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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 
of the requirement for the degree of Doctor of Philosophy 

CHARACTERIZATION OF MULTI-WALL CARBON NANOTUBE/MULTI-
LAYER GRAPHENE FIBRE-REINFORCED SOLDER ALLOY 

COMPOSITES 

By

NIMA GHAMARIAN 

September 2017 

Chairman : Associate Professor Azmah Hanim Mohamed Ariff, PhD 
Faculty : Engineering 

In this study, the metallurgical effect of multi-wall carbon nanotube (MWCNT) and 
multi-layer graphene (MLG) on the eutectic Bi-Ag alloy were explored. Plain Bi-
2.5Ag and its reinforced solder systems (Bi-2.5Ag + xMWCNT/ xMLG, x= 0.01, 0.03, 
0.05, 0.07 and 0.1 wt%) were investigated through melting temperature, electrical 
conductivity, corrosion behavior, wettability and mechanical strength. The composite 
samples were produced following the powder metallurgy method. The results 
presented for mechanical alloying demonstrate that this method was a suitable 
technique for dispersing MWCNT and MLG in Bi-Ag powders. Overall, MWCNT 
and MLG increased the melting point. The maximum melting point recorded when 0.1 
wt% of nano particles was in the matrix as 272.02 °C and 269.62 °C for MWCNT and 
MLG, respectively. It was found that for both reinforced nano particles in the matrix, 
the electrical resistivity decreased; while, the effect of MWCNT on the electrical 
resistivity of the solder matrix was more than MLG. The maximum decrease of 
resistivity was observed for the sample with 0.1 wt% of nano particles which is 1.89 
(μΩ.cm) for MWCNT and 2.53 (μΩ.cm) for MLG. The result showed that MWCNT 
and MLG improved the Bi-2.5Ag wettability. However, it was observed that MLG 
decreases the wetting angle more than MWCNT. The corrosion behavior of Bi-2.5Ag 
and its composite samples with MWCNT and MLG was investigated by an 
electrochemical technique. The results from Tafel plot curves which were run in three 
different acidic electrolytes illustrated that the corrosion rate for all the composite 
samples increased. Furthermore, it was deduced that the corrosion rate and passivation 
were the functions of the electrical conductivity of the sample, the electrical 
conductivity of electrolyte and the number of H+ in the corrosive electrolyte. Adding 
MWCNT and MLG to the Bi-2.5Ag improved the shear strength. However, it was 
observed that the shear stress of Bi-2.5Ag by adding MWCNT and MLG nano 
particles just improved to some particular weight percentages of nano particles in the 
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matrix which were 0.07 wt% for MWCNT and 0.05 wt% for MLG. In a nutshell, 
adding MWCNT and MLG nano particles to Bi-2.5Ag solder matrix improved the 
melting behavior, electrical conductivity, wettability and shear strength but negatively 
impact the corrosion behavior.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

PENCIRIAN KARBON NANOTIUB BERBILANG DINDING/GRAFIN 
BERBILANG LAPIS SERAT MEMPERKUKUH ALOI PATERI KOMPOSIT 

Oleh 

NIMA GHAMARIAN 

September 2017 

Pengerusi : Profesor Madya Azmah Hanim binti Mohamed Ariff, PhD 
Fakulti : Kejuruteraan 

