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Zinc selenide attracts a lot of attention due to its wide potential applications in 

photovoltaic and optoelectronic devices, photodiodes, superionic conductors and 

sensors. Among all the techniques to synthesize ZnSe, electrodeposition is the simplest 

and the most cost-effective as well as it enables low temperature growth. However, in 

the previous work the influence of electrodeposition parameters in producing 

stoichiometric ZnSe and the effect on the photocurrent and optical properties were not 

studied in detail. In this work, ZnSe films were electrodeposited to produce 

stoichiometric films on ITO and their structural, optical and photoeelctrochemical 

properties were studied. The effect of varying selenium concentrations on the 

stoichiometric and optical properties of the films was also investigated.  

The deposition potential range for synthesizing zinc selenide films was determined using 

cyclic voltammetry. Film produced was characterized using X-ray Diffractometry 
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(XRD) to determine the crystal structural, Linear Sweep Photovoltammetry Test (LSPV) 

to evaluate the photosensitivity to light, Scanning Electron Microscopy (SEM) to 

examine on the film morphology and High Surface Profiler to determine the film 

thickness. Optical band gap and the transition type of the films were determined using 

data obtained from UV-Vis Spectrophotometer. The electronic properties of ZnSe thin 

films were investigated by photoluminescence (PL) technique.  

Potentiostatic eletrodeposition was carried out at different deposition potential, selenious 

acid concentrations, deposition time, bath temperatures and annealing temperatures. The 

XRD pattern showed that both as-deposited and annealed ZnSe films obtained from the 

increases deposition potential from -1.0 V to -0.6 V were polycrystalline with cubic 

phase for all selenious acid concentrations from 4 mM to 10 mM. Increasing deposition 

time from 1 hour to 3 hours and bath temperature from 27 °C to 80 °C, however, favors 

the growth of selenium rich films. Zinc selenide forms better deposit in acidic condition 

with optimum pH of 2.00.  

Pulse electrodeposition was carried out by varying the cathodic pulse potential and duty 

cycles of 30 %, 50 %, 70 % and 90 %. The photocurrent response of the deposit 

increases with increasing duty cycles. However, the deposits showed poor photocurrent 

compared to samples deposited by potentiostatic technique.   

The ZnSe films preparative parameters of both techniques were optimized based on their 

photosensitivity and stoichiometry of the films. All films exhibit good photoresponse 

towards white light with p-type semiconducting character in photoelectrochemical test. 

Calcination at temperature above 200 °C reduced the selenium content and improved the 
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stoichiometry of the films. The film showed direct optical transition with the band gap of 

2.65 eV.  

The photoluminescence studies the fundamental electronic properties of ZnSe. 

Stoichiometric ZnSe films with different thicknesses were illuminated at different 

excitation wavelengths. Emission peak became more intense and narrow as the films 

excited to higher excitation wavelength. The ZnSe emission spectra obtained at a 

wavelength range is associated to the blue region which makes it suitable for fabrication 

of light emitting devices operating in the blue-green light and short-wavelength devices. 
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Zink selenida menarik perhatian ramai disebabkan oleh kepelbagaian potensi aplikasi 

dalam peranti fotovoltan dan optoelektronik, fotodiod, superionik konduktor dan 

penderia. Antara semua kaedah sintesis ZnSe, kaedah pengelektroenapan merupakan 

kaedah yang paling mudah, kos efektif dan boleh dilakukan pada suhu rendah. 

Walaubagaimanapun, di dalam kajian terdahulu, pengaruh parameter elektroenapan 

dalam penghasilan stoikiometri ZnSe serta kesan fotoelektrokimia dan optik tidak dikaji 

secara terperinci. Dalam kajian ini, ZnSe telah dielektroenap di atas ITO dan ciri struktur 

hablur, optic dan fotoeletrokimia dikaji. Selain itu, kesan perubahan kepekatan selenida 

terhadap stoikiometri dan sifat optik filem juga diselidiki. 

Julat keupayaan pengelektroenapan filem ZnSe ditentukan dengan kitaran voltammetri. 

