UNIVERSITI PUTRA MALAYSIA

POTENTIAL OF ADOPTING SMALL SCALE POSTHARVEST PRACTICES TOWARDS REDUCING PLANTAIN SUPPLY CHAIN FOOD LOSSES IN RIVERS STATE, NIGERIA

KWAMI JUSTINA KENOBI MORRIS

FP 2018 25
POTENTIAL OF ADOPTING SMALL SCALE POSTHARVEST PRACTICES TOWARDS REDUCING PLANTAIN SUPPLY CHAIN FOOD LOSSES IN RIVERS STATE, NIGERIA

By

KWAMI JUSTINA KENOBI MORRIS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2017
COPYRIGHT

All material contained within the thesis including without limitation text, logos, icons, photographs and all other artwork is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

POTENTIAL OF ADOPTING SMALL SCALE POSTHARVEST PRACTICES TOWARDS REDUCING PLANTAIN SUPPLY CHAIN FOOD LOSSES IN RIVERS STATE, NIGERIA

By

KWAMI JUSTINA KENOBI MORRIS

December 2017

Chairman : Associate Professor Nitty Hirawaty Kamarulzaman, PhD
Faculty : Agriculture

Postharvest losses (PHLs) is the most significant contributor of food losses in developing countries. High PHLs in food staples like plantain pose a threat to food security in Nigeria; therefore, viable strategies to reduce PHLs in agri-food supply chains is in dire need. Conventional postharvest technologies used in modern agri-food supply chains in developed countries require high capital investments and technological competence; most of which is lacking in Nigeria. Although, sophisticated postharvest technologies may not be within the reach of farmers and traders who operate in traditional supply chains, small-scale postharvest practices (SSPPs) such as shade-cooling, hydro-cooling, use of protective transport materials are simpler alternatives to help maintain produce quality, prolong shelf-life and consequently reduce PHLs.

However, the adoption of these SSPPs is low and there is dearth of information in this regard. This study adopted a quantitative approach to investigate the potential adoption of selected SSPPs by plantain farmers and traders who operate in a traditional supply chain in Rivers State, Nigeria. The study intended to determine the influence of adoption factors on farmers and traders intention to use SSPPs. The data used in the study were obtained via face-to-face interviews using two structured questionnaire where one questionnaire was administered to farmers and the other one administered to the traders. The data were analysed using statistical techniques such as descriptive analyses, chi-square, mean ranking, T-test, Pearson’s correlation, and partial least square structural equation modelling.
In terms of the losses, the findings of the study revealed that a significant amount of plantain commodity is entirely lost from the food supply chain; this is regarded as the quantitative losses. Furthermore, it was observed that more than half of the produce is reportedly sold at reduced prices due to quality deterioration; this form of losses was interpreted as the amount of qualitative losses. A correlation analysis revealed that use of small-scale postharvest practices had a significant negative relationship with the amount of self-reported quantitative and qualitative losses at both farm and market levels.

With regards to adoption, the results of the chi-square analyses indicated that gender, education level, occupation, harvested produce and information sources were significantly associated with farmers adoption whereas experience level and information sources were the significant factors associated with the traders adoption of SSPPs. Based on the mean rankings, the respondents were observed to have low awareness and adoption rates for a majority of the postharvest practices investigated. In addition, the results of t-tests show that adopters demonstrated more positive perceptions of the SSPPs than non-adopters.

Furthermore, an exploratory factor analysis (EFA) revealed six and five factors as representing perceptions towards SSPPs perceptions towards each postharvest practice as relevant to farmers and traders respectively. This implies that when respondents evaluated the usefulness and complexity of a particular postharvest practice, they evaluated the practice as one entity rather than considering the perceived usefulness and ease of use of the postharvest practice as separate dimensions. Factor analysis of the items that measured behaviour towards adoption of SSPPs extracted three factors named as attitudes, motivation and intention. The EFA factor solutions were further confirmed during confirmatory factor analysis during which the measurement models were rigorously assessed to ensure reliability and validity of constructs and scales.

Assessment of the variables that influence farmers and traders potential to adopt SSPPs with intention to use postharvest practices as the dependent variable, the results of the structural equation modelling found that awareness level, perceptions, attitudes and motivation significantly predicted intention to use SSPPs with 55.4% and 33.4% of the variances accounted for in the data that were obtained from farmers and traders respectively. In addition, attitudes significantly mediated the relationships between plantain farmers and traders intention and their perceptions and motivation towards using SSPPs. A rigorous assessment of the structural models showed that the hypothesized model was supported by empirical data. The model had acceptable predictive relevance and ability to account for moderate to substantial variance in both data sets.
In conclusion, postharvest interventions that aim to be successful must recognize the critical role of understanding their target audience. Technology push must be balanced with an understanding of the potential adopters’ preferences in order to attain successful and strategic solutions. In this regard it is recommended that future interventions should ascertain the perceptions held by the potential adopters prior to dissemination of solutions. The strong positive effect of motivation on behavioral intention suggests a necessity to identify and utilize peculiar factors in motivating adoption of postharvest solutions.
Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

POTENSI PELAKSANAAN AMALAN LEPAS TUAI BERSKALA KECIL KE ARAH MENGURANGKAN KERUGIAN RANTAIAN BEKALAN MAKANAN PISANG TANDUK DI NEGERI RIVERS, NIGERIA

Oleh

KWAMI JUSTINA KENOBI MORRIS

Disember 2017

Pengerusi : Profesor Madya Nitty Hirawaty Kamarulzaman, PhD
Fakulti : Pertanian

Kerugian lepas tuai (KLT) adalah penyumbang terbesar kerugian makanan di negara-negara membangun. Kerugian lepas tuai (KLT) yang tinggi dalam makanan ruji seperti pisang tanduk menimbulkan ancaman kepada keselamatan makanan di Nigeria; oleh itu, strategi yang berdaya maju untuk mengurangkan KLT dalam rantaian bekalan makanan pertanian sangat diperlukan. Teknologi lepas tuai konvensional yang digunakan dalam rantaian bekalan makanan pertanian moden di negara maju memerlukan pelaburan modal yang tinggi dan kecekapan teknologi; kebanyakannya masih kurang di Nigeria. Walaupun, teknologi lepas tuai yang canggih mungkin tidak dapat dicapai oleh para petani dan peniaga yang beroperasi dalam rantaian bekalan tradisional, amalan lepas tuai berskala-kecil (ALTSK) seperti penyejukan teduh, penyejukan hidro, penggunaan bahan-bahan pengangkutan perlindungan adalah alternatif yang lebih mudah untuk membantu mengekalkan kualiti penghasilan, memanjangkan jangka hayat dan seterusnya mengurangkan KLT.

Walau bagaimanapun, penggunaan ALTSK adalah rendah dan terdapat kekurangan maklumat dalam hal ini. Kajian ini menggunakan pendekatan kuantitatif untuk menyelidik potensi pelaksanaan ALTSK yang dipilih oleh petani yang mengusahakan tanaman pisang tanduk dan peniaga ladang yang beroperasi dalam rantaian bekalan tradisional di Rivers State, Nigeria. Kajian ini bertujuan untuk mengkaji pengaruh faktor-faktor pelaksanaan terhadap niat petani dan peniaga untuk menggunakan ALTSK. Data yang digunakan dalam kajian ini diperolehi melalui wawancara bersemuka dengan menggunakan dua soal selidik berstruktur di mana satu soal selidik dikhaskan untuk petani dan yang satu lagi dikhaskan untuk peniaga. Data dianalisis dengan menggunakan teknik statistik seperti analisis deskriptif, Khi
kuasa dua, kedudukan min, ujian T, korelasi Pearson, analisis regresi dan pemodelan persamaan struktur berdasarkan varians.

Dari segi kerugian, penemuan kajian mendedahkan bahawa sejumlah komoditi pisang tanduk yang besar hilang sepenuhnya dari rantai bekalan makanan, ini dianggap sebagai kerugian kuantitatif. Tambahan pula, diperhatikan bahawa lebih separuh daripada hasil dilaporkan dijual pada harga yang dikurangkan disebabkan kemerosotan kualiti; ditafsirkan sebagai jumlah kerugian kualitatif. Analisis korelasi mendedahkan bahawa penggunaan amalan pasca lepas tuai berskala kecil mempunyai hubungan negatif yang signifikan dengan jumlah kerugian kuantitatif dan kualitatif di kedua-dua peringkat ladang dan pasaran.

Berkarenakan dengan pelaksanaan, keputusan analisis Khi kuasa dua menunjukkan bahawa jantina, tahap pendidikan, pekerjaan, hasil tuai dan sumber maklumat sangat berkait rapat dengan pelaksanaan petani manakala tahap pengalaman dan sumber maklumat adalah faktor penting yang berkait dengan peniaga pelaksanaan ALTSK. Berdasarkan kedudukan min, responden diperhatikan mempunyai kesedaran yang rendah dan kadar pelaksanaan untuk sebahagian besar amalan pasca lepas tuai. Di samping itu, keputusan ujian T menunjukkan pengamal mempunyai lebih banyak persepsi positif terhadap ALTSK berbanding bukan pengamal.

Tambahan pula, analisis faktor penerokaan (AFP) mendedahkan enam dan lima faktor sebagai mewakili persepsi terhadap ALTSK dan juga persepsi terhadap setiap amalan lepas tuai yang berkaitan dengan petani dan peniaga. Ini menunjukkan bahawa apabila responden menilai kegunaan dan kerumitan amalan lepas tuai tertentu, mereka menilai amalan sebagai satu entiti daripada mempertimbangkan kegunaan yang dirasakan dan memudahkan penggunaan amalan lepas tuai sebagai dimensi yang berasingan. Analisis faktor terhadap item yang mengukur tingkah laku penggunaan ALTSK mengekstrak tiga faktor iaitu sikap, motivasi dan niat. Penyelesaian faktor AFP disahkan lagi semasa analisis faktor pengesahan yang mana model pengukuran dinilai dengan teliti untuk memastikan kebolehpercayaan dan kesahan konstruk dan skala.

