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Chairman : Muhammad Hafiz Bin Abu Bakar, PhD 
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In random distributed feedback fiber laser (RDB-FL), Rayleigh scattering (RS) is 
utilized as random feedback mechanism in the lasing cavity. Random feedback 
mechanism works by scattering the propagating light; increasing the path of the light. 
Once optical gain exceeds total intracavity loss, random lasing is commenced.  Owing 
to the weak, long, and continuous random scattering centers, the cavity length of the 
laser is boundless; allowing cavity length to be varied accordingly. Despite the 
outstanding traits of RDB-FL, it requires a high amount of power to achieve threshold.     
 
 
In this research, an enhanced hybrid configuration of the RDB-FL based on the 
integration of 80 km of single mode fiber (SMF) and erbium-doped fiber (EDF) in an 
open-ended linear cavity is proposed. The laser is powered by a single 1455 nm Raman 
pump through the ends of the laser cavity. The proposed architecture is named as 
hybrid erbium random fiber laser (HRFL) based on its fundamental operation; the 
hybrid amplification of Raman and EDF gain assisted by RS feedback. The HRFL 
utilizes the same pump source to initiate stimulated Raman scattering (SRS) and excite 
the erbium ions. The Stokes signal produced by SRS then acts as a signal to the EDF.   
A conventional RDB-FL is first designed and developed to determine the optimum 
pumping scheme and range of cavity length that can cater for SMFs with different 
Raman gain coefficients. Two types of SMF are tested, which are SMF-28e fiber and 
TrueWave REACH single mode fiber (TW). It was found that cavity length of 77-91 
km and inward pumping scheme are the optimum conditions to achieve high slope 
efficiency and low threshold. EDF is then integrated to the developed configuration to 
construct the HRFL. The length of EDF is also varied to observe the spectral and 
power performance.  
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The HRFL output is stable lasing peak at wavelength 1555-1565 nm with 38 % slope 
efficiency and 260 mW threshold power. Intriguingly, it is discovered that by using 
an appropriate EDF length, dual lasing peak can be obtained without the aid of any 
reflectors/filters. The HRFL not only managed to amplify the 2nd Raman gain peak 
(1565 nm), but also the 3rd Raman gain peak (1595 nm), producing a dual peak laser 
in between the C-band and the L-band. To minimize the high disparity between the 
dual peaks, the HRFL is enhanced by modifying the architecture. Balanced dual peaks 
with peak discrepancy of 0.16 dB is achieved at maximum peak power of -10.66 dBm. 
 
 
The advantage of the HRFL is the dispensable need for a unique pump wavelength, 
compared to other HRFLs employing EDF that have used separate pumps to power 
the SMF and EDF. The proposed configuration also has a lower threshold condition 
by a factor of 5 compared to HRFLs utilizing SRS and higher power conversion 
efficiency compared to other HRFLs employing EDF. It is believed that the novelty 
of this research work lies within the use of a simple open-ended cavity design to 
produce single and dual peak lasing. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk Ijazah Doktor Falsafah 

LASER GENTIAN RAWAK HIBRID RAMAN-ERBIUM 

Oleh 

NADIAH HUSSEINI BINTI ZAINOL ABIDIN 

Disember 2017 

Pengerusi : Muhammad Hafiz Bin Abu Bakar, PhD 
Fakulti : Kejuruteraan 

Dalam laser gentian maklum balas tersebar secara rawak (RDB-FL), serakan Rayleigh 
(RS) digunakan sebagai mekanisma maklum balas secara rawak dalam rongga laser.
Mekanisma maklum balas secara rawak berfungsi dengan menyebarkan cahaya 
rambatan; yang meningkatkan panjang laluan cahaya. Setelah gandaan cahaya 
melebihi jumlah kerugian intra-rongga, laser rawak terhasil. Disebabkan oleh pusat 
penyebaran rawak yang lemah, panjang dan berterusan, ini membolehkan panjang 
rongga laser tidak terbatas dan boleh diubah sewajarnya. Walaupun ciri-ciri RDB-FL
menonjol, ia memerlukan kuasa yang tinggi untuk mencapai kondisi ambang. 

Dalam kerja penyelidikan ini, konfigurasi hibrid RDB-FL yang berasaskan integrasi 
80 km gentian mod tunggal (SMF) dengan gentian dop-erbium (EDF) dalam rongga 
linear terbuka dicadangkan. Laser ini menggunakan kuasa pam Raman 1455 nm yang 
disalurkan dari kedua-dua hujung rongga laser. Skema yang dicadangkan ini 
dinamakan gentian laser rawak hibrid (HRFL) berdasarkan prinsip operasinya, iaitu 
hibrid penguatan Raman dan gandaan EDF terbantu oleh maklum balas RS. HRFL ini
menggunakan sumber pam yang sama untuk merangsang rambatan Raman (SRS) dan
ion erbium. Isyarat Stokes yang dihasilkan oleh SRS kemudian bertindak sebagai 
isyarat kepada EDF.

