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The most economically feasible technique to transport petroleum products such as 

crude oil and its derivatives is transporting liquids through commercial pipelines. 

Liquid transportation through pipelines is considered as one of the major energy-

consuming phenomenon in the industry due to turbulence within the fluid. As 

turbulence increases, it reduces the initial flow rate at which liquids can be pumped. 

As a remedy to encourage continuous flow of liquid at the prevailing flow rates, a 

large number of scientists have suggested different passive, active and even 

interactive techniques to overcome this problem. Recently there have been a growing 

interest to use the rotating disk in numerous industrial application such as rotating 

mixing, rotating disk reactor, steam turbines, gas turbines, pumps, and other rotating 

fluid machines. However, these applications have been considered as energy 

consuming regimes.    

In the present work, a high precision rotating disk apparatus (RDA) was designed, 

fabricated, and used to investigate the turbulent drag reduction characterisation of 

diesel fuel. The experimental work of this study was divided into three main stages. 
The first stage was passive drag reduction. In this stage, a number of disks with four 

riblets types (L, U, RAT and SV- groove) and twelve different dimensions for each 

type were used. All experiments were performed at rotational disk velocities ranging 

from 2000 to 3000 rpm, which correspond to a Reynolds number (Re) range of 

(3.02×105- 4.53×105). The second stage was active drag reduction, which involved 

using different types of additives with a smooth disk only. A cationic polymer of 

polyisobutylene (PIB) and two anionic surfactants of sodium di-octyl 

sulphosuccinate (SDS) and sodium lauryl ether sulphate (SLES) were used as drag 

reducing agents. These additives were tested individually and as two complex 
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mixtures of PIB-SDS and PIB-SLES. Polymer solutions were prepared in 50, 100, 

150, 200, and 300 ppm, while the surfactant solutions were 200, 400, 600, 800, and 

1000 ppm. The last stage in this work was the combination of passive and active 

drag reduction methods by using the same drag reducing agents that were used in the 

active stage with various structured disks.  

From the passive results, it was observed that the drag reduction performance 

increased with decreasing riblets height and it decreased with rotational velocity. 

The maximum passive drag reduction achieved was 8.048 % for the SV-groove with 

a riblets height of 900 µm, while it was 0.975 %, 2.683 %, and 6.829 % for the L, 

RAT, and U-groove, respectively. In contrast, the active results showed a higher 

drag reduction compared to the passive results. The drag reduction increased with 

polyisobutylene concentration until a critical value at which the maximum drag 

reduction was achieved. The same behaviour was also observed for the two types of 

surfactant and the two complex mixtures. The highest drag reductions for PIB, SDS, 

and SLES with the smooth disk were 19.197 %, 8.03 %, and 13.8 %, respectively at 

a polymer concentration of 150 ppm and a surfactant concentration of 1000 ppm. 

However, the drag reduction percentage (%DR) of the complex mixtures was higher 

than their individual results, whereby the maximum %DR of PIB-SDS and PIB-

SLES with the smooth disk was 25.7 % and 25.35 %, respectively.  

The passive-active interactive results showed the same additive behaviour with all 

riblets types, whereby the drag reduction increased with additive concentration. 

However, the maximum drag reduction was achieved with high riblets dimensions 

(H=3100 µm) with all additive types. Moreover, the drag reduction values of the 

smooth disk were higher than that of all the structured disks with a height of 900 µm. 

Overall, a 26.93 % DR was achieved in this study for the complex mixture of PIB 

(150 ppm) and SLES (1000 ppm) using the SV-groove with a height of 3100 µm.  