Penilaian pemboleh ubah yang mempegaruhi potensi pelaksanaan ALTSK oleh petani dan peniaga dengan niat penggunaan amalan lepas tuai sebagai pemboleh ubah bergantung, keputusan pemodelan persamaan struktur mendapati bahawa tahap kesedaran, persepsi, sikap dan motivasi dengan jelas meramalkan niat untuk menggunakan ALTSK dengan 55.4% dan 33.4% varians diambilkira dalam data yang diperolehi daripada petani dan peniaga secara bersusun-ansur. Di samping itu, sikap secara signifikan menjadi hubungan pengantara antara petani dan niat peniaga dan persepsi dan motivasi mereka terhadap penggunaan ALTSK. Penilaian teliti terhadap model struktur menunjukkan bahawa model hipotesis disokong oleh data empirikal. Model ini mempunyai perkaitan dan keupayaan ramalan yang boleh diterima untuk mengira varians yang sederhana dan besar dalam kedua-dua set data.
Sebagai kesimpulan, campurtangan lepas tuai yang bertujuan untuk berjaya perlu mengenal pasti peranan kritikal untuk memahami audien sasaran mereka. Prkembangan teknologi mestilah seimbang dengan kefahaman tentang keupayaan penerima yang berpotensi untuk mencapai penyelesaian yang berjaya dan strategik. Dalam hal ini disarankan agar campur tangan masa depan perlu memastikan persepsi penerima sebelum penyebaran penyelesaian. Kesan motivasi positif terhadap niat tingkah laku mencadangkan keperluan untuk mengenal pasti dan menggunakan faktor-faktor khusus dalam memotivasi penerapan penyelesaian lepas tuai.
ACKNOWLEDGEMENTS

I thank the Almighty God for giving me the strength to embark and complete this PhD journey.

I am indebted to the Organization for Women in Science for the Developing World (OWSD) for sponsoring this research.

My heartfelt appreciation goes to my supervisor Associate Professor Dr. Nitty Hirawaty Kamarulzaman for her guidance, counsel and immeasurable support throughout this challenging PhD journey.

I would also like to sincerely thank my supervisory committee members: Professor Dr. Zainal Abidin Mohamed, Associate Professor Dr. Nolila Mohd Nawi and Associate Professor Dr. Norsida Man for their helpful comments and suggestions during this process.

My appreciation goes to my parents, siblings and in-laws for their prayers that kept me going when the challenges were tough.

My humble thanks go to my friends and colleagues such as Dr. Gowry Vijayan, Dr. Selvakkumar Vaiappuri, Lai Lai, Stephanie Okogba and others who in one way or the other made this journey exciting.

I am mostly indebted to my dearest husband Dr. Kenobi Isima Morris for his love, support, encouragements during the high and low times in this journey. You are indeed the best companion anyone could wish for.
I certify that a Thesis Examination Committee has met on 18 December 2017 to conduct the final examination of Kwami Justina Kenobi Morris on her thesis entitled "Potential of Adopting Small Scale Postharvest Practices Towards Reducing Plantain Supply Chain Food Losses in Rivers State, Nigeria" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Amin Mahir bin Abdullah, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Shaufique Fahmi bin Ahmad Sidique, PhD
Associate Professor
Faculty of Economics and Management
Universiti Putra Malaysia
(Internal Examiner)

Ahmad bin Shuib, PhD
Professor
Institute of Agricultural & Food Policy Studies
Universiti Putra Malaysia
(Internal Examiner)

Masyhuri, PhD
Professor
Gadjah Mada University
Indonesia
(External Examiner)

![Signature]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 29 January 2018
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Nitty Hirawaty Kamarulzaman, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Zainal Abidin Mohamed, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Norsida Man, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Nolila Mohd Nawi, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by Graduate Student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citation have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and the copyrights of this thesis fully belong to Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from the office of the Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules, 2012;
- there is no plagiarism or data falsification/fabrication in the thesis and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012 – 2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ____________________________ Date: ___________________

Name and Matric No: Kwami Justina Kenobi Morris, GS39860

15th March, 2018
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012 – 2013) were adhered to.

Signature: ______________________________
Name of Chairman of Supervisory Committee: Associate Professor Dr. Nitty Hirawaty Kamarulzaman

Signature: ______________________________
Name of Member of Supervisory Committee: Professor Dr. Zainal Abidin Mohamed

Signature: ______________________________
Name of Member of Supervisory Committee: Associate Professor Dr. Norsida Man

Signature: ______________________________
Name of Member of Supervisory Committee: Associate Professor Dr. Nolila Mohd Nawi
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER 1

INTRODUCTION

1.1 The Nigerian Agriculture Sector 1

1.2 Plantain as a Food Security Crop 9

1.2.1 The Plantain Postharvest Supply Chain 14

1.3 Modern versus Traditional Agricultural Food Supply Chains 17

1.3.1 Small-Scale Postharvest Practices 20

1.3.2 Assessment of Postharvest Losses in Traditional Supply Chains 21

1.3.3 Qualitative and Quantitative Postharvest Losses 22

1.4 Problem Statement 24

1.5 Research Questions 26

1.6 Objectives of the Study 27

1.7 Justification of the Study 27

1.8 Scope of the Study 29

1.9 Organization of the Thesis 30

CHAPTER 2

LITERATURE REVIEW

2.1 Food Losses 31

2.1.1 Food Waste 34

2.1.2 Postharvest Losses 37

2.1.3 Postharvest Handling in Traditional Food Supply Chains 39

2.1.4 Postharvest Losses Estimation 44

2.2 Models of Innovation Adoption and Behavior Change 46

2.2.1 Technology Acceptance Model 46

2.2.2 Diffusion of Innovation Theory 48

2.2.3 Adoption of Agriculture Innovations 51

2.2.3.1 Adoption of Postharvest Innovations 52

2.3 Summary 53

CHAPTER 3

METHODOLOGY

3.1 Research Paradigms 55

3.1.1 Postpositivism Paradigm 55
3.1.2 Constructivism, Pragmatism and Transformative Paradigms 56
3.2 Conceptual Framework 56
 3.2.1 Research Hypotheses 62
 3.2.1.1 Research Design 64
3.3 Sources of Data 65
 3.3.1 Secondary Data 65
 3.3.2 Primary Data Collection 66
 3.3.2.1 Sample Size 67
 3.3.2.2 Data Collection 69
 3.3.3 Development of Data Collection Instrument and Research Variables 70
 3.3.3.1 Awareness Level 70
 3.3.3.2 Adoption of Postharvest Practices 70
 3.3.3.3 Perceptions 71
 3.3.3.4 Attitudes 72
 3.3.3.5 Motivation 72
 3.3.3.6 Intention 72
 3.3.3.7 Postharvest Loss Incidence 73
 3.3.4 Questionnaire Design 74
 3.3.4.1 Section A: General Information on Plantain Business of the Respondent 74
 3.3.4.2 Section B: Postharvest Loss Incidence 74
 3.3.4.3 Section C: Awareness towards Small-scale Postharvest Practices 74
 3.3.4.4 Section D: Perceptions towards Small-Scale Postharvest Practices 74
 3.3.4.5 Section E: Attitudes, Intention and Motivation 75
 3.3.4.6 Section F: Socio-Demographic Profiles 75
 3.3.5 Selection and Description of Small-Scale Postharvest Practices 75
 3.3.6 Psychometric Properties of Measurement Scales 76
3.4 Data Preparation 77
 3.4.1 Data Screening 77
 3.4.1.1 Descriptive Analysis 78
 3.4.1.2 Reliability Analysis 78
 3.4.1.3 Pearson’s Correlation 79
 3.4.1.4 Independent Sample T-Test 80
 3.4.1.5 Chi-square Test for Independence 80
 3.4.1.6 Exploratory Factor Analysis 80
 3.4.1.7 Confirmatory Factor Analysis 82
 3.4.1.8 Structural Equation Modelling 83
 3.4.1.9 Bootstrapping 85
 3.4.1.10 Mediation Analysis 85
3.5 Pilot Study 86
 3.5.1 Indicator Factors of Plantain Postharvest Losses 87
3.6 Summary 88
4 RESULTS AND DISCUSSION - FARMERS 90
4.1 Descriptive Analysis 90
 4.1.1 Socio-Demographic Profiles of Respondents 90
4.2 Descriptive Analysis of Items Used to Measure Farmers Adoption Behavior 94
4.3 Assessment of Postharvest Losses 98
 4.3.1 Indicators of Plantain Postharvest Losses 98
 4.3.2 Postharvest Loss Incidence at Farm and Market Levels 99
4.4 Small-Scale Postharvest Practices 101
 4.4.1 Chi-square Analysis 103
 4.4.2 Awareness Level and Adoption Rate of Small-Scale Postharvest Practices 106
4.5 Factor Analysis 111
 4.5.1 Exploratory Factor Analysis for First Order Items Measurement Model 111
 4.5.1.1 Principal Axis Factoring and Promax Rotation 112
 4.5.2 Exploratory Factor Analysis for Second Order Items Measurement Model 118
4.6 Reliability Analysis 121
4.7 Confirmatory Factor Analysis 121
 4.7.1 Assessment of First Order Measurement Model 122
 4.7.1.1 Content Validity 122
 4.7.1.2 Indicator Reliability 122
 4.7.1.3 Composite Reliability 122
 4.7.1.4 Convergent Validity 123
 4.7.1.5 Discriminant Validity 124
 4.7.2 Assessment of Second Order Measurement Model 126
 4.7.2.1 Indicator Reliability 126
 4.7.2.2 Composite Reliability 126
 4.7.2.3 Convergent Validity 127
 4.7.2.4 Discriminant Validity 127
 4.7.2.5 Assessment of High Order Formative Construct 128
4.8 Structural Model 129
 4.8.1 Path Coefficients 129
 4.8.2 Coefficient of Determination 131
 4.8.3 Effect Size 132
 4.8.4 Predictive Relevance 133
 4.8.5 Direct and Indirect Effects 133
 4.8.6 Mediation Analysis 134
4.9 Summary 139
5 RESULTS AND DISCUSSION - TRADERS 141
5.1 Descriptive Analysis 141
 5.1.1 Socio-Demographic Profiles of Respondents 141
5.2 Descriptive Analysis of Items Used to Measure Farmers Adoption Behavior 144
5.3 Assessment of Postharvest Losses 149
5.4 Small-Scale Postharvest Practices 150
5.4.1 Chi-Square Analysis 151
5.4.2 Awareness Level and Adoption Rate 152
 5.4.2.1 Mean Ranking Analysis 154
 5.4.2.2 Adoption Rates 154
5.5 Confirmatory Factor Analyses 156
 5.5.1 Assessment of First Order Measurement Model 157
 5.5.1.1 Reliability Analyses 157
 5.5.1.2 Assessment of Validity 158
 5.5.2 Assessment of Second Order Measurement Model 160
 5.5.2.1 Reliability Analyses 160
 5.5.2.2 Assessment of Validity 161
 5.5.2.3 Assessment of Formative High Order Construct 162
5.6 Structural Model 162
 5.6.1 Path Coefficients 164
 5.6.2 Coefficient of Determination 165
 5.6.3 Effect Size 166
 5.6.4 Predictive Relevance 166
 5.6.5 Direct and Indirect Effects 166
 5.6.6 Mediation Analysis 168
5.7 Summary 171