Pertama sekali, RDB-FL konvensional direka dan dibangunkan untuk menentukan 
skema pam optimum dan panjang rongga yang boleh memenuhi keperluan SMF 
dengan koefisien gandaan Raman yang berbeza. Dua jenis SMF diuji, iaitu gentian 
SMF-28e dan gentian TrueWave REACH (TW). Telah didapati bahawa panjang 
rongga sebanyak 77-91 km dan skema pam ‘ke dalam’ adalah kondisi optimum untuk 
mencapai kecekapan penukaran kuasa tinggi dan kondisi ambang yang rendah. EDF 
kemudian diintegrasikan kepada konfigurasi RDB-FL yang dibangunkan untuk 
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membina HRFL. Panjang EDF juga divariasikan untuk pemerhatian prestasi spektrum 
dan kuasa. 
 
 
Output sistem HRFL ini ialah puncak laser yang stabil di jarak gelombang 1555-1565 
nm dengan 38 % kecekapan penukaran kuasa dan 260 mW kondisi ambang. Yang 
menariknya, dengan penggunaan panjang EDF yang sesuai, dua puncak jarak 
gelombang laser boleh dihasilkan tanpa memerlukan penggunaan reflector/penapis. 
Sistem hibrid ini bukan sahaja menguatkan puncak Raman yang kedua (1565 nm), 
malah juga yang ketiga (1595 nm). Ini secara tidak langsung menghasilkan dua puncak 
laser yang jarak gelombangnya berada dalam jalur-C dan jalur-L. Untuk 
meminimumkan perbezaan yang tinggi antara dua puncak ganda itu, HRFL 
dipertingkatkan dengan mengubah skema nya. Dua puncak ganda seimbang dengan 
perbezaan 0.16 dB dicapai pada puncak maksimum -10.66 dBm. 
 
 
Kelebihan HRFL ini ialah ketidakperluan terhadap pam jarak gelombang khas, 
berbanding dengan HRFL lain menggunakan EDF yang memerlukan pam yang 
berbeza jarak gelombangnya untuk memberi kuasa kepada SMF dan EDF secara 
berasingan. Konfigurasi yang dicadangkan ini juga mempunyai kondisi ambang yang 
lebih rendah sekurang-kurangnya faktor 5 berbanding HRFL yang telah dilaporkan 
menggunakan SRS sebagai kaedah penguatan. Konfigurasi yang dicadangkan ini juga 
mempunyai kecekapan penukaran kuasa yang lebih tinggi berbanding HRFL yang 
telah dilaporkan menggunakan gandaan EDF. Adalah dipercayai bahawa kerja 
penyelidikan ini sesuatu yang baru kerana reka bentuknya yang ringkas dan terbuka 
untuk menghasilkan satu atau dua puncak jarak gelombang laser.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

Optical communication system have come a long way since the first invention of lasers 
in the 1960s. As they say, great things come in small packages and fiber laser systems 
utilizing hair-thin optical fibers, have transformed the field as a whole. The 
advancement of this technology has made it a vital solution in the age of internet. The 
rapid pace of laser development study also compels it to be a very prominent tool in 
multiple ever-changing fields such as the medical field, industrial, military weapon 
and information technology (IT).   

The operation of a basic fiber laser is based on the exploitation of resonant feedback 
and stimulated emission to produce a high intensity light beam of the signal photons. 
The excitation of the fiber gain medium occurs through optical pumping. The 
interaction of incoming signal photons with the excited gain medium creates 
stimulated emission. Meanwhile, to achieve feedback, components which function as 
reflectors are fixed at both ends of the fiber cavity to produce a linear resonator. As 
light oscillates back and forth in the resonator, the total gain exceeds the cavity loss 
and lasing is achieved [1].  

Utilizing optical fiber as laser gain media is immensely practical; it takes little amount 
of space as it can be coiled, and shield the propagating light from environmental and 
electrical damage. It also features large gain bandwidth that supports the growing 
demand of optical transport.  However, the drawback of traditional fiber lasers is that 
it is hard to design, and its construction requires precision. Besides that, the traditional 
laser cavity poses limitation on transmission length as signal attenuation adds up over 
long distances and diminishes the signal. To alleviate the issue, repeaters or amplifiers 
are often used but this comes at a price of lower signal to noise ratio and contributes 
to very costly configuration.   

Random fiber laser is introduced as an alternative to traditional fiber laser. Before the 
emergence of random fiber laser, optical scattering was regarded as undesirable in the 
conventional fiber laser scheme as it would remove photons from its respective lasing 
modes [2]. However, in disordered gain media, multiple scatterings support laser 
oscillation and amplification [3]. This provides a route for random lasers to operate 
without a classical resonator or mirrors [2]–[6] enabling random fiber lasers to be 
constructed without a precise and costly configuration. In 2010, the concept of random 
distributed feedback fiber lasers (RDB-FL) was first reported by Turitsyn et al. [7]–
[10]. Random lasing in the optical fiber was achieved by utilizing multiple scattering 
in an inhomogeneous amplified medium to achieve resonance, where the intrinsic 
inhomogeneity of the refractive index (Rayleigh scattering) of the optical fiber 
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provides random distributed scattering along the cavity. The continuous random 
feedback allows the cavity length to be varied accordingly for short or long distance 
signal transmission. In RDB-FL, amplification was attained via stimulated Raman 
scattering (SRS). SRS is an attractive choice of gain for the RDB-FL as it is the leading 
candidate for large capacity transmission systems. Its gain integral over large distances 
amount to several dBs which prevents signal degradation [11]. Besides that, SRS can 
materialize in any type of optical fiber, with or without rare earth dopants. It also 
features with wavelength tunability by pump wavelength control and a broad spectral 
bandwidth over 40 THz wide.  