Yang demikian, dalam kajian ini, kesan metalurgi karbon nanotiub berbilang dinding 
(MWCNT) dan grafin pelbagai lapisan (MLG) dalam eutektik Bi-Ag telah diterokai. 
Bi-2.5Ag yang diperkukuh dengan pateri sistem (Bi-2.5Ag + xMWCNT / xMLG, x = 
0.01, 0.03, 0.05, 0.07 dan 0.1 wt%) telah dikaji melalui suhu lebur, pengaliran elektrik, 
tingkah-laku hakisan, keboleh basahan dan kekuatan mekanikal. Sampel komposit
dihasilkan menggunakan kaedah metalurgi serbuk. Keputusan yang diperolehi untuk 
pengaloian  mekanikal menunjukkan bahawa kaedah ini adalah satu teknik yang sesuai 
untuk menyebarkan MWCNT dan MLG dalam serbuk Bi-Ag. Secara keseluruhannya, 
MWCNT dan MLG telah meningkatkan suhu takat lebur bahan. Takat lebur 
maksimum direkodkan apabila 0.1 wt % zarah nano berada di dalam matriks iaitu 
272.02 °C dan 269.62 °C untuk MWCNT dan MLG. Didapati bahawa untuk kedua-
dua zarah nano diperkuat matriks, ketahanan elektriknya berkurangan; manakala, 
kesan MWCNT pada ketahanan elektrik pateri adalah melebihi daripada MLG. 
Penurunan maksimum ketahanan diperhatikan bagi sampel dengan 0.1 wt% zarah 
nano iaitu 1.89 (μΩ.cm) MWCNT dan 2.53 (μΩ.cm) bagi MLG. Keputusan 
menunjukkan bahawa MWCNT dan MLG menambah baik keboleh-basahan Bi-
2.5Ag. Walau bagaimanapun, telah diperhatikan bahawa MLG lebih mengurangkan 
sudut basahan berbanding MWCNT. Kelakuan hakisan Bi-2.5Ag dan sampel 
komposit dengan MWCNT dan MLG dikaji melalui teknik elektrokimia. Hasil 
daripada plot Tafel, lengkung yang dijalankan dalam tiga elektrolit yang berbeza 
menggambarkan bahawa kadar hakisan bagi semua sampel komposit meningkat. 
Selain itu, dapat disimpulkan bahawa kadar kakisan dan pasivasi adalah bergantung 
kepada konduktiviti sampel, konduktiviti elektrik elektrolit dan nombor H+ di dalam 
elektrolit mengakis. Penambahan  MWCNT dan MLG bagi Bi-2.5Ag meningkatkan 
kekuatan ricih. Walau bagaimanapun, adalah diperhatikan bahawa tegasan ricih Bi-
2.5Ag dengan penambahan MWCNT dan MLG zarah nano hanya menambah baik 
sehingga peratusan berat zarah nano dalam matriks mencapai 0.07 wt% bagi MWCNT 
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dan 0.05 wt% untuk  MLG. Secara ringkas, penambahan zarah nano MWCNT dan 
MLG ke Bi-2.5Ag matrix pateri telah menambah baik tingkah laku peleburan, 
pengaliran elektrik, keboleh basahan dan kekuatan ricih, tetapi memberi impak negatif 
terhadap tingkah laku hakisan bahan. 
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      CHAPTER 1 

1 INTRODUCTION 

1.1 Background of Study 

The tendency in utilizing electronic products will be in wireless, portable, and 
handheld features. This fact drives the industrial growth in the microelectronic 
technologies. The rapid growth, demands for new materials more than ever (Berni et 
al., 2016; Sattler, 2016). Solder alloys and conductive adhesives components have 
been used by electronic manufacturers to provide electrical interconnection between 
electrical segments and the printed wiring board (PWB)(Dunn, 2015). Lead-Tin (Pb-
Sn) alloys are a promising interconnection material. Lead (Pb) has been used since the 
1940s in view of its proven reliability with eutectic phase when chemically mixed with 
tin (Sn) (Plumbridge, 1996).  

According to mass production of electronic gadgets, it is impossible to turn a blind 
eye on the disposal of these products and abandon them in the environment (Kang and 
Schoenung, 2005; Rydh and Sun, 2005). Solder alloys and conductive adhesives 
contain a high level of Pb (Li et al., 2005). Pb and its alloys as a heavy metal under 
certain conditions are harmful to human and environment; therefore some countries 
impose a law to limit the usage of Pb in the industries. For instance, Canada bans Pb 
in petrol in 1990 (Bollhöfer and Rosman, 2001), U.S.A in 1996 (Kovarik, 2005), and 
in 2002 it is banned in the European Union (Bollhöfer and Rosman, 2001). 

European Union Parliament and Council resolution, in July 2006, restrict the use of 
Hazardous Substance (RoHS) in electrical products to avoid Pb in manufacturing. 
Furthermore, in January 2005, Japan as the paramount electronic gadget producers 
admitted widening the use of lead free solders instead of lead solders (Hwang, 2004a). 
The limitation of using Pb in electronic industries carves a path for the scholars to look 
for lead free alloys to suit their application as high and low temperature solders (Frear 
and Vianco, 1994). 

In the recent times, heat generation and thermal conductivity in electronic device 
which were used in aerospace, automotive, militaries, nuclear power facilities, oil 
industry and monitors initiate the need for high temperature lead free solder 
(Chidambaram et al., 2011; Kang and Sarkhel, 1994; Suganuma, 2001; Suganuma et 
al., 2009). Some elements such as gold (Au), zinc (Zn), bismuth (Bi) and tin (Sn) have 
been suggested to replaced Pb as lead free soldering alloys in high temperature 
applications (Evans, 2007).  

