscillates) and 
mechanical model subjected to deterministic road excitation. 

1.5 Thesis organization  

The thesis is divided into five chapters. Chapter one is the introduction followed by 
Chapter Two literature review discusses different types of suspension system with its 
components, and different techniques of optimal design that commonly utilized in 
the context of optimal active suspension system.  
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Chapter Three present a description of the methodological framework followed by 
Chapter Four where the results and discussion are presented.  

This is followed by Chapter Five which summarized the conclusion and finally ends 
with Chapter Six on recommendation for further work. 
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