Finally, a computational fluid dynamics simulation using commercial ANSYS, CFX 

code was employed in order to explain the real mechanism of the riblets drag 

reduction. The simulation results clearly explained the drag reduction mechanism by 

the riblets, as well as providing good agreement between the simulation and 

observed experimental results.  
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Teknik yang paling menjimatkan untuk pengangkutan produk petroleum, seperti 

minyak mentah dan terbitan-terbitannya, di dalam industri adalah dengan 

memindahkan cecair tersebut melalui saluran paip komersial. Pengangkutan cecair di 

dalam saluran paip dianggap sebagai salah satu fenomena yang memerlukan tenaga 

yang banyak. Apabila aliran gelora meningkat, ia mengurangkan kadar aliran awal 

semasa cecair sedang dipam. Sebagai penyelesaian untuk aliran cecair yang 

berterusan pada kadar aliran semasa, sejumlah besar saintis mencadangkan pelbagai 

teknik pasif, aktif dan interaktif yang berbeza untuk mengatasi masalah ini. 

Kebelakangan ini pengunaan cakera berputar semakin menarik perhatian dalam 

pelbagai aplikasi industri seperti pengadun berputar, reaktor cakera berputar, turbin 

wap, turbin gas, pam, dan mesin-mesin cecair berputar yang lain. Walau 

bagaimanapun, aplikasi ini dianggap sebagai rejim yang memerlukan tenaga. 

Dalam kajian ini, alat cakera berputar (RDA) berkejituan tinggi telah direka dan 

digunakan untuk menyiasat ciri-ciri pengurangan seret gelora bagi bahan api diesel. 

Kerja-kerja ujikaji di dalam kajian ini dibahagikan kepada tiga peringkat utama. 

Peringkat pertama adalah pengurangan seret pasif. Pada peringkat ini, beberapa 

cakera dengan empat jenis riblet (L, U, RAT dan SV-groove) dan dua belas dimensi 

yang berbeza untuk setiap jenis cakera telah digunakan. Kesemua ujikaji dilakukan 

pada kelajuan putaran cakera antara 2000 hingga 3000 putaran perminit (rpm), yang 

sepadan dengan julat nombor Reynolds (Re) (3.02 × 105- 4.53 × 105). Peringkat 

kedua ialah pengurangan seret aktif yang melibatkan penggunaan beberapa jenis 

aditif yang berbeza dengan menggunakan cakera rata sahaja. Polimer kationik 

polyisobutylene (PIB) dan dua surfaktan anionik natrium di-oktil sulfosuccinat (SDS) 

dan natrium lauril eter sulfat (SLES) digunakan sebagai agen pengurangan seret. 
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Aditif-aditif ini diuji secara individu dan campuran kompleks PIB-SDS dan PIB-

SLES. Larutan polimer disediakan dalam kepekatan 50, 100, 150, 200, dan 300 

bahagian per juta (ppm), manakala larutan surfaktan pula adalah 200, 400, 600, 800, 

dan 1000 bahagian per juta (ppm). Peringkat terakhir dalam kajian ini adalah 

gabungan kaedah pengurangan seret pasif dan aktif dengan menggunakan aditif yang 

sama yang digunakan pada ujikaji aktif dengan pelbagai cakera berstruktur. 

Dari hasil ujikaji pasif, dapat dilihat bahawa prestasi pengurangan seretan meningkat 

dengan penurunan ketinggian riblet, dan menurun dengan peningkatan halaju 

putaran. Pengurangan seret maksimum yang dicapai adalah 8.048% untuk SV-

groove dengan ketinggian riblet 900 μm, manakala masing-masing 0.975%, 2.683% 

dan 6.829% untuk L, RAT, dan U-groove. Sebaliknya, keputusan aktif menunjukkan 

pengurangan seretan yang lebih tinggi berbanding pasif. Pengurangan seretan 

meningkat dengan kepekatan polyisobutylene hingga nilai kritikal di mana 

pengurangan seret maksimum dicapai. Tingkah laku yang sama juga diperhatikan 

untuk kedua-dua jenis surfaktan dan dua campuran kompleks. Pengurangan seret 

tertinggi PIB, SDS, dan SLES dengan cakera rata ialah 19.197%, 8.03%, dan 13.8%, 

masing-masing pada kepekatan polimer 150 ppm dan kepekatan surfaktan 1000 ppm. 