Among all suggested high temperature lead free solder alloys, Bismuth-Silver Alloys 
(Bi-Ag) provides better features for different applications (Shimoda et al., 2012). It 
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can be concluded from the Bi-Ag phase diagram that a binary system contains only 
one eutectic reaction, which occurs at 97.5% Bi and at a temperature around 262.5 °C. 
There are no intermetallic parts, and the low solubility of silver in bismuth precludes 
solid-solution establishment. The presence of the silver element in the microstructure 
makes Bi-Ag alloys mechanically stronger and more ductile than pure bismuth 
(Nahavandi, 2014). 

The reliability and applicability of Bi-Ag solder alloy in industries need further 
investigations considering their advantages (e.g., good electrical conductivity) and 
disadvantages (e.g., brittleness) (Song et al., 2006, 2007b). Thus, the investigations to 
improve the physical and mechanical properties of these alloys is ongoing (Spinelli et 
al., 2014).   

Studies have shown that adding alloying elements frequently improves the properties 
of alloy (Allaoui et al., 2002; Avner, 1964). Improvement in the characteristics of lead 
free solders by proper selection of the reinforcement materials could advantageously 
produce better alloy due to its physical and mechanical properties (Gancarz et al., 
2014; Yang et al., 2014). In consideration of the aforementioned facts, multi wall 
carbon nanotube (MWCNT) and multi-layer graphene (MLG) were selected as the 
reinforcement materials in the current study according to their good electrical 
conductivity and mechanical strength. 

In the nutshell, the eutectic Bi-Ag lead-free solder reinforced with varying weight 
(0.01, 0.03, 0.05, 0.07 and 0.1 wt%) of multi wall carbon nanotube (MWCNT) and 
multi-layer graphene (MLG) were analyzed in order to fabricate the composite solder. 
Powder metallurgy technique was used for mixing and compaction of the elements. 
Then, the pellets were melted in the furnace on copper (Cu) plates.  Physical, shear 
strength, corrosion behavior and electrical conductivity effects of MWCNT and MLG 
on lead free eutectic Bi-Ag solder alloy were studied. 

1.2 Problem Statement 

It is crystal clear that; the wide use of the electronic equipment’s. Nowadays, lead (Pb) 
is a commonly used element in many components of the electronic industry especially 
as solder alloys (Pb-Sn) (Tribula et al., 1989). Pb in solder materials is used in coatings 
soldered on printed circuit boards, pins and ends of boards (Lee et al., 2001; Zeng and 
Tu, 2002).  

Due to the fact that Pb is in the class of top seventeen chemical poisoning elements 
(heavy elements), it leaves no doubt about its harmful effect on human health. Its 
accumulation in the human body causes disorders in the nervous system, reproductive 
systems, the disturbance in neurological and physical development, anemia and 
hypertension (Duruibe et al., 2007). 
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Prohibiting the use of solder containing Pb in many industries was applied from 2006 
in United States of America (USA). Regarding this fact, a new solder alloy, Bi-Ag, as 
one of the lead-free solder alloys has been considered as a promising replacement for 
high temperature solder applications (Song et al., 2007b).  

But Bi-Ag alloys are still not vastly used in industries. It has some disadvantages such 
as brittleness, low electrical conductivity and low shear modulus. Tackling this 
problem and improving the binary phase alloys especially its eutectic has caught the 
attention of scholars (Song et al., 2007a).  

It has been suggested by the researchers that adding one or more elements can be 
helpful to improve the properties of the alloy (Efzan and Singh, 2014). Due to this 
fact, the metallurgical effect of multi wall carbon nanotube (MWCNT) and multi-layer 
graphene (MLG) on eutectic Bi-Ag alloy was studied and proposed in this research.   

1.3 Significance of Study 

Reliability of interconnection joints is a major concern in the improvement of lead-
free solders. The investigation in this subject area must first prioritize the existing 
trend in the electronic packaging industries. The current choices for replacements of 
lead alloy system are based on Ag, Bi, Zn and Sn alloy systems. So far, some 
preference has been placed on the Bi-Ag solder material as a promising candidate but 
it is not a matured material yet with the required reliability and optimized properties 
to be use in the industry.    

In this research, based on the desirable properties shown by the Bi-Ag binary alloy, an 
attempt is made to investigate the alternative of nano-composite Bi-2.5Ag for high-
temperature application. Therefore, this thesis critically examines and documents the 
detailed information required to raise the consciousness of researches and electronic 
industries towards a revamped Bi-Ag lead-free solder, through the incorporation of 
carbon nanotubes and graphene. 

