UNIVERSITI PUTRA MALAYSIA

RUMEN METABOLISM, MEAT QUALITY AND GENE EXPRESSION CHANGES ASSOCIATED WITH Nigella sativa L. SEEDS AND Rosmarinus officinalis L. LEAF SUPPLEMENTATION IN DORPER SHEEP

KIFAH ODHAIB JUMAAH

FP 2018 24
RUMEN METABOLISM, MEAT QUALITY AND GENE EXPRESSION CHANGES ASSOCIATED WITH Nigella sativa L. SEEDS AND Rosmarinus officinalis L. LEAF SUPPLEMENTATION IN DORPER SHEEP

By

KIFAH ODHAIB JUMAAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

November 2017
COPYRIGHT

All material contained within the thesis, including without limitation to text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is dedicated to

My father and mother

My husband and son
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

RUMEN METABOLISM, MEAT QUALITY AND GENE EXPRESSION CHANGES ASSOCIATED WITH Nigella sativa L. SEEDS AND Rosmarinus officinalis L. LEAF SUPPLEMENTATION IN DORPER SHEEP

By

KIFAH ODHAIB JUMAAH

November 2017

Chairman : Associate Professor Awis Qurni Sazili, PhD
Faculty : Agriculture

The use of herbs in animal nutrition represents a potent strategy for achieving desired production targets with minimal or no negative impact on animal health and environment. Nonetheless, the impact of herbs on rumen metabolism, growth performance, and product quality is generally less consistent in the published literature. Thus, there is need for additional studies in different production systems to permit tailored decision and informed choices in the utilization of medicinal plants in ruminant nutrition.

The current study examined the effects of Nigella sativa (NS) seeds, Rosmarinus officinalis (RO) leaves on in vitro and in vivo rumen metabolism, growth performance, immune response, meat quality and gene expression in Dorper lambs. The study was partitioned into three experiments.

The results in present study are illustrated that the effects of different levels of NS seeds and RO leaves on in vitro gas production, rumen fermentation, fatty acids composition and the apparent biohydrogenation of oleic, linoleic and linolenic acids using rumen liquor from Dorper lambs. The NS seeds and RO leaves were supplemented at the rate of 0, 0.5, 1, 1.5 and 2% (w/w) DM of basal substrate [60% forage (urea treated rice straw) and 40% concentrate] and incubated for 24 h at 39°C. Substrates containing RO and NS had greater (P<0.05) gas production than the control substrates. The volume of gas produced increased as the levels of RO and NS increased up to 1.5% and decreased afterwards. Supplementation of RO and NS did not affect (P>0.05) in vitro dry matter digestibility, in vitro organic matter digestibility, rumen pH, CH₄ and NH₃-N, total volatile fatty acids (VFA) and the molar proportion of acetate, propionate and butyrate. The RO supplements reduced the ruminal concentration of C18:0 and increased the ruminal concentration of...
C18:1n-9 in a dose dependent manner. The supplementation of RO leaves reduced (P<0.05) the apparent biohydrogenation of C18:1n-9 but had no effect (P>0.05) on the apparent biohydrogenation of C18:2n-6 and C18:3n-3.

The results indicated after treatment with *Nigella sativa* L. seeds, *Rosmarinus officinalis* L. leaves and their combination on rumen metabolism, nutrient intake and digestibility, growth performance, immune response and blood metabolites in Dorper lambs. Twenty-four entire male Dorper lambs (18.68±0.6 kg, 4-5 months old) were randomly assigned to a concentrate mixture containing on a dry matter basis either, no supplement (control, T1), 1% *Rosmarinus officinalis* leaves (T2), 1% *Nigella sativa* seeds (T3), or 1% *Rosmarinus officinalis* leaves + 1% *Nigella sativa* seeds (T4). The lambs had *ad libitum* access to urea-treated rice straw (UTRS) and were raised for 90 days. Supplemented lambs had greater (P<0.05) intake of DM and UTRS than the control lambs. Total and daily weight gain were greater (P< 0.05) in T2 lambs than those fed other diets. The T3 and T4 lambs had greater (P< 0.05) ruminal pH than the T1 and T2 lambs. Supplemented lambs improved ruminal total volatile fatty acids, acetate, propionate and reduced NH₃-N, methane gas and C18:0 than the control lambs. Supplemented greater (P< 0.05) serum IgA and IgG compared with the control lambs.

On the other hand, there are detectable evident about ameliorative changes of NS seeds, RO leaves and their combination utilized on carcass attributes, gene expression, lipid oxidation and physicochemical properties of LD, ST and SS muscles in Dorper lambs. The results show that the T2 lambs had greater (P< 0.05) slaughter and cold carcass weights than the control lambs. Meat from supplemented lambs had lower (P<0.05) cooking and drip losses, shear force, lightness, and lipid oxidation and greater (P< 0.05) redness compared with the control meat. *Postmortem* ageing influenced meat quality in Dorper lambs. The impact of dietary supplements on muscle FA varied with muscle type. Furthermore, NS and RO decreased serum total cholesterol, triglycerides, LDL-C and had no effect (P> 0.05) on the expression of SCD and LPL genes in LD and ST muscles in Dorper lambs. The T2 diet up regulated the expression of PRKAA2 gene in LD and ST muscles and up regulated the expression of SREBP1 in LD and ST muscles in Dorper lambs.