6 SUMMARY AND CONCLUSION 174
 6.1 Summary of the Findings 174
 6.2 Recommendations 177
 6.3 Research Novelty 179
 6.4 Limitations of the Study 179
 6.5 Suggestions for Future Research 180
 6.6 Conclusion 181

REFERENCES 183
APPENDICES 208
BIODATA OF STUDENT 226
LIST OF PUBLICATIONS 227
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Agricultural Policies and Initiatives in Nigeria</td>
<td>3</td>
</tr>
<tr>
<td>3.1</td>
<td>Interpreting Correlation Coefficients</td>
<td>80</td>
</tr>
<tr>
<td>3.2</td>
<td>Respondents Profiles for Pilot Test</td>
<td>87</td>
</tr>
<tr>
<td>4.1</td>
<td>Socio-Demographic Profiles of Plantain Farmers</td>
<td>91</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean Scores of Plantain Farmers Adoption Behavior towards Small-Scale Postharvest Practices</td>
<td>95</td>
</tr>
<tr>
<td>4.3</td>
<td>Record Keeping of Losses</td>
<td>98</td>
</tr>
<tr>
<td>4.4</td>
<td>Average Amount of Loss Indicators Reported by Farmers</td>
<td>98</td>
</tr>
<tr>
<td>4.5</td>
<td>Mean Differences of Quantitative Losses (%) at Farm and Market Levels</td>
<td>100</td>
</tr>
<tr>
<td>4.6</td>
<td>Mean Differences of Qualitative Losses (%) at Farm and Market Levels</td>
<td>101</td>
</tr>
<tr>
<td>4.7</td>
<td>Correlations between Usage of Postharvest Practices and Losses</td>
<td>102</td>
</tr>
<tr>
<td>4.8</td>
<td>Associations between Socio-Demographic Profiles and Adoption</td>
<td>103</td>
</tr>
<tr>
<td>4.9</td>
<td>Awareness Level towards Postharvest Practices</td>
<td>107</td>
</tr>
<tr>
<td>4.10</td>
<td>Mean Scores of Awareness Level for the Postharvest Practices</td>
<td>109</td>
</tr>
<tr>
<td>4.11</td>
<td>Adoption Rates of Postharvest Practices</td>
<td>110</td>
</tr>
<tr>
<td>4.12</td>
<td>Comparisons of Adopters and Non-Adopters Perceptions</td>
<td>111</td>
</tr>
<tr>
<td>4.13</td>
<td>KMO and Bartlett's Test</td>
<td>112</td>
</tr>
<tr>
<td>4.14</td>
<td>Communalities and Factor Loadings for First Order Measurement Model</td>
<td>115</td>
</tr>
<tr>
<td>4.15</td>
<td>KMO and Bartlett’s Test</td>
<td>118</td>
</tr>
<tr>
<td>4.16</td>
<td>Communalities and Factor loadings for Second Order Measurement Model</td>
<td>120</td>
</tr>
<tr>
<td>4.17</td>
<td>Reliability and Convergent Validity</td>
<td>124</td>
</tr>
</tbody>
</table>
4.18 Fornell-Larcker Criterion 125
4.19 Heterotrait-Monotrait Ratio (HTMT) 126
4.20 Reliability and Convergent Validity 127
4.21 Fornell-Lacker Criterion 127
4.22 Heterotrait-Monotrait Ratio (HTMT) 128
4.23 Validity of Formative HOC 129
4.24 Structural Model Total Effects 133
4.25 Mediation Results 138
4.26 Summary of Hypotheses for Farmers 140
5.1 Demographic Profiles of Plantain Traders 142
5.2 Mean Scores of Plantain Traders Adoption Behavior towards Small-Scale Postharvest Practices 146
5.3 Record Keeping of Losses 149
5.4 Average Losses Estimated by Traders 149
5.5 Correlations between Postharvest Practices and Losses 150
5.6 Associations between Respondents Profile and Adoption 151
5.7 Awareness Level of Plantain Traders towards Postharvest Practices 153
5.8 Mean Scores of Awareness Level of Postharvest Practices 154
5.9 Adoption of Postharvest Practices 155
5.10 Comparisons of Adopters and Non-Adopters Perceptions 156
5.11 Reliability and Convergent Validity 158
5.12 Fornell-Lacker Criterion 159
5.13 Heterotrait-Monotrait Ratio (HTMT) 159
5.14 Reliability and Convergent Validity 160
5.15 Fornell-Lacker Criterion 161
5.16 Heterotrait-Monotrait Ratio (HTMT) 161
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.17</td>
<td>Validity of Formative High Order Construct</td>
<td>162</td>
</tr>
<tr>
<td>5.18</td>
<td>Structural Model Total Effects</td>
<td>165</td>
</tr>
<tr>
<td>5.20</td>
<td>Summary of Hypotheses for Traders</td>
<td>173</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>9</td>
</tr>
<tr>
<td>1.2</td>
<td>11</td>
</tr>
<tr>
<td>1.3</td>
<td>12</td>
</tr>
<tr>
<td>1.4</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>13</td>
</tr>
<tr>
<td>1.6</td>
<td>14</td>
</tr>
<tr>
<td>1.7</td>
<td>15</td>
</tr>
<tr>
<td>1.8</td>
<td>18</td>
</tr>
<tr>
<td>1.9</td>
<td>19</td>
</tr>
<tr>
<td>2.1</td>
<td>33</td>
</tr>
<tr>
<td>2.2</td>
<td>48</td>
</tr>
<tr>
<td>2.3</td>
<td>50</td>
</tr>
<tr>
<td>3.1</td>
<td>62</td>
</tr>
<tr>
<td>3.2</td>
<td>67</td>
</tr>
<tr>
<td>3.3</td>
<td>85</td>
</tr>
<tr>
<td>4.1</td>
<td>132</td>
</tr>
<tr>
<td>4.2</td>
<td>134</td>
</tr>
<tr>
<td>4.3</td>
<td>135</td>
</tr>
<tr>
<td>4.4</td>
<td>136</td>
</tr>
<tr>
<td>4.5</td>
<td>137</td>
</tr>
<tr>
<td>5.1</td>
<td>163</td>
</tr>
<tr>
<td>5.2</td>
<td>167</td>
</tr>
<tr>
<td>5.3</td>
<td>168</td>
</tr>
</tbody>
</table>
5.4 Figure: Systematic Diagram - Model 2
5.5 Systematic Diagram - Model 3
5.6 Mediation Results
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>ADP</td>
<td>Agriculture Development Project</td>
</tr>
<tr>
<td>RBDA</td>
<td>River Basin Development Authority</td>
</tr>
<tr>
<td>HYV</td>
<td>High Yielding Varieties</td>
</tr>
<tr>
<td>DFRRRI</td>
<td>Directorate of Food Roads and Rural Infrastructure</td>
</tr>
<tr>
<td>OFN</td>
<td>Operation Feed the Nation</td>
</tr>
<tr>
<td>SAP</td>
<td>Structural Adjustment Programme</td>
</tr>
<tr>
<td>NDE</td>
<td>The National Directorate of Employment</td>
</tr>
<tr>
<td>NFDP</td>
<td>National Fadama Development Project</td>
</tr>
<tr>
<td>NPFS</td>
<td>National Program on Food Security</td>
</tr>
<tr>
<td>RTEP</td>
<td>Root and Tuber Expansion Programme</td>
</tr>
<tr>
<td>PIA</td>
<td>Presidential Initiatives in Agriculture</td>
</tr>
<tr>
<td>ATA</td>
<td>Agriculture Transformation Agenda</td>
</tr>
<tr>
<td>FAOSTAT</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>LGA</td>
<td>Local Government Areas</td>
</tr>
<tr>
<td>APHLIS</td>
<td>African Postharvest Losses Information System</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>NBS</td>
<td>National Bureau of statistics</td>
</tr>
<tr>
<td>IITA</td>
<td>International Institute of Tropical Agriculture</td>
</tr>
<tr>
<td>AFSCs</td>
<td>Agri-food Supply Chains</td>
</tr>
<tr>
<td>GAP</td>
<td>Good Agriculture Practices</td>
</tr>
<tr>
<td>DOI</td>
<td>Diffusion of Innovation</td>
</tr>
<tr>
<td>TAM</td>
<td>Technology Acceptance Model</td>
</tr>
<tr>
<td>PU</td>
<td>Perceived Usefulness</td>
</tr>
<tr>
<td>PEOU</td>
<td>Perceived Ease of Use</td>
</tr>
<tr>
<td>FMARD</td>
<td>Federal Ministry of Agriculture and Rural Development</td>
</tr>
<tr>
<td>RSMA</td>
<td>Rivers State Ministry of Agriculture</td>
</tr>
<tr>
<td>IFPRI</td>
<td>International Food Policy Research Institute</td>
</tr>
<tr>
<td>RSADP</td>
<td>Rivers State Agriculture Development Programme</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gas</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>FLs</td>
<td>Food Losses</td>
</tr>
<tr>
<td>FW</td>
<td>Food Waste</td>
</tr>
<tr>
<td>PHLs</td>
<td>Postharvest Losses</td>
</tr>
<tr>
<td>TPB</td>
<td>Theory of Planned Behavior</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>FSC</td>
<td>Food Supply Chain</td>
</tr>
<tr>
<td>CSA</td>
<td>Commodity System Analysis</td>
</tr>
<tr>
<td>SN</td>
<td>Subjective Norm</td>
</tr>
<tr>
<td>ACV</td>
<td>Attribute Consequences Values</td>
</tr>
<tr>
<td>ZECC</td>
<td>Zero Energy Cooling Chamber</td>
</tr>
<tr>
<td>MCAR</td>
<td>Missing Completely at Random</td>
</tr>
<tr>
<td>CR</td>
<td>Composite Reliability</td>
</tr>
<tr>
<td>EFA</td>
<td>Exploratory Factor Analysis</td>
</tr>
<tr>
<td>KMO</td>
<td>Kaiser-Meyer-Oklin</td>
</tr>
<tr>
<td>CFA</td>
<td>Confirmatory Factor Analysis</td>
</tr>
<tr>
<td>HTMT</td>
<td>Heterotrait-monotrait</td>
</tr>
<tr>
<td>SEM</td>
<td>Structural Equation Modeling</td>
</tr>
<tr>
<td>PLS</td>
<td>Partial Least Squares</td>
</tr>
<tr>
<td>CB-SEM</td>
<td>Covariance Based Structural Equation Modeling</td>
</tr>
<tr>
<td>PLS-SEM</td>
<td>Partial least square-structural equation modeling</td>
</tr>
<tr>
<td>HOC</td>
<td>High order construct</td>
</tr>
<tr>
<td>AVE</td>
<td>Average Variance Extracted</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SSPPs</td>
<td>Small-Scale Postharvest Practices</td>
</tr>
<tr>
<td>OLS</td>
<td>Ordinary Least Squares</td>
</tr>
<tr>
<td>VIF</td>
<td>Variance Inflation Factor</td>
</tr>
<tr>
<td>GHS</td>
<td>General Household Survey</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

This chapter gives a brief description of the state of Nigerian agriculture sector. The issues and challenges that have embattled the sector are discussed with reference to the food security. Specifically, the chapter focuses on the opportunities for improvement in the plantain supply chain. The chapter also consists of the problem statement, the research questions, the study’s objectives and the organization of the thesis.