1.4 Objectives of the Research 

The objectives of the present work which are effects of multi wall carbon nanotubes 
and multi-layer graphene on Bi-2.5Ag lead free solder were summarized as follows: 

1. To analyze the effect of MWCNT and MLG on the melting performance of Bi-
2.5Ag alloys. 

 
2. To determine the effect of MWCNT and MLG on the electrical conductivity of 

Bi-2.5Ag alloys at room temperature. 
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3. To investigate the effect of MWCNT and MLG on the corrosion behavior of Bi-
2.5Ag alloys by electrochemical method. 
 

4. To determine the effect of MWCNT and MLG on the wetting/contact angle of 
Bi-2.5Ag alloys on a Cu substrate. 

 
5. To analyze the effect of MWCNT and MLG on the shear strength of Bi-2.5Ag 

solder using single lap-shear test method. 
 
 
1.5 Scope of Study 

The scope of the research is centered on five principal properties of solder alloys which 
are critical in analyzing the reliability of the solder joints. The effect of reinforcement 
of Bi-2.5Ag with MWCNT and MLG (Bi-2.5Ag + xMWCNT/xMLG, x= 0.01, 0.03, 
0.05, 0.07 and 0.1 wt%) were studied according to the melting temperature, electrical 
conductivity, corrosion behavior, wetting angle and strengthening of solder 
composite. 

The Bi-2.5Ag composite was produced by mechanical alloying of components which 
were in the powder form. Differential Scanning Calorimetry (DSC) was used to find 
the effect of MWCNT and MLG on melting behavior of Bi-2.5Ag. In order to report 
the wetting angle associated with each experiment (each weight percentage of nano 
particles in the solder matrix). Six angles were measured by an optical microscope 
(OM) and the mean value was determined. Due to the importance of electrical 
resistivity of solder and interconnection alloys for electronic assembly, the effect of 
MWCNT and MLG on Bi-2.5Ag was studied using Standard Four-Probe Technique. 
Corrosion behavior of reinforced samples was studied by electrochemical method in 
three corrosive electrolytes (HCl, HNO3 and H2SO4). Furthermore, composite Bi-
2.5Ag joints behavior was investigated using single lap-shear test method by 10 kN 
universal testing machine. In the interest of studying the single lap joints sample 
failure during the shear test, the fractured samples were randomly selected and 
investigated using an optical microscope (OM) and atomic force microscopy (AFM). 

1.6 Hypotheses 

The study’s research hypotheses are as follow:  

H1: Melting behavior of Bi-2.5Ag will be affected by MWCNT and MLG 
reinforcement. Some researches show significant in melting point while other 
researches show no effect at all or negligible difference in melting point with addition 
of MWCNT and MLG in lead free solders.  
 
H2: Electrical conductivity of Bi-2.5Ag will be improved by adding reinforcement 
nano-particles, since MWCNT and MLG are excellent electrical conductors. 
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H3: Wettability of Bi-2.5Ag will be improved by adding MWCNT and MLG to the 
solder matrix up to a certain percentage. After a certain threshold, the wetting angle 
increase due to agglomeration of the reinforcements. 

H4: Corrosion behavior of Bi-2.5Ag will be affected by MWCNT and MLG 
reinforcement. Not enough information to predict the trend of the behavior and the 
extent of the difference. 

H5: Shear strength of Bi-2.5Ag will be improved by adding reinforcement nano-
particles up to a certain percentage of reinforcement. Beyond a certain threshold value, 
agglomeration of MWCNT and MLG will have a negative impact on the shear strength 
of the solder. 

1.7 Structure of the Thesis 

The thesis was written into five chapters. After an introduction which describes the 
background of this research, problem statements, and research objective are in the first 
chapter. The framework structure of the remaining part of the thesis is as follow: 

Chapter two gives literature review on the general knowledge within the scope of this 
research, materials, technologies and methods. Chapter three illustrates in detail the 
methodologies which were conducted in this study.  

Chapter four discusses and explains the results (based on the analyzed experimental 
data) of the metallurgical effects of multi walled carbon nanotubes or multi-layer 
graphene on eutectic Bi-2.5Ag lead free solder. 

Finally, chapter five summarizes and reviews all the present analyzed works and 
provides deductions on the observations obtained by this research. In this chapter, 
recommendations are also given for future research directions. 
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