Walau bagaimanapun, peratusan pengurangan seret (% DR) campuran kompleks 

adalah lebih tinggi dari aditif individu, di mana maksimum DR% PIB-SDS dan PIB-

SLES dengan cakera halus ialah 21.46% dan 25.35%. 

Hasil ujikaji interaktif aktif pasif menunjukkan tingkah laku aditif yang sama bagi 

semua jenis riblet, di mana pengurangan seret meningkat dengan kepekatan aditif. 

Walau bagaimanapun, pengurangan seret maksimum boleh dicapai dengan dimensi 

riblet yang tinggi (H = 3100 μm) untuk semua jenis aditif. Selain itu, nilai 
pengurangan seret cakera rata adalah lebih tinggi daripada cakera berstruktur dengan 

ketinggian riblet 900 μm. Secara keseluruhannya, kira-kira 26.93 %DR dicapai 

dalam kajian ini untuk campuran kompleks PIB (150 ppm) dan SLES (1000 ppm) 

menggunakan SV-groove dengan ketinggian riblet 3100 μm. 

Akhir sekali, simulasi pengiraan dinamik bendalir menggunakan kod komersial 

ANSYS CFX digunakan untuk menjelaskan mekanisme sebenar pengurangan seret 

oleh riblet. Hasil simulasi menerangkan mekanisme pengurangan seret oleh riblet 

dengan jelas, dan kesetaraan yang baik antara hasil ujikaji dan simulasi dapat 

diperhatikan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 General Background  

Turbulence is considered a power consuming phenomenon in many academic and 

industrial applications due to its chaotic nature. Such unwanted power consumption 

can massively affect the whole process itself, as additional power is needed to 

maintain the operation where the resistance to turbulent flow is called drag. Drag has 

been known as the main reason for energy loss in pipelines and other similar 

transportation channels due to turbulence within the flow and the friction between 

the flowing fluid and the pipe wall surfaces. These energy losses are shown as an 

increase in pressure drop, which will lead to consumption of greater pumping power 

(Abubakar et al., 2014; Camail et al., 1998; Hong et al., 2015; Khadom & Abdul-

hadi, 2014; Shenoy, 1984). 

The process for reducing drag is called a “drag reduction phenomena” in which the 

friction of a liquid flowing in a pipe in turbulent flow can be decreased. This can be 

achieved by altering the physical properties of the fluid (using a small amount of an 

additive) or by modifying the surface structure of the solid part (using a complaint 

wall, an oscillating wall, dimples, and riblets) (Li et al., 2008). This is of interest in 

airplane tank filling, field irrigation, flood water disposal, firefighting, water heating 

and cooling systems, suspensions and slurries, sewer systems, oil well operations, oil 

pipeline conduits, biomedical systems including blood flow, and marine systems 

(Brostow, 2008; Toms, 1949). Drag reduction was discovered in the early forties by 

Toms (1948). He studied the effect of a polymer added into a turbulent Newtonian 

fluid. He proved that the addition of small amount of polymer (in ppm) into the 

turbulent flow could produce a significant result in reducing frictional drag. Since 

then, drag reduction phenomena have attracted the attention of an enormous number 

of researchers due to its high level of academic and industrial impacts (Baron et al., 

1993; Choi et al., 2000; VlRK, 1975; Zadrazil et al., 2012). 

Generally, drag reduction (DR) can be classified into two major categories, namely, 

active and passive drag reduction. Active drag reduction methods utilise viscoelastic 

polymeric additives with minute additive concentrations to enhance the flow. For 

example, a tremendous 80 % flow enhancement has been observed in many cases. 