Overall, our results concluded that *Nigella sativa* seeds and *Rosmarinus officinalis* leaves variation in the efficacy of in ruminant nutrition. Dietary supplementation of *Nigella sativa* seeds and *Rosmarinus officinalis* leaves had beneficial effects on rumen metabolism, immune response and meat quality in Dorper lambs.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan untuk ijazah Doktor Falsafah

PERUBAHAN METABOLISME RUMEN, KUALITI DAGING DAN EKSPRESI GEN BERKAIT DENGAN DENGAN SUPLEMENTASI BIJI Nigella sativa L. DAN DAUN Rosmarinus officinalis L.PADA BEBIR DORPER

Oleh

KIFAH ODHAIB JUMAAH

November 2017

Pengerusi : Profesor Madya Awis Qurni Sazili, PhD
Fakulti : Pertanian

Penggunaan ramuan herba dalam makanan haiwan merupakan strategi yang berkesan untuk mencapai sasaran pengeluaran, tanpa menjejaskan kesihatan haiwan dan persekitaran. Walau bermacam-macam, dapatan kajian kesan herba terhadap metabolisme rumen, prestasi tumbesaran kualiti produk adalah tidak konsisten. Sehubunyan itu, kajian lanjutan adalah diperlukan dalam sistem perkasahan yang berbeza bagi memastikan keputusan yang tepat dapat dibuat tentang penggunaan ramuan herba dalam pemakanan ruminan. Kajian ini adalah uatak menilai kesan biji benih Nigella sativa (NS), daun Rosmarinus officinalis (RO) ke atas metabolisme rumen in-vitro dan in-vivo, tumbesaran, gerkbalas imun, kualiti daging dan ekspresi gen pada bebiri Dorper. Penyelidikan ini terbahagi kepada tiga eksperimen. Keputusan dalam kajian in-vitro ini menunjukkan kesan terhadap tahap yang berbeza dalam biji benih NS dan daun RO dalam penghasilan gas, fermentasi rumen, komposisi asid lemak dan biohidrogenasi asid oleik, linoleik dan linolenik menggunakan fermentasi rumen daripada kambing biri-biri jenis Dorper. Biji benih NS dan daun RO telah ditambah dengan substrat basal pada kadar 0, 0.5, 1, 1.5 and 2% (w/w) bahan kering [60% makanan yang mengandungi (urea dirawat dengan jerami padi) dan kepekatannya pada 40%] dan dibiarkan selama 24 jam pada suhu 39°C. Substrat yang mengandungi RO dan NS mempunyai penghasilan gas lebih besar berbanding substrat terkawal. Isipadu gas yang terhasil meningkat seiring dengan paras RO dan NS yang meningkat pada 1.5% dan menurun kemudiannya. Suplementasi dengan RO dan NS tidak memberikan apa-apa kesan dalam in-vitro pencernaan bahan kering, in-vitro pencernaan bahan organik, pH rumen, CH₄ dan NH₃-N, jumlah asid lemak merup (VFA) dan kadar molar asetat, propionat dan butirat. Suplementasi dengan RO menurunkan kepekatan rumina pada C18:0 dan meningkatkan kepekatan rumina pada C18:1n-9 terhadap dos dependen. Manakala, suplementasi dengan daun RO menurunkan (P<0.05) biohidrogenasi dengan ketara pada C18:1n-9 tetapi tiada kesan (P>0.05) pada C18:2n-6 and C18:3n-3. Keputusan ini menunjukkan selepas
suplementasi dengan biji benih *Nigella sativa* L., daun *Rosmarinus officinalis* L dan kombinasi kedua-duanya terhadap metabolisma rumen, pengambilan nutrisi dan pencernaan, prestasi tumbesaran, tindak balas imun dan metabolit darah untuk bebiri jenis Dorper. Dua puluh empat ekor bebiri jantan jenis Dorper (18.68±0.6 kg, berumur 4-5 bulan) telah dipilih secara rawak dan disuplementasikan dengan campuran bahan kering mengandungi sama ada dengan tiada makanan tambahan (kawalan, T1), 1% daun *Rosmarinus officinalis* (T2), 1% biji benih *Nigella sativa* (T3), atau kombinasi 1% daun *Rosmarinus officinalis* + 1% biji benih *Nigella sativa* (T4). bebiri telah diberi makan jerami padi-urea (UTRS) secara *ad libitum* dan dijaga selama 90 hari. Bebiri yang sudah dirawat menunjukkan kesan pengambilan DM dan UTRS yang besar (*P*<0.05) berbanding bebiri terkawal. Jumlah berat harian bebiri T2 menunjukkan perbezaan ketara (*P*<0.05) daripada bebiri yang dirawat dengan makanan tambahan lain. Bebiri T3 dan T4 menunjukkan pH rumina yang ketara berbanding bebiri T1 dan T2. Bebiri yang sudah disuplementasikan dengan makanan tambahan menunjukkan prestasi yang baik terhadap jumlah asid lemak merup, asetat, propionate dan penurunan NH₃-N, gas metana dan C18:0 berbanding bebiri terkawal. Bebiri yang disuplementasikan juga menunjukkan perbezaan ketara dengan IgA dan IgG serum berbanding bebiri. Selain itu, bukti menunjukkan perubahan yang baik terhadap sifat bangkai, ekspresi genetik, oksidasi lipid dan keadaan fisio-kimia pada otot LD, ST dan SS pada bebiri jenis Dorper dengan suplementasi biji benih NS, RO dan kombinasi kedua-duanya. Keputusan penyembelihan dan berat sejuk bebiri T2 menunjukkan kesan ketara (*P*<0.05) berbanding bebiri. Daging bebiri yang dirawat menunjukkan penurunan pada keadaan dimasak dan keupayaan untuk kehilangan jus daging (drip losses), daya ricah (shear force), keringanan dan oksida lipid serta perubahan ketara (*P*<0.05) pada warna kemerahan daging berbanding dengan daging bebiri terkawal. Penuaan *postmortem* mempengaruhi kualiti daging bebiri jenis Dorper. Pengambilan suplemen memberikan kesan terhadap otot lemak asid (FA) dengan jenis otot-otot yang lain. Tambahan pula, NS dan RO menurunkan jumlah kolesterol, trigliserida, LDL-C dalam serum dan tiada kesan ketara (*P*> 0.05) pada ekspresi gen SCD dan LPL dalam otot LD dan ST pada bebiri jenis Dorper. T2 menunjukkan ekspresi gen PRKAA2 dan SREBP1 menaik pada otot LD dan ST kepada bebiri jenis Dorper. Keseluruhannya, keputusan ini telah menunjukkan biji *Nigella sativa* dan daun *Rosmarinus officinalis* memberikan kesan variasi pada nutrisi ruminan. Suplementasi diet biji *Nigella sativa* dan daun *Rosmarinus officinalis* memberikan kesan yang baik pada metabolisma rumen, tindak balas imun dan kualiti daging bebiri.
ACKNOWLEDGEMENTS