1.1 The Nigerian Agriculture Sector

The agriculture sector is a significant component of the Nigerian economy. It is a source of livelihood for most Nigerians and the largest employer of labor employing about 70% of the labor force. The sector contributes about 30% of the national GDP (Olayemi et al., 2012; Odetola and Etumnu, 2013). Despite prevalence of bottlenecks, the Nigerian agriculture sector has remained a resilient sector in the country’s economy. According to the National Bureau of Statistics, the sector recorded 4.47% and 4.7% growth in the third and first quarters of 2014 and 2015 respectively (NBS, 2016). As a large sector, growth of the Nigerian agricultural sector is dependent on the contribution of key subsectors such as crop production, livestock, fishery and forestry, that make up the entire sector. The major sub-sectors in terms of contributions to economic growth are the crop production followed by livestock.

Generally, the Nigerian agriculture sector mostly comprise of smallholder farmers who contribute about 90% of the total crop production. Thus, smallholders form the backbone of the Nigerian agriculture sector (IFPRI, 2012; Odetola and Etumnu, 2013). Smallholders mainly rely on traditional methods for most of their activities. Reliance on traditional agricultural techniques has adversely affected the developmental potentials of the sector. According to FMARD (FMARD, 2013), the country has a comparative advantage in terms of labor availability, arable land and climatic conditions suitable for production of a variety of agricultural products. Besides, the country’s population provides a readily available domestic market for agricultural products which can as well as be channeled to international markets to increase foreign earnings.

Nigeria as a country has hoped to improve the livelihoods of the citizens by strengthening its agriculture sector towards in order to end rural poverty and improve food security as well as increase foreign exchange from agriculture. To this effect, several agricultural policies and initiatives had been formulated and targeted at revamping small-holder production systems in the various sub-sectors of agriculture.
Some of the past and surviving agricultural policies and initiatives established after the colonial administration are briefly described in Table 1.1
<table>
<thead>
<tr>
<th>Policy / Initiative</th>
<th>Description</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>First National Development Plan (1962 to 1968)</td>
<td>Aim to increase production of export crops and boost export earnings by effective distribution of seeds and integration of modern practices. Successful but did not focus of food crops.</td>
<td>(Asoegwu and Asoegwu, 2007)</td>
</tr>
<tr>
<td>Agriculture Development Project (ADP) (1975)</td>
<td>The initiative was to accelerate technology transfer to improve welfare of small-holder farmers and attain food security. Initial coverage in a few localities was successful. Failed due to high emphasis on sophisticated technologies.</td>
<td>(Iwuchukwu and Igbokwe, 2012; Omonijo et al., 2014)</td>
</tr>
<tr>
<td>Third National Development Plan (1975 to 1980)</td>
<td>Seek to address the decline in food supplies by strengthening food security in the country. Poor execution and neglect of the sector.</td>
<td>(Asoegwu and Asoegwu, 2007)</td>
</tr>
<tr>
<td>Operation Feed the Nation (1976)</td>
<td>The main goal of OFN was to address the food needs of the growing population by raising awareness on food sufficiency and re-engaging youths in agriculture. Unsuccessful as distribution of inputs were prioritized to public establishments over the real farmers who are mostly small-holders.</td>
<td>(Asoegwu and Asoegwu, 2007; Agber, Iortima and Imbur, 2013)</td>
</tr>
<tr>
<td>River Basin Development Authorities (RBDAs) (1976)</td>
<td>Targeted at harnessing the economic potentials of existing water bodies in the country through activities such as: fishery, irrigation and others. Unsuccessful due to political interference.</td>
<td>(Agber, Iortima and Imbur, 2013)</td>
</tr>
<tr>
<td>The Green Revolution Program (1980)</td>
<td>Aimed to increase food security of basic staples through mechanization and use of high yielding varieties (HYVs), credit facilities and marketing. Delays in project execution, inadequate monitoring and evaluation.</td>
<td>(Asoegwu and Asoegwu, 2007; Agber, Iortima and Imbur, 2013)</td>
</tr>
<tr>
<td>Fourth National Development Plan (1981 to 1985)</td>
<td>Its goal was to strengthen the RBDAs and ADPs to produce more food for the country.</td>
<td>(Asoegwu and Asoegwu, 2007)</td>
</tr>
<tr>
<td>Directorate of Food Roads and Rural Infrastructure (DFRRI) (1986)</td>
<td>The aim of DFRRI was to enhance sustainable rural development by improving the rural quality of life through provision of basic infrastructures. The initiative has been criticized for lacking focus and accountability.</td>
<td>(Iwuchukwu and Igbokwe, 2012)</td>
</tr>
<tr>
<td>Programme</td>
<td>Description</td>
<td>Reference(s)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Structural Adjustment Programme (SAP) (1986)</td>
<td>The SAP was to drastically reduce food importation in order to encourage local production. The agenda has been criticized for its weak implementation.</td>
<td>(Asoegwu and Asoegwu, 2007)</td>
</tr>
<tr>
<td>The Directorate of Employment (NDE) (1988)</td>
<td>The NDE targeted reduction of youth unemployment by giving trainings and grants to beneficiaries venturing into agriculture.</td>
<td>(Asoegwu and Asoegwu, 2007)</td>
</tr>
<tr>
<td>National Fadama Development Project (NFDP) (1992)</td>
<td>NFDP was created to encourage and improve production in small-scale irrigation farming systems in the low land Savannas. A bottom-up approach with user participation in all stages of the project led to huge success of the project.</td>
<td>(Iwuchukwu and Igbokwe, 2012)</td>
</tr>
<tr>
<td>National Program on Food Security (NPFS) (2002)</td>
<td>The focus of NPFS was to alleviate rural poverty and strengthen food security by promoting simple farm technologies and improvement in extension services. The initiative was not successful due to lack of interest by farmers as the innovations were perceived to be complex.</td>
<td>(Iwuchukwu and Igbokwe, 2012; Dennis et al., 2014)</td>
</tr>
<tr>
<td>Root and Tuber Expansion Programme (RTEP) (2003)</td>
<td>RTEP aimed to boost food production by improving farmers access to social services and processing for cheaper food staples.</td>
<td>(Iwuchukwu and Igbokwe, 2012)</td>
</tr>
<tr>
<td>Presidential Initiatives in Agriculture (PIA) (2004)</td>
<td>The PIA prioritized large scale production of staple crops such as rice, cassava and vegetables. Lack of focus and continuity by subsequent administrations.</td>
<td>(Asoegwu and Asoegwu, 2007)</td>
</tr>
<tr>
<td>National Fadama Development Project (NFDP) II (2005)</td>
<td>NFDP II targeted to improve the livelihoods and productivity of resource poor farmers through promotion of low investment in irrigation technologies, storage, processing and marketing facilities. Bottom-up approach led to strong achievement with about 20% increased income in 50% of participants in some areas.</td>
<td>(Ibeawuchi and Nwachukwu, 2010)</td>
</tr>
<tr>
<td>National Fadama Development Project (NFDP) III (2008 to 2013)</td>
<td>NFDP III project focused on improving the income of Fadama users through provision of financial support that enable transfer of technical resources needed to expand their productivity. Unskilled application of technical resources led to undesirable effects.</td>
<td>(Bature et al., 2013)</td>
</tr>
<tr>
<td>Agriculture Transformation Agenda (ATA) (2010)</td>
<td>The aim of ATA was to reposition agriculture initiatives as agribusiness and encourage private investments using a holistic approach. Recorded success and continual improvement of the sector including postharvest management.</td>
<td>(FMARD, 2013)</td>
</tr>
</tbody>
</table>
A majority of the initiatives failed to attain the purpose for which they were set up; however, a few had recorded some worthwhile successes. Among the successful agriculture initiatives are those formulated in collaboration with The World Bank. One of such initiative is the Agriculture Development Project, also known as the Agriculture Development Programme (ADP). The Federal Government of Nigeria and the World Bank initiated the ADP to facilitate transfer of agricultural related technologies to small-holder farmers using a training and visit style in order to increase food production as well as farmers income and welfare (Omonijo et al., 2014). Following the success of the first enclaves of the project in the Northern part of Nigeria, the ADP currently operate in all 36 states in Nigeria where each state consist of several zones that target specific localities known as Local Government Areas (LGAs). This vast coverage enabled some successes however, the ADP has been criticized for using the technology push approach in dissemination of agricultural technologies (Agber, Iortima and Imbur, 2013). The technology push approach fails to take into consideration the user perspectives rather, the so called expert opinions is what forms the decision of what technologies are to be diffused (Rogers, 1983). In the case of the ADP strong emphasis on modern or sophisticated technologies that do not fit the local context was noted as the major drawback (Iwuchukwu and Igbokwe, 2012). Exclusion of users or potential users perspectives is a key reason for the failure of most promising technologies (Douthwaite, Keatinge and Park, 2001).