Filem yang dihasilkan dianalisis dengan peralatan Pembelauan Sinar-X (XRD) untuk 

menentukan struktur enapan. Ujian fotoeletrokimia (LSPV) dilakukan untuk menilai 



© C
OPYRIG

HT U
PM

vi 

 

fotosensitiviti filem terhadap cahaya. Mikroskopi Pengimbasan Elektron (SEM) untuk 

kajian morfologi filem dan surface profiler untuk menentukan ketebalan filem. Luang 

optik dan jenis peralihan zink selenida ditentukan melalui data yang diperolehi daripada 

spektrofotometer ultralembayung dan nampak (UV-Vis). Sifat-sifat elektronik filem 

nipis ZnSe telah disiasat dengan teknik fotoluminesen (PL). 

Elektroenapan potentiostatik telah dijalankan pada pelbagai keupayaan, kepekatan asid 

selenida, masa, suhu larutan dan suhu pemanasan. XRD memaparkan kesemua filem 

ZnSe diperolehi melalui pengenapan dan penyeduhlindapan pada keupayaan antara -1.0 

V sehingga -0.60 V adalah polihablur berfasa kuibik. Kepekatan asid selenida yang 

digunakan adalah 4 mM – 10 mM. Penambahan masa pengenapan daripada 1 jam 

kepada 3 jam dan suhu larutan daripada 27 °C hingga 80 °C menggalakkan pertumbuhan 

filem yang kaya selenida. Zink selenida tumbuh lebih baik dalam keadaan berasid dan 

mencapai optima pada pH 2.00. 

Denyut elektroenapan dijalankan dengan menpelbagaikan keupayaan denyut pada katod 

dan kitaran kerja 30%, 50%, 70% dan 90%. Tindakan fotoarus enapan bertambah 

dengan pertambahan kitaran kerja. Walaubagaimanapun, enapan menunjukkan fotoarus 

rendah berbanding sampel-sampel dienapkan oleh teknik keupayaanstatik. 

Parameter penyediaan filem ZnSe dengan kedua-dua teknik telah dioptimumkan 

berdasar fotosensitiviti dan stoikiometri filem. Semua filem menunjukkan fotoaktiviti 

yang baik terhadap cahaya putih dengan ciri semikonduktor jenis-p di dalam ujian 

fotoelektrokimia. Pemanasan pada suhu melebihi 200 °C telah menurunkan kandungan 
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selenida dan meningkatkan stoikiometri filem. Filem menunjukkan jurang tenaga 

peralihan terus dengan nilai 2.65 eV. 

Fotoluminesen menguji sifat asas elektronik ZnSe. Filem ZnSe dengan stoikiometri 

tetapi ketebalan yang berbeza telah disinarkan cahaya dengan panjang gelombang 

pengujaan berbeza. Puncak tenaga pemancaran lebih tertumpu apabila filem diuja pada 

panjang gelombang yang lebih panjang. Spektra pemancaran ZnSe yang dienapkan 

dalam kajian berada pada julat panjang gelombang rantau biru. Ini menjadikannya sesuai 

untuk digunakan di dalam peranti yang beroperasi dalam cahaya biru-hijau dan peralatan 

gelombang pendek. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 History background of semiconductor electrodes 

The great evolution of thin film in the last few centuries is due to its variety of 

application as semiconductor electrodes. The semiconductor electrodes have been used 

in a variety of applications including liquid junction solar cells, photolytic splitting of 

water, semiconductor processing and sensor technology. Due to the concern over 

depletion of global fossil fuels, photoelectrochemical cell have developed intensively as 

solar energy conversion to electricity and chemical fuels.   

The use of semiconductor as an electrode in photoelectrochemical cell was first 

introduced by Becquerel in 1839. He discovered the illuminated silver chloride electrode 

immersed in different pH electrolytes exhibited some photovoltaic effect. However, his 

findings were mainly for academic purposes and obtained considerable attention only 

after 1970s. Researchers had proven the possibility of using semiconductor such as 

titanium dioxide (TiO2) in converting solar energy to chemical or electrical energy by 

decomposing water under sunlight to produce hydrogen and oxygen. Due to its non-

polluting, renewable energy resources and flexibility with respect to conventional fuel 

alternatives, this finding had attracted researchers around the world to involve in 

semiconductor- electrolyte interface research.  