First and foremost, I thank the Almighty Allah, my One in All, All in One and All in All. I thank Him for the gift of life, knowledge and good health and for taking me this far.

Special gratitude goes to the Chairman of the supervisory committee, Assoc. Prof. Dr. Awis Qurni Sazili, for his accessibility at all times, patience, indefatigable support, encouragement and guidance throughout my candidature. I am very much indebted to the members of my supervisory committee namely Assoc. Prof. Dr. Anjas Asmara Samsudin, Dr. Shokri Jusoh and I also would like to extend my gratitude to my first supervisor Prof. Dr. Abdul Razak Alimon for his encouragement, constructive criticism, excellent advice, comments, and suggestions in the beginning of the project.

Special thanks to my husband Ali Muhammed and my son (Hussain) for their inexorable love, patience and care. I appreciate the moral and spiritual support of my parents, siblings and friends. Special gratitude goes to the academic and non-academic staffs in the Department of Animal Science, UPM for their support throughout the program.
I certify that a Thesis Examination Committee has met on 3 November 2017 to conduct the final examination of Kifah Odhaib Jumaah on her thesis entitled "Rumen Metabolism, Meat Quality and Gene Expression Changes Associated with Nigella sativa L. Seeds and Rosmarinus officinalis L. Leaf Supplementation in Dorper Sheep" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Halimatun binti Yaakub, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Goh Yong Meng, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Azhar bin Kassim, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Voster Muchenje, PhD
Professor
University of Fort Hare
South Africa
(External Examiner)

\[Signature\]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 March 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Awis Qurni Sazili, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Anjas Asmara @ Ab. Hadi Samsudin, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Shokri Jusoh, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from the supervisor and the office of the Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: ____________________

Name and Matric No.: Kifah Odhaib Jumaah, GS38784
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __
Name of Chairman of Supervisory Committee: Associate Professor Dr. Awis Qurni Sazili

Signature: __
Name of Member of Supervisory Committee: Associate Professor Dr. Anjas Asmara @ Ab. Hadi Samsudin