Apart from polymers, surfactants and even suspended solids are confirmed efficient 

and economically feasible drag reducing agents. Simply adding a minute amount of 

these additives is sufficient to reduce drag significantly, resulting in 20 % DR or 

more (Liaw, Zakin, & Patterson, 1971; Hoyt, 1972; Lumley, 1973; Lumley, 1969; 

VlRK, 1975; Christopher M White & Mungal, 2008).  
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The five most popular methods of passive DR involve the use of wavy and 

oscillating walls, dimples, microbubbles, compliant surfaces, and riblets. New 

passive methods such as the utilisation of thin lubricating films using air (Tokunaga 

et al., 2000) and water repellent surfaces ( Watanabe et al., 2001) also exist but have 

not been investigated as comprehensively as the first five. Among all the passive 

means, it can be observed that the most efficient and interesting DR technique is the 

use of riblets. DR by riblets includes the use of longitudinal micro-grooves etched on 

a surface originally designed for skin friction reduction in a fully turbulent boundary 

layer (Kramer, 1960). 

Despite all the advantages mentioned earlier, passive and active drag reduction 

techniques come with their own drawbacks. In active DR, the stability of long 

chained polymeric additives against high shear forces is considered as one of the 

major problems, where the polymer molecules tend to break when exposed to high 

shear rates, which is an irreversible phenomenon that can lead to the loss of drag 

reduction effectiveness. Such phenomena cannot be found in surfactant solutions 

where the surfactant micelles break easily when exposed to high shear rates but will 

reform after passing the high shear rate areas and regain their low drag reduction 

abilities (when compared to polymers). On the other hand, despite all the passive DR 

efforts, the DR produced using riblets is still low at around 10 % on average. This 

might be because of the dimensions and shape optimisation that limit exploring the 

real influence of such phenomena.  

Indeed, several instruments have been used to examine turbulence DR such as in 

pipelines, wind tunnels, channels, and annular conduits. Recently, several studies 

have examined the DR of a flow by additives through other techniques, such as 

coaxial cylinders (Bizotto & Sabadini, 2008; Nakken, Tande et al., 2001), cylindrical 

double gap rheometer device (Kalashnikov, 1998), and rotating disk apparatus (RDA) 

(Choi et al., 1999; Choi & Jhon, 1996; Choi et al., 2000; Kim et al., 1999; Lim et al., 

2002; Mccormick, Heater, Morgan, & Safieddine, 1990; McCormick et al., 1990; 

Peyser & Little, 1971; Rodriguez & Winding, 1959). The Rotating Disk Apparatus 

(RDA) used in DR applications is equipment for simulating external flow which 

involves the flow over flat plates, in addition to the flow around submerged objects 

and is used for turbulence DR characterisation (Tong et al., 1990).  

The rotating disk is a popular geometry for studying different flows, because of its 

simplicity and the fact that it represents a classical fluid dynamics problem. It is a 

subject of widespread practical interest in connection with steam turbines, gas 

turbines, pumps, and other rotating fluid machines. In addition, the high-speed 

rotational flows are found in numerous industrial applications, for example oil 

refinery, sewage treatment plants, cement industry, food industry, and paper industry. 

However, these flows often consume a great deal of energy (Owen & Rogers, 1992; 

Said et al., 2015). 
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1.2 Problem Statement 

Reducing friction power losses during turbulent liquid flow in pipes, conduits, 

mixing systems or any other chemical engineering application has been the aim of all 

the drag reduction research efforts over the past few decades. Laminar flow is rarely 

found in industry, and the turbulent mode of flow is dominant. Turbulence 

generation in a controlled media is considered positive in most heat and mass 

transfer systems. On the other hand, turbulence generation requires high shear rates 

and that can lead to higher friction resistance. Overcoming the shear resistance has 

been extensively investigated for turbulent flow in pipes, channels, and a wind 

tunnel, where passive and active techniques have been introduced and employed. In 

some cases, interactive drag reduction methods were investigated where the 

integrated effect of additives and surface modification were studied. In addition, DR 

studies using an RDA have gradually taken place, and such studies have become 

increasingly important due to applications in mixing, rotating reactors, etc. Data is 

still limited in this area of study.  