Although TiO2 semiconductor is stable against photocorrosion, it has poor delivery 

efficiency due to its wide band gap of 3.20 eV. Thus, sulfides and selenides 
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semiconductor with optimum band gap are more efficient and gained intense interest in 

synthesizing semiconductor. Many efforts had been directed to generation of 

optoelectronic devices based on wide band gap semiconductors. Zinc selenide, ZnSe thin 

film have a wide band gap of 2.70 eV and capable in emitting light in the blue-green 

region which gained much interest in light emitting diode.   

1.2 Semiconductor energy conversion  

The development of semiconductor materials for solar energy conversion devices has 

been conducted throughout the world in order to exploit the abundance solar radiation. 

In many applications, the photovoltaic cell technology is ideal as it requires no or very 

little maintenance and lubrication. Semiconductor electrodes or thin films used in 

photovoltaic cell has photoelectric effect due to the generation of positive (holes) and 

negative (electrons) charge carriers in a solid state when the surface is illuminated with 

light of appropriate energy.   

The photon strike is captured by semiconductor and caused transition of electron from 

valence band to conduction band. The wavelength of the light used should be equal or 

greater than the semiconductor energy band gap, Eg to enable transition process to occur. 

The valence electron captured sufficient energy will jump into conduction band resulting 

in electron-hole pair (e
-
h

+
) formation. However, the electron in e

-
h

+ 
pair often recombine 

very quickly with the captured light degraded to heat or emission of photon.  

In wide band gap semiconductor, the formation of e
-
h

+ 
pair

 
requires high energy light 

source such as ultra-violet light to excite valence electron to conduction band. The e
-
h

+ 
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pair formed will hardly recombine back and this resulting in higher energy conversion.   

Thus, wide band gap semiconductor is useful in making short-wavelength devices.   

However, for short band gap semiconductor, the valence electrons can be excited easily 

to conduction band using low energy light. The e
-
h

+
 pair formed often recombine easily 

due to the short band gap separation. This recombination process leads to most energy is 

not converted and lost to heat. Therefore, to utilize the electricity generation, the e
-
h

+ 

pair must be separated to minimize recombination process. This value of separation is 

determined by the band gap energy, Eg of the film.   

1.3 Thin Films 

Thin films are solid material build up as thin layer on a solid substrate or support using 

physical or chemical methods. This thin material layers have a thickness ranging from 

fractions of nanometer to several micrometers. The quality of the thin films produced 

depends on several factors such as method of deposition, the substrate materials, the 

substrate temperature, the rate deposition and the background pressure.      

Thin films have grown dramatically in the last few years due to its wide usage and 

application mostly as optoelectronic devices. The popularity of thin film leads to the 

needs and approaches for their preparation methods and characterizations to expand 

significantly. Thin films synthesized using II-VI semiconductors have wide band gap 

energy and can be utilized in a variety optoelectronic application such as solar cells, 

semiconductors, photoconductors, photodiodes and light emitting diodes.      
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1.3.1 Thin Films Preparation 

Good quality thin film can be prepared by physical or chemical techniques. Several 

physical techniques such as molecular-beam epitaxy, vacuum evaporation, sputtering, 

spray pyrolysis, pulsed laser deposition and chemical vapour deposition have been 

employed for the deposition of ZnSe thin film.  

However, due to the physical technique requires expensive and complex experimental 

set-up, chemical techniques showed more favourable features. Chemical techniques such 

as chemical vapor deposition, electrodeposition, Langmuir- Blodgett technique, 

photochemical deposition (Kumaresan et al., 2002) and chemical bath deposition (CBD) 

are some of the techniques used widely by researchers around the world.   

In chemical technique, thin films are formed by deposition of elements from aqueous 

solution which requires simple experimental set-up, inexpensive and easily scalable. 

Electrodeposition technique is one of the most widely accepted chemical techniques for 

its economical and efficient growth of thin films from aqueous solution.      