Signature: __
Name of Member of Supervisory Committee: Dr. Shokri Jusoh
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Development of small ruminant industry</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Nutritional significance of the red meat</td>
<td>6</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Consumption of red meat and its implication for human health</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Some factors that affect ruminant meat</td>
<td>7</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Fat and fatty acid composition of red meat</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Rumen ecosystem and microbes</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Herbs</td>
<td>10</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Utilization of herbs as alternatives supplement</td>
<td>10</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Utilization of herbs as digestion enhancer and growth promoter in ruminants</td>
<td>11</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Utilization of herbs as antimicrobial and antioxidant</td>
<td>11</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Utilization of herbs as improved immune response</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Nigella sativa L.</td>
<td>13</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Morphology and chemical composition of Nigella sativa</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>Rosmarinus officinalis L.</td>
<td>15</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Morphology and chemical compounds in Rosmarinus officinalis</td>
<td>16</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Medicinal properties of Rosmarinus officinalis</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>Meat quality</td>
<td>19</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Meat pH</td>
<td>19</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Color</td>
<td>20</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Water holding capacity (WHC)</td>
<td>20</td>
</tr>
<tr>
<td>2.7.3.1</td>
<td>Drip loss</td>
<td>21</td>
</tr>
<tr>
<td>2.7.3.2</td>
<td>Cooking loss</td>
<td>21</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Tenderness</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>
3 INFLUENCE OF GRADED LEVELS OF Nigella sativa SEEDS AND Rosmarinus officinalis LEAVES ON In vitro RUMEN FERMENTATION AND APPARENT BIOHYDROGENATION

3.1 Introduction
3.2 Materials and methods
3.2.1 Source of medicinal herbs
3.2.2 Treatments and experimental design
3.2.3 Sample preparation and tannin extraction
3.2.4 Estimation of total phenol and tannins
3.2.5 Estimation of non-tannin phenol
3.2.6 Proximate analyses
3.2.7 Rumen liquor collection
3.2.8 In vitro rumen fermentation of substrate
3.2.9 pH determination
3.2.10 In vitro dry matter digestibility (IVDMD)
3.2.11 Determination of volatile fatty acids (VFA)
3.2.12 Determination of ammonia nitrogen (NH₃-N)
3.2.13 Calculations
3.2.14 Determination of FA composition of substrates and rumen liquor
3.2.15 Rate of biohydrogenation
3.3 Statistical analysis
3.4 Results
3.4.1 In vitro gas production and rumen fermentation parameters
3.4.2 In vitro biohydrogenation and fatty acid composition of rumen liquor
3.5 Discussion
3.6 Conclusion

4 INFLUENCE OF Nigella sativa SEEDS, Rosmarinus officinalis LEAVES AND THEIR COMBINATION ON, GROWTH PERFORMANCE, IMMUNE RESPONSE AND RUMEN METABOLISM IN DORPER LAMBS

4.1 Introduction
4.2 Materials and methods
4.2.1 Animal welfare
4.2.2 Housing and Management
4.2.3 Experimental animals and diet
4.2.4 Preparation of urea-treated rice straw
4.2.5 Chemical composition and phytochemical contents of dietary treatments
4.2.6 Fatty acid analysis 51
4.2.7 Nutrient digestibility trial 52
4.2.8 Collection of rumen fluid 53
4.2.9 Determination of ruminal pH, VFA, methane and NH₃-N 53
4.2.10 Extraction of DNA from rumen microbes 53
4.2.11 Quantitative Real-Time PCR 54
4.2.12 Blood sampling and analysis 56
4.2.13 Determination of serum immunoglobulin (IgA, IgM, IgG) 56

4.3 Statistical analysis 57

4.4 Results 57
4.4.1 Rumen fermentation 57
4.4.2 Rumen microflora 58
4.4.3 Fatty acid composition of ruminal digesta in Dorper lambs 59
4.4.4 Body weight and body weight gain 60
4.4.5 Feed intake and apparent nutrient digestibility 60
4.4.6 Effects of dietary treatments on haematology parameters in Dorper lambs. 61
4.4.7 Effects of dietary treatments on serum immunoglobulin 61

4.5 Discussion 64
4.5.1 Rumen fermentation in Dorper lambs 64
4.5.2 Rumen microflora in Dorper lambs 66
4.5.3 Rumen fatty acid profile 66
4.5.4 Feed intake and apparent digestibility 67
4.5.5 Blood parameters and immunoglobulin fractions in Dorper lambs 68