The passive DR technique is considered a permanent solution where no continuous 

resources consumption is required as in active drag reduction methods. However, 

this technique does not show high drag reduction performance when compared to 

active techniques due to the low interaction area with the turbulence core. All 

previously investigated passive drag reduction designs have been conducted in pipes 

and straight channels and directed mainly to certain drag reduction applications such 

as marine and submerged surfaces, while there are an enormous number of industrial 

applications that face the same friction problem such as rotating disk mixers that 

have seen no passive drag reduction research effort conducted to date. All previous 

works on rotating disk apparatus include a smooth disk with different additive types 

(Akindoyo & Abdulbari, 2016; Choi et al., 2000; Hong et al., 2008; Hong et al., 

2015; Kim et al., 1998; Sung et al., 2004; Sung et al.,). In this investigation, no 

reference was found for RDA with modified surfaces.  

Active drag reduction methods utilise different viscoelastic additives, such as 

polymers, surfactants and suspended solids, with minute additive concentrations to 

enhance the flow. The use of these Drag Reducing Additives (DRAs) in a water 

solvent is well known and has been widely investigated (Choi & Jhon, 1996; Ge et 

al., 2007; Hong et al., 2008; Hong, Choi, et al., 2015; Kim et al., 2000; Kim et al., 

2011; Vatankhah et al., 2011; Zhang et al., 2011), but very little has been reported 

for comparable additives for oily fluids.  

It is believed that interactive drag reduction methods can introduce an enhanced 

technique that can overcome many of the previous drag reduction drawbacks. The 

word ‘interactive’ can arise through combining two or more active drag reducing 
additives or by combining these additives and their complexes with passive drag 

reduction structures such as riblets or dimples. Such complex interactive drag 

reduction method has not been properly investigated to date, especially in an 

enclosed flow system such as RDA.  
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The coherent turbulence structures that develop over grooved riblets have various 

features that are not yet sufficiently understood. Computational Fluid Dynamic (CFD) 

is one of the tools that can be used to study turbulent flow behaviour. Most previous 

studies of the CFD simulation of a rotating disk system have focused on a rotating 

disk mixer, a spinning rotating reactor, and a rotating contactor, while the numerical 

studies of DR by use of riblets have been conducted in water channels, on a flat pate, 

and in a wind tunnel. To the knowledge of the authors, there has not been a previous 

CFD simulation of passive DR using RDA. Therefore, there is a need to study the 

turbulence structure developed over riblets and to explain the passive drag reduction 

mechanism when using RDA by applying CFD simulation with ANSYS, CFX 

software. In the present work, all of the abovementioned problems will be addressed.  

1.3 Objectives 

Based on the research background and problem statement described in the previous 

section, the following lists the objectives of this research: 

1- To investigate the drag reduction potential of different structured aluminium surfaces with 

diesel flow using RDA. 

2- To evaluate the effects of the dimensions of the structures and designs on the diesel flow 

behaviour and drag reduction performance.  

3- To investigate the active drag reduction effectiveness of additives as drag reducing agents 

for commercial diesel. 

4- To investigate the effects of passive-active interactive drag reduction techniques for a 

diesel flow system. 

5- To apply a reliable and validated computational fluid dynamics (CFD) model to explain 
and identify drag reduction in the passive mode. 

 

 

1.4 Hypothesis  

At the end of this study, it is expected that: 

1. The structured disk surfaces with different types of riblets will show better DR 

performance than that of a smooth surface, where the turbulence would shift away from 

the riblets walls.  

2. The riblets types, riblets heights, and spacing play a vital role on the turbulence and 

structure of the vortices in the boundary layer above the structured disks, and that will 

affect the DR efficiency of these riblets.  

3. Using polymers and surfactant additives with diesel fuel will enhance its DR 

performance. The additive molecules interfere with the turbulent structures and reduce 

or suppress eddies thus formed inside the diesel solutions and thereby the DR 

performance is improved. In addition, the complex mixtures of these additives will 

show better DR performance than their individual results.  
4. The poor drag reduction performance of the passive DR method can be improved by 

using the passive-active interactive drag reduction method. 