Another important agricultural initiative that was jointly established with the World Bank is the National Fadama Development Project (NDFP) commonly called “Fadama”. Fadama is a term in the local dialect used to refer to seasonally flooded low lands in the guinea Savanah vegetation. Fadama lands are cultivated during the dry season by means of local irrigation. Fadama farming systems form an important component of food security as a substantial part of the vegetables consumed in the country are cultivated on these lands (Ibrahim and Omotesho, 2009). Thus, the first NDFP focused on encouraging adoption of small-scale irrigation technologies to improve the livelihoods and output of small-holder farmers who operate under the Fadama system of agriculture. Taking the shortcomings of the ADP into consideration, the project adopted a bottom-up community driven approach where stakeholder participations was an integral aspect of the project even in the early stages (Ibeawuchi and Nwachukwu, 2010; Adebisi-Adelani et al., 2011). While the first Fadama project was successful, an examination of the later projects, Fadama II and III, revealed that numerous constraints ranging from high cost of the promoted technologies, high cost of inputs, lack of credit facilities, presence of middle men, poor harvesting and huge postharvest losses (PHLs) in perishable vegetables undermine the schemes (Oladoja, Akinbile and Adisa, 2006; Adebisi-Adelani et al., 2011; Bature et al., 2013). Apart from the several constraints faced by these farmers, production systems in certain localities under the NDFP II scheme was reported as unsustainable (Ibrahim and Omotesho, 2009). The same NDFP II scheme has been criticized for poor implementation of projects in the South East (Ibeawuchi and Nwachukwu, 2010). It was revealed that the income of farmers who were beneficiaries of the NDFP III did not improve, rather an increase in productive assets and reduction in income were observed (Bature et al., 2013).
Ten years after the first Fadama project, the National Program on Food Security (NPFS) was created in 2002 with the sole purpose of alleviating food insecurity and rural poverty (Asoegwu and Asoegwu, 2007; Iwuchukwu and Igbokwe, 2012). The objectives were to increase farmers output through promotion of simple farm technologies, improve research for agriculture development and better extension service delivery to educate farmers toward better usage of farm resources. Nevertheless, complexity and incompatibility of the promoted innovations were among the setbacks of the scheme (Iwuchukwu and Igbokwe, 2012). Low participation by farmers is another factor that was responsible for the failure of the scheme (Dennis et al., 2014). Besides an evaluation of the impact of the NPFS scheme on youth empowerment in terms of self-employment revealed that non-participating farmers were more self-reliant than participating farmers in Rivers State (Dennis et al., 2014).

Following that the previous initiatives failed to achieve the needed transformation in the agriculture sector, the presidency through the Federal Ministry of Agriculture and Rural Development (FMARD) initiated the Agriculture Transformation Agenda (ATA) in 2010 to reposition agricultural initiatives as agribusiness rather than the usual agricultural production. The aim was to revamp the sector by building needed infrastructures, strengthen commodity value chains and facilitate private investment (FMARD, 2013; Ajani and Igbokwe, 2014). The goal of the ATA is a yearly addition of five (5) metric tons to the national food volume (FMARD, 2013). Overall, the ATA placed emphasis on adoption of improved agricultural practices especially in the crop production subsector as this will improve export potentials to European markets where premium prices can be earned for most of country’s horticultural produce.

The Federal Ministry of Agriculture and Rural Development noted that up to USD 20 million of forex earnings could be realized from crop production if objectives are met (FMARD, 2013). In order to achieve the set goals, the ATA mapped out different implementation actions plans for the different commodity groups. For instance, plantain production was part of the horticulture implementation action plan which the overall goal was to improve the performance of horticultural commodity value chains (FMARD, 2013). The horticultural implementation plan highlighted factors such as good management practices in agricultural holdings, quality fruits, efficient operations and consumer assurance as being critical for the success of commodity value chains. Thus the strategy for improving commodity supply chain of horticultural produce involved the use of recommended varieties, private investment in processing facilities, improved market access, value addition to harvested commodities and reduction of PHLs from the rate of between 45 and 51% to 5% (FMARD, 2013).

Through the ATA, farmers received trainings as well as planting materials to boost production. As for plantain, about 32,000 plantain suckers of improved varieties were reportedly distributed to some of the South-South States alongside establishment of plantain gardens. One hundred and twenty-five famers and
extension agents were trained on plantain production targeted at domestic and foreign markets. The Federal Ministry of Agriculture and Rural Development also reported distribution of 25,000 copies of technical manual on Good Agricultural Practices (GAP) for horticultural crops, among which is plantain.

In the first years of the ATA, through the inputs given to farmers during the 2012/2013 dry and wet seasons, an addition of over 15.5 million metric tons of food were achieved within these two years (FMARD, 2013). In 2012 alone, a total of 1,840,000 tons of food were added into the food stock. Crops such as rice, maize, cassava, yam and plantain were the main contributors to this food increase. According to the National Bureau of Statistics, the Nigerian agriculture sector contributed about 26.79% of the GDP in the third quarter of 2015 (NBS, 2016).

The present administration based on a recent report by the Federal Ministry of Agriculture had acknowledged that postharvest losses of perishable food crops could reach up to 60% and the ministry is committed to build on the success of ATA while addressing key gaps (FMARD, 2016). It was also acknowledged that postharvest handling is essential for the development of commodity value chains and a necessity capable of addressing the challenges of postharvest losses (FMARD, 2016).

Among the numerous food crops grown in Nigeria, horticultural crops mostly grown in the Southern part of the country constitute a significant part. Horticultural produce undergo metabolic processes even after harvest and these processes lead to moderate or high perishability (Kitinoja and AlHassan, 2012). Moderate to high perishability can lead to inferior quality of produce for consumers; thus, commodity supply chains cannot be developed without proper postharvest management. The lesser the amounts of high quality produce that reach consumers the more likely the losses and thus an indication of food insecurity. Postharvest handling is therefore an important part of the country’s food security attainment and the Federal Ministry of Agriculture and Rural Development has made known its intention to enhance access to information and knowledge on postharvest handling in the food distribution systems (FMARD, 2016).

Several authors have explained that lack of postharvest infrastructure in developing countries is the key reason for high postharvest losses in the food systems (Hodges, Buzby and Bennett, 2010; Parfitt, Barthel and Macnaughton, 2010; Balaji and Arshinder, 2016). While this assumption is correct, there are two different set of challenges in this assumption. First there is no guarantee that provision of postharvest infrastructure will ascertain proper utilization that averts losses. Secondly, there is no clear strategy by agricultural governing bodies on provision of such infrastructure in the foreseeable future. Although part of the agenda of the ATA was the development of postharvest infrastructures such as storage facilities in order to reduce postharvest and market losses; actual deployment of postharvest technologies only applied to some grains such as maize where 12000 hermetic bags were distributed to small-scale maize farmers in addition to organization of zonal
workshops on pre and postharvest handling against mycotoxins (FMARD, 2013). Postharvest challenges in horticultural produce were hardly addressed during the implementation of the ATA; even though this group of food crops are known to suffer the most postharvest losses in tropical regions especially (Gustavsson et al., 2011; Rutten, 2013). If the agriculture sector intends to adequately cater for the food needs of the country, adequate attention to postharvest management is essential to minimize losses while increase in food production is being targeted at the same time.

The objective of good postharvest handling is to ensure that the quality of the agricultural produce is preserved as it travels along the distribution system. Harnessing the potentials of proper postharvest handling in commodity chains of fresh produce is capable of strengthening the Nigerian agriculture sector. To this end, the Nigerian Government intends to collaborate with private investors towards improving food distribution systems of fresh produce in order to curtail losses (FMARD, 2016). Apparently, most of such partnerships are usually entered with medium and large-scale players in the agriculture sector. Thus, excluding the smallholders even though they consist a majority of the production in the country’s agriculture sector. Most of the smallholder farmers and traders have little to no formal education and poor access to extension services (Kainga and Seiyabo, 2012); as such they may not be exposed to information on the importance of appropriate postharvest handling which is essential to maintaining the quality of their produce.

Despite the different agriculture initiatives in Nigeria, agricultural food supply chains are challenged with poor postharvest management coupled with the lack of postharvest infrastructure as notorious with developing countries (see Figure 1.8). Thus, the current state of the Nigerian agricultural sector is one that is plagued with poor quality of food and high postharvest losses. As at 2013, high postharvest losses up to 50% for fruits and vegetables, 30% losses for tubers and 20% losses for grains were reported (FAO, 2013). According to the Ministry of Agriculture and Rural Development, poor quality of fresh produce results from contamination with chemicals and spoilage due to pests and diseases (FMARD, 2016). Currently, there are no clear strategies in place to properly address the postharvest losses in the country. Although the current administration noted that reduction of the farm to fork time in food distribution systems will curtail losses of fresh produce (FMARD, 2016). However, the rapid rural urban migration as youths go in search of greener pastures (Omonijo et al., 2014) is likely to increase food miles, the distance in which food travels from its production origin to its point of consumption (Hill, 2008).

Currently, Nigeria has a population estimated at 182 million (NPC, 2017) and the country is among those with a projected high rate of population growth (United Nations, 2015) in the coming years. Reports show that about 780 million people around the globe struggle with food insecurity; of which a high number are resident in developing countries (FAO, IFAD and WFP, 2015). A majority of the countries with extreme level of food insecurity are located in Sub-Saharan Africa of which is Nigeria is one. The latest world hunger report indicates that the hunger severity in Nigeria is categorized as serious (see Figure 1.1) (IFPRI, 2016); meaning there is
urgent need for viable strategies to abate hunger crisis. The expected high rate of population growth in Nigeria will further exacerbate the challenge of food insecurity.

Figure 1.1: World Hunger Index
Source: Adapted from IFPRI (2016)

In spite of the food insecurity that exist globally, literature suggests that about one-third of the food produced for consumption never gets eaten but ends up discarded as food losses and waste (FAO, 2011; HLPE, 2014). The economic and social implications of food insecurity is indeed a serious problem that needs urgent attention. A recent meta-analysis study remarked that food losses in Sub-Saharan Africa is relatively high and reduction of postharvest losses is a key pathway to food security in the continent (Affognon et al., 2015). High postharvest losses in the midst of serious food insecurity coupled with high rate of population growth further heightens the necessity for the agriculture sector to ensure effectiveness of food systems in Nigeria.