1.3.2 Thin film growth process 

Thin film produced from the deposition process involves three simple growth steps. 

These three growth steps consisting of nucleation process, surface diffusion controlled 

growth of nuclei and adherence onto the substrate to give continuous film. The initial 

step in deposition is the charged or uncharged species from bath deposition accumulates 

at the interface between semiconductor surface and electrolyte. This species at this 

interface will be transported to the substrate medium by diffusion process. The species 
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will condensed onto the substrate surface forming solid deposits. The deposits will form 

a film through nucleation and growth process.   

1.4 Zinc Selenide 

Zinc selenide is a well-known II-VI semiconductor with a solid brownish appearance. It 

has wide band gap energy of 2.70 eV which associates to blue-green light region. Due to 

the many production of red and orange light emitting diode, many efforts are currently 

directed to a new generation photodiodes based on wide band gap semiconductors. 

Although normally zinc selenide is an n-type semiconductor, the electrodeposited zinc 

selenide present p-type semiconductor as inferred in photoelectrochemical response. The 

photoconductivity type of zinc selenide depends on the electrolyte composition whether 

it consist excess of zinc or selenium.  

Electrodeposition of zinc selenide is studied in comparison to cadmium chalcogenides 

thin film. The deposition of zinc selenide is difficult due to the wide difference in the 

reduction potential of zinc and selenium ions. However, stoichiometric films can be 

produced by using suitable deposition potential and electrolyte compositions. Various 

promising applications of zinc selenide in optoelectronic devices (Gudage et al., 2009; 

Samantilleke et al., 2001; Matsuura et al., 1991), photodiodes, light emitting diodes and 

thin film solar cells as window material (Gavrushek et al., 2003) 

In many of the review, in order to obtain a Zn/Se ratio close to 1 in the film, the 

deposition bath should contain high concentration of zinc (II) ion and a very low 

concentration selenious acid.  
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1.5 Semiconductor theory 

Semiconductors are materials with properties of conductors and insulators. The 

properties of semiconductor and their difference between metal and insulator can be 

understood by examining their electronic structure. The energy band is obtained from 

the motion of a single electron in the crystal lattice and it is assumed that there is no 

interaction between the electrons and lattice points. This condition is called the zero 

potential energy. However, in real crystal, the electrons interact with the periodic 

potential field created by orderly arranged ions in the lattice. The electronic waves lead 

to formation of energy gaps in the band called band gaps (Figure 1).  

 

Figure 1: (a) Parabolic plot of energy, E vs. wave vector, k for free electron at zero 

potential energy where electron can acquire any value of energy. (b) The formation 

of forbidden band with lower hashed area is called valence band and the upper 

hashed area is conduction band. (c) The band model structure of solid. (McHale, 

2011) 

 

Electrons are filled in the atomic and molecular orbital (valence band) and the vacant 

anti-bonding orbital (conduction band) forming continuous bands. If the valence band 

and conduction band are partially or fully filled, the material is classified as metal. If the 
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valence band is completely filled and the conduction band is empty, the material has 

properties either an insulator or semiconductor depending on its band gap energy, Eg 

value as shown in Figure 2. 

 

Figure 2: Band structure of (a) metal and (b) semiconductor. Right-hand side 

diagrams are plot of number of valence electrons vs. energy level. Left-hand side 

illustrations are the energy band gap difference between metal and semiconductor. 

(McHale, 2011)  

 

1.6 Direct and Indirect Band Gap 

Semiconductor optical transition can be classified into two types, namely direct and 

indirect transition as shown in Figure 3. Direct gap is the maximum energy of valence 

band and minimum energy of conduction band occurs at the same wave vector, k = 0 at 
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the same crystal momentum. When illuminated, the electrons from valence band can be 

directly transited into conduction band which aligned directly above valence band. 

Examples of direct gap semiconductors are GaAs, InP, and InGaAs.  

An indirect gap is the maximum energy of valence band and minimum energy of 

conduction band occurs at different wave vector, k = 0 at the same crystal momentum. 