5. A computational fluid dynamic simulation using ANSYS software can be used to 

investigate the velocity distribution and to visualise the turbulence structure or the 

formation of vortices above the structured surface disks and compare with the results of 

the smooth surface disk. 
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1.5 Scope of the Study 

The following scope has been identified in order to achieve the objectives: 

1. Diesel fuel is the main test fluid in this study, which is obtained from Shell 

Malaysia. 

2. Forty-eight structured disks were fabricated using four different types of 

riblets or grooves (L, U, SV, and RAT – groove) with 12 varied dimensions 

for each type.  

3. The torque readings for the smooth disk and structured disk in the rotary 

disk apparatus were collected to calculate the corresponding torque, 

followed by the percentage of the passive DR. 

4. A cationic polymer (polyisobutylene) with a high molecular weight (MW) 

of 4.7×106 g/mol was employed to determine the significance of the effect 

on the turbulence DR in the rotary disk apparatus. Investigated polymer 

concentrations were 50, 100, 150, 200, and 300 ppm.  

5. Two different types of surfactants, Sodium Di-octyl sulphosuccinate (SDS) 

and Sodium lauryl ether sulphate (SLES) with varied concentrations were 

included in the experiment to investigate their effects on the turbulence DR 

in the rotating disk apparatus. Investigated surfactant concentrations were 

200, 400, 600, 800, and 1000 ppm.  

6. The density and viscosity of the pure fluid was used to calculate the 

Reynolds Number (Re) of the fluid. 

7. Two complex mixtures of PIB with Sodium Di-octyl sulphosuccinate (SDS) 

and PIB with sodium lauryl ether sulphate (SLES) were prepared and used 

to investigate the effect of the polymer-surfactant complex solution on DR 

performance using different concentrations of polymers and surfactants. 

8. The rotational disk speed was varied from 2000 to 3000 rpm by 100 rpm 

intervals.  
 

 

1.6 Rationale and Significance 

Drag reduction is an alternative way to reduce pumping power losses during 

transportation of a fluid through pipelines. By injecting a drag reduction agent into a 

pipeline, the friction pressure losses in the pipeline can be decreased. The 

significance of this study is to discover a new system to reduce the turbulence drag, 

which is the main step to saving pumping power and eventually leading to cost 

saving. Furthermore, power saving is essential to cost saving in the plants.  
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The main contributions of this work are summarised below: 

a. Passive DR with different riblets types and dimensions were experimentally 

investigated for the first time using RDA.  

b. A high range of Reynolds number (3.02×105- 4.53×105) were utilised to 

study the effects of a high degree of turbulence on DR performance.  

c. Hydrocarbon media fluid (diesel fuel) was employed using PIB and two 

types of surfactant. 

d. Two novel complex mixtures of polymers and surfactants were used to 

improve the mechanical degradation resistance of PIB at a high range of 

Reynolds numbers.  

e. A passive-active DR interaction technique was used to enhance the DR 

performance using soluble additives with the optimum type of riblets. 
f. Further explanation of the real mechanism associated with the use of riblets 

in turbulent flows has been thoroughly explained using Computational 

Fluid Dynamics with ANSYS software.  
 

 

1.7 Overview of the Study  

This thesis comprises of five main chapters: Chapter 1 introduces the work. Chapter 

2 discusses the relevant literature concerning passive and active DR, surfactants, 

polymers, complex mixtures, and previous work on computational fluid dynamics 

simulations. Chapter 3 explains the methodology, apparatus, and equipment used in 

the experimental work, as well as involves the simulation methodology using 

ANSYS, CFX software. Chapter 4 provides the experimental and simulation results, 

with an elaborated discussion of these results. Chapter 5 includes the conclusion and 

recommendations for further research. This thesis is accompanied by a list of 

references and relevant appendixes. 
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