1.2 Plantain as a Food Security Crop

Plantain (Musa paradisiaca) which is also known as cooking banana is an important economic food crop and a staple food for both the rural and urban populace (Ferris, Ortiz and Vuylsteke, 1999; Adejoro, Odubanjo and Fagbola, 2010; Akinyemi, Aiyelaagbe and Akyeampong, 2010). Average annual consumption of plantain by Africans is estimated at 21 kg per capita; with the consumption in East African countries such as Uganda, Rwanda and Burundi as high between 191 to 220 kg per
capita (Oladejo and Sanusi, 2008; IITA, 2014). Annual plantain consumption in Nigeria is 8.5 kg per capita (FAO, no date). Overall, the consumption of plantain is ranked third position among starchy staples in Nigeria (Akinyemi, Aiyelaagbe and Akyeampong, 2010). The crop heavily consumed by persons of all socio-economic class either in the form of a meal or snacks (Ben-Chendo, Eze and Asiabaka, 2013). Increase in disposable income is known to encourage diversification of diet in favor of meat and vegetables demand while consumption of starchy foods reduces (Bennett, 1941; Parfitt, Barthel and Macnaughton, 2010; Thyberg and Tonjes, 2016). Unlike other foods which follow the Bennett’s law that “consumption of starchy staples declines at the household income increases” (Bennett, 1941), plantain consumption in West Africa has actually doubled in the last two decades, from less than 6 million tons consumed in 1990 to more than 12 million tons in 2009 (Cauthen et al., 2013). While increased population could have contributed to this increase, a survey of Nigerian women who were responsible for household food purchases revealed that a majority would like to increase their consumption of plantain if prices were more affordable (Ajayi and Aneke, 2002). Similarly, another study in Cameroon where 355 housewives were asked to indicate their preference among selected starchy staples (plantain, cassava, rice, cocoyam, maize) if prices were the same, reported that 55% of the respondents chose plantains as their first choice while 72% would include plantains among their top three favorite foods (Dury et al., 2002). The same study further reported that a majority of respondents from North Cameroon, where plantain is relatively expensive, chose plantain as the first choice of food they would buy if they had more income. This trend indicates that plantain consumption in West Africa is likely to increase with an increased income level; contrary to the Bennett’s law.

In terms of per capita consumption, plantain is regarded to be important relative to other staples (Olumba and Rahji, 2014). The high consumption patterns in the continent signify high prospects for increased plantain production. Although plantain consumption is ranked third among starchy staples in Nigeria, the lower consumption values in terms of per capita consumption of other countries in Sub-Saharan Africa e.g. Uganda; indicates a possibility for the country to be an exporter within the continent (Baruwa, Masuku and Alimi, 2011). Besides, plantains are a useful raw material for the production of local snacks like chips, fritters, dodo, bole, gluten-free flour and cakes. It is one of the perennial starchy staple that is available throughout the year. This makes plantain an important food security crop and a good alternative staple especially when other staples are out of reach due to off seasons (Cauthen et al., 2013).

It is a paradoxical situation that plantain postharvest supply chains in Nigeria record high losses despite domestic demand not being adequate to cater for as many persons that want to increase their consumption. For instance, Adeniyi and Ayandiji (2014) in their study on plantain and banana distribution reported that postharvest losses during transportation amounted to 46.45%, losses during sales were 19.95% and losses during marketing were 33.6%. In Rivers State, plantain postharvest losses was reported to be 27% (Olayemi et al., 2012), meanwhile a previous study by Olorunda
and Aworth (1996) reported plantain postharvest losses in another part of Nigeria as 40%. High losses could also be part of the reason for non-affordability of the produce even when people desire to increase their consumption.

The total world production of plantain in 2014 is 30.668 million metric tons with Sub-Saharan Africa alone accounting for 20.107 million metric tons (FAOSTAT, 2017). Cauthen et al. (2013) explained that although the volume of banana exported from Sub-Saharan Africa exceeds that of plantains, the production of plantain far exceeds that of banana in the continent. This implies that most of the plantain produced are consumed locally; an indication of the important role of the crop in food security. According to the FAO (2017) world production value of plantains increased from 9.460 billion USD in 2010 to 11.584 billion USD in 2014 (Figure 1.2).

![Figure 1.2: Value of Worldwide Plantain Production](image)

Source: FAOSTAT (2017)

On a regional basis, South America and Sub-Saharan Africa are the regions known for high production (Figure 1.4). It is imperative to note that Sub-Saharan Africa alone contributed about 68% of the global plantain production between 1994 and 2014 while South America contributed about 28% of the production share followed by 4% of the production share for Asia, while Oceania had a less than 1% production share (Figure 1.4) (FAOSTAT, 2017).
Figure 1.3: Plantain Production Regions
Source: FAOSTAT (2017)

Figure 1.4: Average Plantain Production Share by Region (1994 – 2014)
Source: FAOSTAT (2017)
Based on production volume by individual countries, Nigeria is among the top ten producing countries in a decreasing order: Uganda, Ghana, Colombia, Nigeria, Cameroun, Peru, Cote d'Ivoire, Democratic Republic of Congo, Ecuador, and Myanmar. Furthermore, it can be observed that African countries constitute a majority of the top ten plantain producing countries (Figure 1.5). West Africa alone accounted for about 32% of global production in 2011 (Cauthen et al., 2013) at the same time Sub-Saharan Africa is home to highest consumers of the commodity with approximately 70 million people around the continent who depend on plantain for a substantial part of their daily carbohydrate requirements (IITA, 2010). Again, this further strengthens the standpoint of plantain production as a significant component of food security.

![Figure 1.5: Top Ten Producers of Plantain](source: FAOSTAT (2017))

Plantain production in Nigeria is estimated to be 3.04 million tons valued at 3.8 billion USD for the year 2014 (FAOSTAT, 2017). Although, the production trend in the country indicates that the volume produced has almost doubled (from 1.665 million tons in 1994 to 3.0399 million tons in 2014) during the last two (2) decades (Figure 1.6); economic growth of the Nigerian plantain industry has been comparatively slow when compared to other West African countries like Ghana; which recorded a rapid production growth from insufficient production to being a net exporter of plantain.
In Nigeria, domestic demands for plantain are hardly met and exports are still insignificant partly because production fate lies in the hands of smallholder farmers most of whom do not have access to extension services (Kainga and Seiyabo, 2012; Olayemi et al., 2012). Apart from that, plantain production in Nigeria is plagued with high perishability and losses which can go as high as over 20% to 60% (Olayemi et al., 2012; FAO, no date). Although increasing production is one way to increase the country’s production output, the notorious high rate of postharvest losses in plantain is considered a major constraining factor to its production and marketing in Nigeria (Ladapo and Oladele, 2011; Olayemi et al., 2012). As such measures to reduce plantain postharvest losses are likely to have immediate positive impacts in meeting demands and as well food security.

1.2.1 The Plantain Postharvest Supply Chain

A supply chain encompasses the network of activities of all parties directly or indirectly involved in meeting a customer’s need or want either in the form of a product or service (Chopra and Meindl, 2007). Therefore food supply chain (FSC) refers to the network of activities and businesses concerned with the production, harvesting and handling of food produce until it gets to the final consumer (Bourlakis et al., 2014). A postharvest system on the other hand refers to the postharvest operations carried out on an agricultural produce starting from harvest until when it stops respiring (Prussia and Shewfelt, 1993). This definition excludes
food products that have been processed to other forms as they are no longer living tissues (Prussia and Shewfelt, 1993). Thus, the plantain supply chain would consist of the input suppliers, producers, wholesalers, retailers and consumers as the main players. Logically, the plantain postharvest system excludes the input suppliers and begins with the farmers who are the producers that sell the commodity to the wholesalers and retailers from which the consumers obtain the commodity (Figure 1.7).

Although Parfitt et al., (2010) argued that FSC and postharvest systems can mean the same thing. Considering the definition of what a supply chain entails and based on the focus of this study, which is on the postharvest handling activities involved with plantain fresh produce after harvest, the term postharvest supply chain was rather appropriate to refer to the postharvest activities of supply chain players from when the produce was harvested until it has been sold to the intended customer through the various distribution channels. From Figure 1.7, the longest distribution channel shows the flow of the plantain commodity along the various points of postharvest handling in the supply chain. It can be observed that the first point of the physical produce is from the farmers from which the commodity then travels until it gets to the consumer. Since these activities can only occur after the produce has been harvested; the network of activities and players make up the plantain postharvest supply chain (Adu-amankwa and Boateng, 2011).

Figure 1.7: Plantain Distribution Channels in Nigeria
Source: Adapted from Akinyemi et al. (2010)
Another approach to understanding the plantain FSC is in terms of the value that is added as the commodity moves along the supply chain from production to consumption. A study on plantain value chain mapping by Adeoye et al. (2013), provides an explicit description based on the value added activities performed in each stage of the FSC. The plantain value chain was segmented into three main parts as the upstream segment which consists of the input suppliers and producers/farmers; the midstream segment made up of the farm gate and market assemblers, wholesalers, processors and exporters and the downstream segment made up of the retailers and final consumers. The midstream segment performed most of the value-added activities while the input suppliers were the least contributors to the plantain value chain. Plantain farmers in Nigeria mostly sell their produce at farm gate with no additional value added, therefore even though they invested the most in terms of time, labor and inputs, they were not benefiting from regional trade (Adeoye et al., 2013).

The midstream segment also exerted a dominating influence in the plantain supply chain in terms of market price determination and demand manipulation through cartel activities (Adeoye et al., 2013). A similar scenario was also reported for plantain supply chain in Ghana, where middle men known as market queens dominate and influence postharvest activities in a way that negatively affect the rate of returns of plantain traders (Adu-amankwa and Boateng, 2011).

In terms of composition for the various segments in the plantain supply chain, Ben-Chendo et al. (2013) reported that males dominate plantain production whereas plantain trading is female dominated. Whether production or trading, the profitability of plantain as an economic activity has been confirmed by several studies conducted in Southern Nigeria (Adetunji and Adesiyan, 2008; Fakayode et al., 2011; Kainga and Seiyabo, 2012). Additionally, Baruwa et al. (2011) remarked that plantain production has the advantage of low usage of machinery and labor. This gives room for the possibility of lower production cost as compared to other agricultural crops, such as rice. Nevertheless, poor postharvest handling is a major constraining factor that has limited plantain production in Nigeria (Akinyemi, Aiyelaagbe and Akyeampong, 2010; Ladapo and Oladele, 2011).

Albeit it is not uncommon to observe that most agricultural commodities in Africa are challenged with poor postharvest systems stemming from the non-existence of postharvest infrastructure coupled with inappropriate transportation facilities and postharvest handling (Hodges, Buzby and Bennett, 2010; Parfitt, Barthel and Macnaughton, 2010; Venus et al., 2013). Even when increase in production resulted from modern farming technologies, the welfare of farmers did not improve as a result of high postharvest losses in the postharvest supply chains (Ladapo and Oladele, 2011). Furthermore, high transportation costs with several unpredictable stops greatly increase occurrence of postharvest losses in perishable commodities like plantain (Tchango et al., 1999; Bayeri and Nwachukwu, 2003; Idah, Ajiseogiri and Yisa, 2007). Besides, poor quality at harvest, short shelf life and high perishability hasten produce quality deterioration along the supply chain. Therefore,
Despite plantain having high economic value and capability of contributing positively to food security (CBN, 2003; Adeoye et al., 2013; Ebiowei, 2013), its potentials are threatened mainly by the challenges in the postharvest system which then reflects the state of the entire commodity supply chain and agriculture sector as a whole.