4.6 Conclusion 69

5 MEAT QUALITY AND GENE EXPRESSION IN DIFFERENT MUSCLES IN DORPER LAMBS FED Nigella sativa SEEDS, Rosmarinus officinalis LEAVES AND THEIR COMBINATION 70
5.1 Introduction 70
5.2 Materials and methods 72
5.2.1 Slaughtering and carcass analysis 72
5.2.2 Muscle sampling and ageing of meat 72
5.2.3 Determination of muscle pH 72
5.2.4 Determination of drip loss 73
5.2.5 Determination of color coordinates 73
5.2.6 Determination of shear force values 74
5.2.7 Determination of lipid oxidation 74
5.2.8 Serum parameters 74
5.2.9 Tissue samples 75
5.2.10 RNA extraction from muscles 75
5.2.11 Reverse transcription 76
5.2.12 Real-time quantitative reverse transcription polymerase chain reaction 76
5.2.13 Quantification of PCR 77
5.3 Statistical analysis 77
5.4 Results 78
5.4.1 Carcass traits and non-carcass components in Dorper lambs 78
5.4.2 Muscle fatty acid composition 79
5.4.3 Physicochemical traits of different muscles in Dorper lambs 82
5.4.4 Physiological parameter and kidney function test 85
5.4.5 Effect of dietary treatments on gene expression in muscles 85
5.5 Discussion 92
5.5.1 Carcass traits in Dorper lambs 92
5.5.2 Muscle fatty acid composition in Dorper lambs 92
5.5.3 Meat quality in Dorper lambs 93
5.5.4 Gene expression in longissimus dorsi and semitendinosus muscles and Physiological parameter 95
5.6 Conclusions 97

6 GENERAL DISCUSSION 98

7 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 107

REFERENCES 108
APPENDICES 144
BIODATA OF STUDENT 149
LIST OF PUBLICATIONS 150
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Chemical composition of in vitro experimental diets</td>
</tr>
<tr>
<td>3.2</td>
<td>Fatty acid composition (% of total fatty acid) of in vitro experimental diets</td>
</tr>
<tr>
<td>3.3</td>
<td>In vitro gas production of substrates containing graded levels of Rosmarinus officinalis and Nigella sativa seeds during 24 h incubation</td>
</tr>
<tr>
<td>3.4</td>
<td>In vitro fermentation, pH, and concentration of volatile fatty acids in substrates containing graded levels of Rosmarinus officinalis during 24 h incubation</td>
</tr>
<tr>
<td>3.5</td>
<td>In vitro fermentation, pH, and concentration of volatile fatty acids in substrates containing graded levels of Nigella sativa after 24 h incubation</td>
</tr>
<tr>
<td>3.6</td>
<td>Fatty acid composition (% of total fatty acids) of rumen fluid and rate of biohydrogenation at 24 h incubation of substrates containing graded levels of Rosmarinus officinalis</td>
</tr>
<tr>
<td>3.7</td>
<td>Fatty acid composition (% of total fatty acids) of rumen fluid and rate of biohydrogenation at 24 h incubation of substrates containing graded levels of Nigella sativa seeds</td>
</tr>
<tr>
<td>4.1</td>
<td>Dietary treatments of the experiment</td>
</tr>
<tr>
<td>4.2</td>
<td>Chemical composition (%) of Nigella sativa seeds and Rosmarinus officinalis leaves</td>
</tr>
<tr>
<td>4.3</td>
<td>Ingredients and Chemical composition of dietary treatment, urea treated rice straw</td>
</tr>
<tr>
<td>4.4</td>
<td>Fatty acid composition (% of total FA) of dietary treatments</td>
</tr>
<tr>
<td>4.5</td>
<td>Microorganisms, sequences and references of the primers used for the quantification of microbial population</td>
</tr>
<tr>
<td>4.6</td>
<td>Mean rumen fermentation parameters in Dorper lambs fed Nigella sativa, Rosmarinus officinalis or their combination</td>
</tr>
<tr>
<td>4.7</td>
<td>Mean population (Log 10 cell/mL) of rumen microbes in lambs (n=6) fed Nigella sativa seeds, Rosmarinus officinalis leaves or their combination</td>
</tr>
<tr>
<td>4.8</td>
<td>Fatty acid composition (% of total fatty acids) of ruminal digesta in lambs fed Nigella sativa seeds, Rosmarinus officinalis leaves or their combination</td>
</tr>
</tbody>
</table>
4.9 Mean growth performance characteristics in lambs (n=6) fed *Nigella sativa* seeds and *Rosmarinus officinalis* leaves or their combination

4.10 Mean nutrient intake and apparent digestibility in lambs (n=6) fed *Nigella sativa* seeds and *Rosmarinus officinalis* leaves or their combination

4.11 Mean hematological indices and Immunoglobulin fractions in lambs fed *Nigella sativa* seeds, *Rosmarinus officinalis* leaves and their combination

5.1 Composition of the reverse transcriptase reaction

5.2 List of primer sequences

5.3 Mean carcass traits in Dorper lambs fed diets containing *Nigella sativa* seeds, *Rosmarinus officinalis* leaves and their combination

5.4 Weight of non-carcass components from lambs fed *Nigella sativa* seeds, *Rosmarinus officinalis* leaves and their combination

5.5 Fatty acid composition (% of total FA) of *Longissimus dorsi* muscle in Doper lambs fed diets containing *Nigella sativa* seeds, *Rosemarinus officinalis* leaves and their combination

5.6 Fatty acid composition (% of total FA) of *Semitendinosus* muscle in Doper lambs fed diets containing *Nigella sativa* seeds, *Rosemarinus officinalis* leaves and their combination