Si, Ge, and AlAs are few of indirect gap semiconductors. An indirect transition involves 

the change in momentum for electron. The electrons in valence band can absorb a 

photon only if the phonon participates in the process. Therefore, indirect materials have 

weak interaction with light.  

 

Figure 3: Variation of energy for direct and indirect semiconductors at crystal 

momentum.   

 

The mobility of electrons in the conduction band and holes in the valence band imparts 

conductivity to the semiconductor crystal. At high temperature, valence electrons gain 

sufficient energy and are delocalized to the conduction band forming holes in the 

valence band. Electron-hole pairs are formed and this type of semiconductor is called an 
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‘intrinsic’ semiconductor. However, if there are other foreign atoms present in the 

electron-hole pairs, the semiconductor is called ‘extrinsic’ semiconductor. The foreign 

atoms are introduced into the crystal by a process called doping and present as a donor 

or acceptor atoms in the band gap region.  

If a crystal is doped with a donor atom, the donor states are created in the band gap. This 

donor state or atom located beneath the conduction band where the electrons are ionized 

and promoted easily into the conduction band even at room temperature. Thus, the 

density of electrons in conduction band is increased compared with density of holes in 

the valence band. This conductivity is attributed to conduction band electrons (majority 

carriers) and this material is called an n-type semiconductor as shown in Figure 4(a).  

In contrast, if the crystal is doped with impurity atoms, the acceptor states are created 

above the valence band. Thus, the electrons are promoted from the valence band easily 

leaving holes behind. The overall density of holes in valence band is greater than the 

density of electrons in conduction band. Therefore, this conductivity is attributed to 

minority carriers (holes) and is referred as p-type semiconductor as shown in Figure 

4(b). 
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      (a)           (b)  

Figure 4: Two dimensional representation of (a) n-type semiconductor (b) p-type 

semiconductor. Note the shift in position of Fermi level (Ef) due to doping. 

(Handbook of Luminescent Semiconductor Materials by Leah Bergman, Jeanne L. 

McHale, CRC Press Set 7 2011) 

 

1.7 Electrodeposition 

Electrodeposition is one of the oldest techniques used to synthesize cheap and 

productive thin films. This technique is an electrochemical liquid phase thin film or 

powder preparation method process which electric current is passed across an electrolyte 

and substances is deposited at one of the electrode. In a standard three electrodes 

electrochemical cell, the reference electrode is used to control the working electrode and 

the corresponding potential or current can be measured. Though the ZnSe has been 

largely explored in bulk and thin film state, there is less research work in the case of 

synthesizing stoichiometric ZnSe thin films and the photosensitivity properties. In this 

research, we report the electrodeposition of ZnSe thin films from aqueous solution 

containing ZnSO4 and Na2SeO3 and study the influence of various growth conditions on 

the film.  
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1.8 Problem Statements 

Thin films have been synthesized using physical and chemical techniques. Both 

techniques able to produce good quality thin films for various applications. However, 

physical techniques were found to be rather expensive and require complex experimental 

set-up as compared to chemical techniques. Electrochemical method offers easy 

preparation steps and inexpensive set-up which makes it a more preferable approach to 

synthesize thin films. Various metal chalcogenide thin films have been synthesized 

using potentiostatic and pulsed electrodeposition techniques. These methods allow 

deposition parameters to be easily controlled thereby enable the control of film growth. 

However these techniques have not been well studied for the deposition of zinc selenide 

thin films. For long deposition period, potentiostatic electrodeposition is a more practical 

method compared to pulsed. The pulsed method requires longer synthesis time due to 

the time off in every duty cycles. Furthermore, the increasing interest in fabrication of 

blue-green light or photodiodes has enhanced the interest in zinc-based thin films.  

1.9 Objectives 

The objectives of this study are:  

1. To deposit ZnSe thin films through potentiostatic electrodeposition and pulsed 

electrodeposition technique and to investigate the effect of various parameters. 

2. To determine the crystal structure, surface morphology and elemental 

composition of thin films. 

3. To investigate the photosensitivity and optical properties of the films. 

4. To estimate the crystallite size and thickness of the films. 

5. To determine the photoluminescence properties of the films. 
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