1.3 Modern versus Traditional Agricultural Food Supply Chains

Proper supply chain management is essential to deliver the desired product that is needed by a customer and at a profit. Nevertheless, agricultural food supply chains (AFSCs) are generally different from other supply chains due to the specific characteristic of product perishability that further increase the difficulties of supply chain management. For fresh produce especially, biological changes in the produce coupled with seasonality in production, sensory attributes, physiological mechanisms, appearance, and product safety issues interactively increase the uncertainty of product quality (Aramyan et al., 2007). Thus, managing AFSCs is more challenging than that of other manufactured goods (Aung and Chang, 2014).

In today’s competitive business environment, customer satisfaction is an important and fundamental objective of any venture, be it agricultural or non-agricultural. This is why AFSCs in developed countries have taken advantage of modern technologies to maintain fresh produce quality and manage their AFSCs by reducing the uncertainties of perishability that are particular with agricultural commodities (Figure 1.8). The AFSCs in developed countries are regarded as modern AFSCs characterized by high usage of sophisticated infrastructures and automated systems (Yakovleva, 2007). Activities are carried out in a systematic manner based on standard operating procedures and high processing. Modern AFSCs distinctively have the presence of large farm ventures and retail firms as the key players with huge investment capital as needed for large capital infrastructures (Parfitt, Barthel and Macnaughton, 2010; Gonzales, Aban and Acedo-Jr, 2014). Furthermore, modern AFSCs utilize indicators ranging from profitability, waste elimination, product/produce quality, efficiency of resource usage, customer satisfaction and many others to evaluate and improve performance either at the supply chain or organization levels (Aramyan et al., 2007). Recent advances in modern ASFCs have even reached the extent of using intelligent food logistics systems to provide better monitoring and traceability (Jedermann et al., 2014), all in a bid to have better control and management of the peculiarities that pertain to fresh food ASFCs while at the same time create more value for customers.

On the contrary, AFSCs in developing countries are strikingly different from their modern counterparts in terms of operations and performance. In Nigeria for example, AFSCs are characterized by little to no usage of modern technologies. Operations are rather through traditional methods and a majority of the stakeholders are of smallholder type. In this case, the AFSCs consist of fragmented production units, undifferentiated products with low value addition, multi-layered distribution
channels with multiple intermediaries; hence, they are called traditional AFSCs (Gonzales, Aban and Acedo-Jr, 2014; Balaji and Arshinder, 2016). Most of the players in traditional AFSCs are smallholders with poor knowledge and little to no investment capital opportunities coupled with rudimentary infrastructure (Figure 1.8). Moreover, poor planning and management practices, inefficient harvesting, handling, storage and transportation methods are the common challenges in the postharvest systems of traditional AFSCs. As mentioned earlier, these challenges that predominates traditional postharvest systems translate into the high postharvest losses in the traditional AFSCs. Thus, contrary to their modern counterparts, there is little to no control over quality coupled with poor management of produce peculiarities and uncertainties in the traditional AFSCs.

Figure 1.8: Postharvest Infrastructure and Food Supply Chain Development
Source: Adapted from Parfitt et al. (2010)
Note: Arrows depict an increase in the specific concept

A comparison of food losses in traditional and modern/mechanized grain postharvest chains is shown in Figure 1.9. It can be observed that the crude operational processes in the traditional postharvest chains, details of which can be found in Rembold et al. (2011) and Hodges et al. (2010), led to more grain losses for most activities than that of mechanized postharvest chains. As synonymous with the statement by Parfitt et al. (2010) that “PHLs are partly a function of the technology available in a country, as well as the extent to which markets have developed”. In other words, adequacy of postharvest infrastructure corresponds to the level of AFSCs development and the availability and usage of postharvest infrastructures in the food supply chain. Thus,
as shown earlier in Figure 1.8, adequate postharvest infrastructures are more common to developed countries as compared to transitional and less developed countries. Additionally, with a lack of appropriate infrastructures such as good road networks, feeder roads that enable access to farms, storage and packing houses, packaging materials, cold chains etc. it is not surprising that traditional postharvest supply chains have continued to perform poorly with high postharvest losses as the evidence.

![Figure 1.9: Traditional Versus Mechanized Postharvest Chain](source: Hodges et al. (2010))

In Nigeria for instance, a recent multi country food loss studies revealed that 100 kg/capita/year of food was lost annually between 1992 to 2011 and that postharvest losses is a bane to food production in the Global South (Bahadur et al., 2016). Indeed, high losses in agriculture food produce create great concern and its consequences on food security are already devastating in Nigeria. Apart from food security, food losses threaten the economic growth of developing countries and also perpetrate negative environmental impacts. Moreover, high postharvest losses negatively impact farmers livelihoods by reducing their profit margins and at the same time exert adverse impacts such as reduction in food volume and a corresponding increase in price per unit of food (Gustavsson et al., 2011; Shukla and Jharkharia, 2013). The ripple effect is a further reduction in purchasing power for families with low income levels.

With up to half of the produced food wasted along the postharvest supply chain, such huge losses will indeed impede food security. Whether in the form of reduction in quality or discarded for reasons of food not being suitable for consumption, high losses in staple food like plantain will certainly affect the country adversely. Thus, reduction of PHLs is a win-win for farmers, consumers (Kader, 2005), the environment and the country as a whole; this is a viable approach to achieve food security (FAO, 2011; Affognon et al., 2015).
Some authors have suggested that building of more sustainable food systems which attach high importance to food quality both in supply chain design and implementation (van der Vorst et al., 2007; Luning and Marcelis, 2009; van der Vorst, Tromp and Zee, 2009) is essential especially in the global-south where AFSCs are plagued with avoidable food losses (Bahadur et al., 2016). Other authors have recognized the need for a more holistic approach to reducing food losses, noting that a using technical focus alone is insufficient (Grolleaud, 2002; World Bank, 2011; Papargyropoulou et al., 2014).

Integration of postharvest technologies has proven to be effective at maintaining and managing produce quality in modern AFSCs. Such modern postharvest technologies involve capital intensive infrastructures such as cold chains. While this is easy in modern supply chains, it can be challenging for traditional supply chains which mostly lack coordination in the first place. Moreover, economies of scale among other factors limit the suitability of such sophisticated technologies in traditional AFSCs. Thus, even though a lack of postharvest facilities are reported as the trigger factors of food losses in Nigeria (Idah, Ajisegiri and Yisa, 2007; Adewumi et al., 2009; Ladapo and Oladele, 2011; Olayemi et al., 2012) and other West-African countries (Olayemi et al., 2010; Adu-amankwa and Boateng, 2011; Venus et al., 2013), it is debatable that simply increasing infrastructure will eliminate food losses. Besides, food losses cannot be allowed to continue due to non-existence of infrastructures that only support technologically inclined approach of reducing food losses, as that could take years and even decades with far reaching consequences that are likely to exacerbate food insecurity and affect millions of people. Previous efforts to provide and integrate large scale postharvest technologies had been futile, therefore simpler postharvest handling techniques is rather recommended (Kitinoja, 2013a).

1.3.1 Small-Scale Postharvest Practices

Ajani and Igokwe (2014) noted that the Nigeria agriculture sector can be transformed by the introduction of low-cost need-based adaptive technologies. Small-scale postharvest practices (SSPPs) are low-cost adaptive alternative postharvest handling techniques for smallholders who operate in traditional AFSCs (Kitinoja and Kader, 2003; Saran, Roy and Kitinoja, 2012). SSPPs range from handling practices that target maintenance of produce quality through reduction in variable ambient temperature to those that are directed towards improving aesthetic properties and market appearance.

Small-scale postharvest solutions can range from simple techniques for instance hydro-cooling, shade cooling practices which are useful in management of temperature which is an important factor in maintaining produce quality (Kitinoja, 2013b; Singh et al., 2014) to more technical solutions that involve the use of traditionally fabricated postharvest technologies such as zero-energy cooling chamber (ZECC), coalbot powered cold rooms, ventilated rooms where produce are
kept on clean floor (WFLO, 2010). Likewise, the use of plastic crates, ventilated boxes and other appropriate packaging during transportation is recommended for all fresh produce as this will minimize mechanical damage and maintain market quality of produce (Kitinoja and Cantwell, 2010).

Basically, good postharvest practices should ensure a combination of practices that target optimum ambient conditions for the produce as well as minimize any physical or mechanical damage and maintain desirable appearance. It should be noted that the effectiveness of a postharvest technology is not dependent on its sophistication. In fact 81% of small-scale postharvest practices identified and tested in four countries both in Asia and Sub-Saharan Africa were reported to be appropriate and effective for small-scale operations (WFLO, 2010). Thus, the profitability of plantain as a food crop with high economic potentials can be further strengthened by improving the performance of the postharvest supply chain through adaptable and appropriate small-scale postharvest management solutions that do not require technically inclined infrastructures.

Despite the existence of a variety of appropriate small-scale postharvest solutions adoption or usage of these small-scale postharvest practices is considerably low in developing countries (Kitinoja et al., 2011). In Nigeria specifically, respondents were reluctant to adoption of plastic crates in the transporting of perishable produce according to a study conducted in Kano (Adeghola, Bamishaiye and Olayemi, 2011). In general, there is no evidence of adoption of appropriate small-scale postharvest practices in most of the commodity supply chains including that of plantain. There is a dearth of information on the factors that facilitate adoption of small-scale postharvest practices.

1.3.2 Assessment of Postharvest Losses in Traditional Supply Chains

Another challenge in traditional AFSCs is the lack of monitoring systems and consistency owing to the poor coordination in the AFSCs disallow strategic interventions. It is such that even when interventions could have been successful the lack of consistent loss measurement methods coupled with poor coordination and little or no record keeping makes it difficult to monitor losses and identify hot spots for proper targeting; this further intensifies the challenges of such fragmented supply chains (Shukla and Jharkharia, 2013). In traditional AFSCs most of the food losses are referred to as postharvest losses (PHLs). Therefore, the first step to solving the problem of postharvest losses is to ascertain what stage in the postharvest supply chain exhibit the most losses (Kader, 2005) and what factors trigger their occurrence.