1.2 Problem statement 

The current situation with random fiber laser employing SRS is that it features a high 
threshold condition, which is due to the low gain coefficient of Raman and the weak 
feedback from Rayleigh scattering. The high threshold condition of random fiber laser 
limits the potential applications that can be engineered, especially in circumstances 
where low power is the ideal. Not only that, the components within the laser is 
expected to be durable at very high optical power, heightening the total cost of the 
system. The use of hybrid gain by introducing auxiliary gain medium such as erbium-
doped fiber (EDF) has been suggested. EDF has high gain coefficient and wide 
bandwidth which coincides with the minimum loss area of SMF. However, this comes 
at the expense of an additional pump or reflector-based cavity enhancements 
incorporated within the system. Hence, there is a significant need for a  simpler SRS-
based random fiber laser employing EDF with low threshold condition to minimize 
the issues aforementioned.  

1.3 Research objectives 

This research aims to achieve a hybrid erbium random fiber laser with low threshold 
condition through the manipulation of pumping schemes, cavity length, and EDF 
length.  This study aims to produce said performance with simplest configuration 
possible. The objectives of this study are outlined as the following: 

i. To investigate the optimum pumping scheme and cavity length of conventional 
Raman-based RDB-FL. 

ii. To investigate RDB-FL with EDF integration using designed pumping scheme 
and cavity length for performance enhancement. 

iii. To design and develop enhanced HRFL architecture to obtain balanced multi-
wavelength peaks.  
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1.4 Research scope 

The scope of work for this experimental investigation is illustrated in Figure 1.1. In a 
broader perspective, the study focuses into the design and development of a fiber-
based laser. The fiber laser in question is mirrorless whereby the gain medium is 
unbounded by reflectors but is still able to achieve resonance. This mirrorless laser is 
known as random fiber laser. A new hybrid design of the random fiber laser is 
proposed based on the combination of single mode fiber (SMF) and erbium-doped 
fiber (EDF). The scheme is powered by a single pump source in an open ended linear 
cavity. The proposed scheme employs SRS to convert the pump radiation assisted by 
Rayleigh scattering for cavity feedback. Residual pump and SRS generation are 
utilized as second-order pump and signal source to the EDF, eliminating the need to 
separately power the EDF. The pumping scheme and cavity length will be optimized 
first while employing different types of SMF in conventional random fiber laser. The 
optimized design is then integrated with EDF to make the hybrid random fiber laser. 
The result analysis from the investigation of hybrid scheme is revised to make 
appropriate changes in the design to obtain improved power performances.  

 

 
 

Figure 1.1 : Research scope. 
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1.5 Organization of thesis 

The thesis is divided into six chapters as the following: 

Chapter 1 describes the background research of the study. It briefly mentions on 
traditional lasers versus random fiber lasers, the reported hybrid erbium random fiber 
laser configurations, the gaps in the prior study, and motivations behind the research. 

Chapter 2 explains the basic theory behind traditional Raman fiber lasers and erbium-
doped fiber laser. An overview of random distributed feedback fiber laser, its principle 
of operation, and the role of stimulated Raman scattering and Rayleigh scattering is 
also presented with supporting literatures. Finally, this chapter introduces hybrid 
random fiber lasers, discusses the reported hybrid schemes not exclusive to EDF, and 
reviews reported hybrid erbium random fiber lasers designs in more detail with regards 
to its performance. 

Chapter 3 examines the performance of the conventional random distributed feedback 
fiber lasers with different single mode fibers as the gain medium, cavity lengths, and 
pumping schemes. The best pumping scheme with acceptable cavity length range is 
summarized based on the result analysis.  

Chapter 4 delivers the experimental investigation of two sets of hybrid random fiber 
laser. The first set explores the performance of integration of LSL EDF with 
TrueWave REACH single mode fiber while the second set of LSL EDF with SMF-
28e single mode fiber. The results of each set are presented and discussed as to which 
is the more viable configuration to produce intended outcomes.  

Chapter 5 is a subsequent step from Chapter 4 where it investigates the determined 
configuration with multiple proposed add-on architectures to enhance the performance 
of the laser. The chapter further describes the architecture’s merits and demerits from 
one design to the next based on the analysis of the results. A final design of the 
intended outcome is reached and critically analyzed.   

Chapter 6 provides a conclusion to the research work, the research contributions, and 
recommendations for future work.
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