5.7 Fatty acid composition (% of total FA) of *Supraspinatus* muscle in Doper lambs fed diets containing *Nigella sativa* seeds, *Rosemarinus officinalis* leaves and their combination

5.8 Physicochemical properties and lipid oxidation in *Longissimus dorsi*, *Semitendinosus* and *Supraspinatus* muscles in Dorper lambs fed diet supplemented with *Rosmarinus officinalis* leaves, *Nigella sativa* seeds and their combination

5.9 Effect of *Nigella sativa* and *Rosmarinus officinalis* and their combination on Physiological parameter and kidney function test of lambs
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Nigella sativa (Nigella sativa L.)</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Chemical structures of some of the main potentially bioactive compounds in Nigella sativa</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Rosemary (Rosmarinus officinalis L) leaves</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Chemical structures of some of the main potentially bioactive compounds in Rosmarinus officinalis</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Flow Chart of all experimental design</td>
<td>27</td>
</tr>
<tr>
<td>5.1</td>
<td>The relative expressions of lipoprotein lipase target gene in Longissimus dorsi muscle of Dorper lambs fed Nigella sativa seeds, Rosmarinus officinalis leaves and their combination</td>
<td>86</td>
</tr>
<tr>
<td>5.2</td>
<td>The relative expressions of lipoprotein lipase target gene in semitendinosus muscle in of Dorper lambs fed Nigella sativa seeds, Rosmarinus officinalis leaves or their combination</td>
<td>86</td>
</tr>
<tr>
<td>5.3</td>
<td>The relative expressions of stearoyl-CoA desaturase target gene in Longissimus dorsi muscle of Dorper lambs fed Nigella sativa seeds, Rosmarinus officinalis leaves or their combination</td>
<td>87</td>
</tr>
<tr>
<td>5.4</td>
<td>The relative expressions of stearoyl-CoA desaturase target gene in semitendinosus muscle in Dorper lambs fed Nigella sativa seeds, Rosmarinus officinalis leaves or their combination</td>
<td>88</td>
</tr>
<tr>
<td>5.5</td>
<td>The relative expressions of sterol regulatory element binding transcription factor 1 target gene in Longissimus dorsi muscle of Dorper lambs fed Nigella sativa seeds, Rosmarinus officinalis leaves or their combination</td>
<td>89</td>
</tr>
<tr>
<td>5.6</td>
<td>The relative expressions of sterol regulatory element binding transcription factor 1 target gene in semitendinosus muscle in Dorper lambs fed Nigella sativa seeds, Rosmarinus officinalis leaves or their combination</td>
<td>89</td>
</tr>
<tr>
<td>5.7</td>
<td>The relative expressions of protein kinase AMP-activated catalytic subunit alpha 2 target gene in Longissimus dorsi muscle in Dorper lambs fed Nigella sativa seeds, Rosmarinus officinalis leaves or their blend</td>
<td>90</td>
</tr>
<tr>
<td>5.8</td>
<td>The relative expressions of protein kinase AMP-activated catalytic subunit alpha 2 target gene in semitendinosus muscle in Dorper lambs fed Nigella sativa seeds, Rosmarinus officinalis leaves or their blend</td>
<td>91</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>acid detergent fiber</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>BH</td>
<td>Biohydrogenation</td>
</tr>
<tr>
<td>°C</td>
<td>degrees centigrade</td>
</tr>
<tr>
<td>°C/min</td>
<td>degrees centigrade per minute</td>
</tr>
<tr>
<td>cal</td>
<td>Calorie</td>
</tr>
<tr>
<td>CLA</td>
<td>conjugated linoleic acid</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>cm²</td>
<td>square centimetre</td>
</tr>
<tr>
<td>d</td>
<td>Day</td>
</tr>
<tr>
<td>DM</td>
<td>dry matter</td>
</tr>
<tr>
<td>FA</td>
<td>fatty acids</td>
</tr>
<tr>
<td>FE</td>
<td>feed efficiency</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GLM</td>
<td>generalized linear model</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>Kcal</td>
<td>Kilocalories</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>LD</td>
<td>longissimus dorsi</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>MDA</td>
<td>Malondialdehyde</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mm</td>
<td>Milimeter</td>
</tr>
<tr>
<td>mmol/L</td>
<td>milimole per liter</td>
</tr>
<tr>
<td>MRA</td>
<td>metmyoglobin reducing activity</td>
</tr>
<tr>
<td>μL</td>
<td>Microliter</td>
</tr>
<tr>
<td>μmol/L</td>
<td>micromole per liter</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>mg/L</td>
<td>milligram per liter</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>mL/min</td>
<td>millilitre per minute</td>
</tr>
<tr>
<td>MUFA</td>
<td>monounsaturated fatty acids</td>
</tr>
<tr>
<td>NS</td>
<td>Nigella sativa</td>
</tr>
<tr>
<td>n-6/n-3</td>
<td>total n-6 PUFA to total n-3 PUFA ratio</td>
</tr>
<tr>
<td>NDF</td>
<td>neutral detergent fibre</td>
</tr>
<tr>
<td>PUFA</td>
<td>polyunsaturated fatty acids</td>
</tr>
<tr>
<td>RO</td>
<td>Rosmarinus officinalis</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of means</td>
</tr>
<tr>
<td>SFA</td>
<td>saturated fatty acids</td>
</tr>
<tr>
<td>SS</td>
<td>Supraspinatus</td>
</tr>
<tr>
<td>ST</td>
<td>semitendinosus</td>
</tr>
<tr>
<td>TBARS</td>
<td>thiobarbituric acid reactive substances</td>
</tr>
<tr>
<td>UFA</td>
<td>unsaturated fatty acids</td>
</tr>
<tr>
<td>VFA</td>
<td>volatile fatty acids</td>
</tr>
<tr>
<td>WHC</td>
<td>water holding capacity</td>
</tr>
</tbody>
</table>
CHAPTER 1

GENERAL INTRODUCTION

Recently, the increase in human population, rapid urbanization and rising incomes have stimulated an increased demand for animal products (Makkar and Beever, 2013). This scenario presents animal scientists with a significant challenge of developing strategies to enhance sustainable animal production to meet the consumers’ demand (Adeyemi et al., 2015b).

Ruminant production plays a significant role in sustainable livestock production because they can convert plant materials not suitable for human consumption into high quality protein (Wanapat et al., 2008). Small ruminant are critical components of production systems throughout the world and they are essential in agricultural systems. Therefore, lambs and goats give rise to large percentage of consumption by global human populace in terms of the dietary protein consumed. About 4% of the meat eaten in the European Union is from ruminant source (EU 2004). Also, in Spain, about 239,500 t of lamb meat is produced yearly occupying the second largest producer of lamb meat (MAPA, 2002). Nonetheless, the pursuit for large-scale animal production to meet the prevailing consumers’ demand could compromise animal health and product quality and have negative impact on the environment (Wanapat et al., 2008; Vasta and Luciano 2011). Thus, enhancing livestock production without jeopardizing environmental sustainability, animal health and product quality is a continued research endeavor.

The need to improve the productivity of livestock enterprise and animal health lend credence to the use of antibiotics in animal nutrition (Guler et al., 2006; Kim et al., 2013). Nonetheless, antibiotics could leave residues in animal tissues, which could induce subsequent emergence of resistant strains of microorganisms (Russell and Houlihan 2003; Kim et al., 2013) capable of endangering the health of livestock and human. This scenario has given the impetus to explore alternatives to antibiotics in animal nutrition (Guler et al., 2006; Kim et al., 2013). Consequently, as replacement for the synthetic growth promoters (antibiotics), natural products (herbs and spice) as natural feed additives come to the attention to enhance physiological or pharmacological functions (Ando et al., 2003).

Herbs represent an effective substitute for antibiotics in animal nutrition and a potent modifier of rumen metabolism capable of suppressing methanogenesis and improving animal’s health, performance and product quality (Yang et al., 2007; Vasta and Luciano 2011; Wanapat et al., 2013). The manipulation of rumen microbial ecosystem represents an effective strategy for promoting animal health, product quality and the environmental sustainability of ruminant production (Wanapat et al., 2013; Adeyemi, 2015). The effects of herbs on ruminants are premised on the chemical nature of the plant secondary metabolites (PSM), the
quantity in the feed, abundance and variety of rumen microflora and ruminant species (McSweeney et al., 2001). The scientific literature is replete with studies that have investigated the influence of dietary supplementation of medicinal herbs on rumen metabolism, production performance and product quality in ruminants (Karami et al., 2010; Vasta and Luciano 2011; Wanapat et al., 2013). Nonetheless, the findings are generally less consistent. Thus, there is need for further research in diverse production systems to allow informed choices and tailored decision in the use of herbs in ruminant nutrition as natural feed additives.

Using Nigella sativa (NS) and Rosmarinus officinalis (RO) as natural feed additives are examples of medicinal herbs in animal nutrition. Nigella sativa and Rosmarinus officinalis have been reported as aromatic herbs and they are very rich polyphenols and flavonoids with high antioxidant properties (Michel et al., 2011; Sasaki et al., 2013; Vatansev et al., 2013). In addition, Studies with NS and RO as an option growth booster in livestock production has been established to enhanced carcass trails growth rate and digestibility (Hassan and Hassan 2009; Jordán et al. 2010; Nieto et al. 2010, 2011; Hassan et al. 2011).

Oxidation which is one of the main reason of meat quality impairment as a result of presence of prominent amount of unsaturated lipids, metal catalysts, heme pigments and a range of oxidizing agents in the muscle tissue. Oxidative impairment that occur in any meat sample manifests in form of poor shelf life, off flavor, drip losses, toxic compounds formation, discoloration and nutrient (Contini et al., 2014; Palmieri and Sblendorio, 2007). Therefore, enhancing the antioxidant properties of meat could assist to improving meat quality. Rosmarinus officinalis and Nigella sativa are a medicinal herbs widely used around the world. Of the natural antioxidants, rosemary and Nigella sativa have been widely accepted as one of the herbs with the high antioxidant activity (Klančnik et al., 2009). The use of these herbs and their by-products as natural antioxidants in feed for ewes could be a simple and interesting opportunity to replace synthetic antioxidants and to improve the quality of lamb meat.

However, feed and animal feeding form one of the basic rock of every livestock. Its enormous role in animal productivity, producer incomes, land use, product quality and safety, health and welfare, water pollution, household security and greenhouse gas emission has been observed (FAO, 2012). In addition, feed accounted for about 70% of the total cost of production regardless of the livestock system either ruminant or non-ruminant and this has placed feed at the fore front in the livestock production sector in order to achieve sustainability (Makkar and Beever, 2013; Buza et al., 2014). A question arose as to whether the addition of small amounts of Nigella sativa seeds or Rosmarinus officinalis leaves to forage or concentrate based diets would result in further improvement of the growth rate of sheep. Therefore, the present study was carried out assess the effects of Nigella sativa seeds or Rosmarinus officinalis leaves on rumen metabolism, growth performance, meat quality, immune response and gene expression in Dorper lambs. It was hypothesized
that *Nigella sativa* seeds, *Rosmarinus officinalis* leaves and both as natural feed additives would improve rumen metabolism, growth performance, carcass traits, meat quality, immune response and gene expression in Dorper lambs.

Thus, the objectives of the study were:

1. To ascertain the suitable level of *Nigella sativa* seeds and *Rosmarinus officinalis* leaves on *in vitro* rumen fermentation and apparent biohydrogenation of fatty acids using rumen liquor from Dorper lambs.
2. To determine the effects of *Nigella sativa* seeds, *Rosmarinus officinalis* leaves and their blend on nutrient intake and digestibility, growth performance, and rumen metabolism, some blood parameters and immune response in Dorper lambs.
3. To examine the effects of *Nigella sativa* seeds, *Rosmarinus officinalis* leaves and their combination on carcass traits, fatty acid composition, oxidative stability, quality attributes and gene expression in different muscles in Dorper lambs.

Presentation of the thesis

This thesis consisted of eight chapters. The first two chapters discussed the framework of the experimental research. Chapter 1 provides the justification, hypotheses and the objectives of the study. Chapter 2 presents the review of literature covering the distribution, economic and nutritional importance of sheep, fats and fatty acids in ruminants, rumen ecosystem, uses of medicinal plants to manipulate rumen metabolism, fatty acid composition and meat quality attributes in ruminants. The morphology and medicinal properties of *Nigella sativa* and *Rosmarinus officinalis* and the role of nutrition on gene expression, immune response and meat quality in ruminants were also reviewed. Chapters 3, 4 and 5 present the experimental works for this study. Chapter 6 describes the major findings and highlights the practical importance. Chapter 7 presents the summary, conclusions and recommendations for future studies.
REFERENCES

Adeyemi, K. D (2015). Rumen metabolism, carcass traits and meat quality in goats

Diabetes, 50, 1134–1142.

Friedewald, W.T., Levy, R.I., and Fredrickson, D.S., (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of

Jordán, M.J., Castillo, J., Bañón, S., Martínez-Conesa, C., and Sotomayor, J.A. (2014). Relevance of the carnosic acid/carnosol ratio for the level of
rosemary diterpene transfer and for improving lamb meat antioxidant status.
Food Chemistry, 151, 212–218.

McAfee, A. J., Mesorley, E. M., Cuskelley, G. J., Moss, B. W., Wallace, J. M. W.,

Puertollano, M. A., Puertollano, E., Alvarez de Cienfuegos, G., and A de Pablo, M.

Valenzuela-Grijalva N.V., Pinelli-Saavedra A., Muhlia-Almazan A., Domínguez-

activity of some crude and purified components of black seeds, *Nigella sativa L.* *Anticancer Research*, 18(3A), 1527–1532.

LIST OF PUBLICATIONS

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION : ______________________

TITLE OF THESIS / PROJECT REPORT :
RUMEN METABOLISM, MEAT QUALITY AND GENE EXPRESSION CHANGES ASSOCIATED WITH Nigella sativa L. SEEDS AND Rosmarinus officinalis L. LEAF SUPPLEMENTATION IN DORPER SHEEP

NAME OF STUDENT: KIFAH ODHAIB JUMAAH

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.
2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.
3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as :
*Please tick (v)

☐ CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).
☐ RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).
☐ OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for :
☐ PATENT Embargo from __________ until __________
(date) (date)

Approved by:

_____________________ ___
(Signature of Student) (Signature of Chairman of Supervisory Committee)

New IC No/ Passport No.: Name:

Date : Date :

[Note : If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]