Triggers of postharvest losses are broadly grouped into primary and secondary causes. Primary causes refer to those that directly influence the produce to bring about changes that lead to deterioration while the secondary causes are indirect to the produce by facilitating the primary causes to cause deterioration (Atanda et al.,
In other words the primary causes are biological whereas the secondary causes are non-biological (Kader, 2005). As earlier mentioned, the paucity of data on the extent to which causative factors contribute to losses and the exact amount of losses in specific commodities is a major challenge. In a meta-analysis of postharvest losses in Sub-Saharan Africa, it was observed that a large amount of postharvest research were unpublished and the commonality of methodological inconsistencies challenged comparisons of studies outcomes (Affognon et al., 2015). In broad terms, postharvest losses are assessed based on the deterioration in quality of food produce as well as the quantity from the total production that did not make it to the final consumer (Grolleaud, 2002; Hodges, 2012).

1.3.3 Qualitative and Quantitative Postharvest Losses

Postharvest losses occur in quantitative and qualitative forms (Hodges, Buzby and Bennett, 2010). Qualitative losses occur as a result of either altered physical condition, perceived substandard value, deterioration in texture, flavor and/or nutritional value whereas quantitative losses refers to the amount of physical produce that is discarded due to being unfit for human consumption (Grolleaud, 2002; Hodges, Buzby and Bennett, 2010). Kasso and Bekele (2016) assessed postharvest losses and quality deterioration of horticultural produce in Ethiopia based on the amount of produce that was damaged and the extent of the damage respectively. Similarly, other authors reported postharvest losses in Asia as the amount of produce discarded as well as produce sold at reduced price due to poor quality (Genova et al., 2006).

Generally, it is easy to estimate quantitative postharvest losses, however, estimation of qualitative losses is more complicated (Shewfelt, 1999; Kader, 2005). This is because changes in quality is determined by a number factors (Hodges, 2012). The complications associated with assessment of qualitative losses is the reason why the African postharvest losses information system (APHLIS), a network model that assess grain losses considers qualitative losses only in extreme cases and still convert the values of extreme qualitative losses into quantitative losses. It could be part of the reason why emphasis on reducing postharvest losses in developing countries tends to focus on only quantitative losses even when deterioration in produce quality is problem as well.

Another problem with the methodological inconsistencies of postharvest loss assessment is that designing interventions can be risky due to conflicting PHLs figures for most commodities. Plantain for instance, 40% of losses in terms of discarded volume (i.e. quantitative PHLs) were reported in Nigeria by Olorunda and Aworth (1996), whereas another study by Akalumbe et al. (1996) in the same year published postharvest losses in bananas and plantain fruits to be 17% in South East and South West of Nigeria collectively. The later study also noted an amount of 3% economic value losses for fruits traded in Southeast part of Nigeria. Another study on plantain and banana postharvest losses in Lagos metropolis market (located in the
Southwest) reported that wholesalers reported losses of 6.62% per lorry trip during peak season and 2.5% per lorry trip during off season (Adewumi et al., 2009). This as well indicates that market seasons are influential to amount of PHLs experienced. Meanwhile, relatively higher plantain postharvest losses of 27% had been reported in Rivers State (Olayemi et al., 2012).

Ajayi and Mbah (2007) explained that variations in postharvest losses are as result of differences in postharvest technologies being practiced in the different production areas. The differences in postharvest losses figures could also have stemmed from methodological inconsistencies arising from differences in the definitions of what actually constitute losses and/or a combination of both which may lead to exaggeration of loss figures (Tyler, 2014; Affognon et al., 2015).

It should be noted that plantains are consumed by different social classes in almost all stages of ripeness; therefore, the possibility of losses being exaggerated or under-represented should not be dismissed. People of lower social class rely on low priced food to survive and would not be able to afford highly priced food. Produce that already show signs of quality deterioration would be restricted to lower markets because they are likely not to meet quality standards of more competitive markets. Thus, the reduction in produce quality denies a commodity the market opportunity to command premium prices. This situation may lead to what is called economic food loss, a scenario where reduced prices are earned for produce that should otherwise command higher or premium prices, (Hodges, Buzby and Bennett, 2010). There is also the tendency for lower food prices to be synonymous with poor quality food in a scenario where a majority of food produce is of low quality and only a few is of high quality. Lack of purchasing power for good quality and nutritious food is an indication of food insecurity not necessarily food availability (Gustavsson et al., 2011). Every human being has the right to safe and nutritious food therefore relegating low quality produce to lower markets will further increase the gap between the poor and the rich; implying that people of lower social class will not have adequate access to good quality and nutritious food. As such, reduction in the amount of poor quality as well as discarded quantity of fresh agricultural produce should be the focus of proper postharvest management in traditional food supply chains. Based on these thoughts, this study recognized both quantitative and qualitative postharvest losses by referring to qualitative losses as the amount of produce that sold for lower price as a result of reduced market quality whereas the amount of produce that were discarded constituted quantitative losses (Genova et al., 2006).

Usually, agriculture policies in Nigeria and most African countries tend to favor increasing food production by expanding cultivation on arable land. Even when policies mention reduction of postharvest losses as among key target areas like in the ATA (FMARD, 2013), it is observed that no proper attention is given to postharvest management of horticultural produce. It should be noted that increasing food production without proper postharvest management will lead to even more losses and wastage of already constrained and depleted natural resources.
1.4 Problem Statement

Fertile arable land, climatic conditions that favor production of many tropical food crops especially in the Southern Nigeria provides the country with the capacity to adequately produce most of its food staples and as well enjoy export earnings from agriculture. Sadly, this is not the case. According to the latest world hunger report, the country is suffering from serious food insecurity (IFPRI, 2016). Worsening matters is that the recent population estimate projects a high rate of population growth for Nigeria by 2050 (United Nations, 2015). No doubt, that the anticipated growth in population will further heighten the food insecurity situation. Thus, it is extremely important that food systems in the country be efficient enough to sustain the food needs of the populace in an effective manner. Regrettably, the agriculture sector has continued to suffer from non-holistic food security policies coupled with poor implementation which have led to unsuccessful food security interventions (Iwuchukwu and Igboke, 2012). In Rivers State for instance, the National food security programme that was intended to strengthen food production is reported to have no significant impact due to low participation by farmers (Denis, et al., 2014). In fact, the current situation shows that the food systems in Nigeria are far from being effective as the commodity postharvest chains for most fresh produce are plagued with high postharvest losses; where up to 50% of the food produced is lost along the commodity chain (FAO, 2013; FMARD, 2013). This means that half of what is produced in the food systems never gets consumed. A recent multi-country study estimated food loss in Nigeria to be over 100 kg/capita/year and recommended that food losses can be averted by improving the necessary infrastructures (Bahadur, et al., 2016).

In Nigeria particularly postharvest losses of most perishable staple food commodities stem from the poor state of the postharvest systems. For instance, a panel data study by Mbuk, et al. (2011) although only focused on tomato retailers in Uyo (a South-South state) found that postharvest losses were over 50% and inappropriate postharvest handling contributed to losses. Adeniyi and Ayandiji (2014) assessed plantain and banana postharvest losses on the basis of the activities carried out in the distribution system; they found that losses during transportation amounted to 46.45% while losses during sales were 19.95% and losses during marketing were 33.6%. In Rivers State, a study which utilized an investigative survey approach reported that the mean postharvest loss values for several staple commodities in the state were 37.33% for yam; 33% for leafy vegetables; 27.67% for cassava; 27% for plantains and 20.33% for maize (Olayemi, et al., 2012). These postharvest research are clear evidence that postharvest losses is a problem to Rivers State and Nigeria as a whole; and thus worthy of proper attention in the fight against food insecurity.

One way for the agriculture sector to be more effective in production of staple foods is through efficient utilization of improved practices in part of the country where the staple has high production. Plantain is a staple food for which a substantial number of persons around the African continent depend on to meet their daily carbohydrate requirements (IITA, 2010). Consumed in different forms in Nigeria, plantain ranks
third position among starchy staples (Akinyemi et al., 2010; Ben-Chendo et al., 2013). Information in the literature indicates that Nigerian households desire to increase their plantain consumption due to the associated health benefits; however many cannot afford to (Ajayi and Aneke, 2002). Gustavsson et al. (2011) explained that food insecurity may not necessarily mean supply inadequacy but also a reduced ability to adequately access food. The Federal Ministry of Agriculture and Rural Development (FMARD) acknowledged that low purchasing power by low income earners is one challenge of food insecurity facing Nigeria (FMARD, 2016). Although an increased production can be helpful at addressing food inaccessibility, plantain production in Nigeria is plagued with high perishability and losses can go as high as 20% to 60% (Olayemi et al., 2012). For a staple food with unmet domestic demands as well as insignificant exports, existence of high losses (Ladapo and Oladele, 2011) begs for immediate action to identify where the most losses occur and loss reduction strategies that allow increased production efforts to exert a net positive effect. Nevertheless, the fate of plantain production lies solely in the hands of smallholder farmers; most of whom may not be educated coupled with a lack of access to extension services (Kainga and Seiyabo, 2012). In Rivers State which is one of the high production areas for plantain, Olayemi et al. (2012) found that plantain farmers experienced an average loss of 27% and do not consult any extension experts when faced with postharvest problems. While the study provides a useful understanding of the estimated losses for staple foods in the state, the assessment of several staple commodities at once gave less room for an in-depth understanding of the forms of losses and proposed strategies for reduction of the losses. Moreover, the study only targeted farmers, which is just one group in the postharvest chains. Thus, the loss estimates cannot account for the total losses in the postharvest systems to guide intervention in the postharvest chain.

Another challenge is that reported food losses are in conflicting figures that pose a difficulty in designing interventions that are based on accurate information. For instance, plantain postharvest losses in Nigeria have been reported from as low as 5% to as high as 27% (Adewumi et al., 2009; Olayemi et al., 2012) and even 40% in a much previous studies Olorunda and Aworth (1996). Conflicting values in postharvest losses imply that losses are either truly variable, exaggerated or underreported (Tyler, 2014; Affognon et al., 2015). Thus, to avoid misguided solutions, strategic interventions should rather be based on evidence of losses from specific localities or parts of the postharvest chain that are more prone to loss incidences.

Targeted increased investment towards reduction of postharvest losses in developing countries is among the recommendations highlighted to ensure effectiveness and sustainability of food systems (Smil, 2004; Lipinski et al., 2013). This would require significant effort to manage postharvest quality of agricultural produce. Such effort agrees with identification and incorporation of postharvest management strategies in food security policies especially those that pertain to high production areas for staple foods. Currently, little information exists to guide evidence based decisions in inclusion of postharvest quality management in food security policies.
Postharvest quality management of agricultural produce involves the utilization of appropriate postharvest technologies. Conventional postharvest technologies require sophisticated infrastructures like cool chains; mostly suitable for large scale operations and may not even be compatible with small-scale operations. Therefore, forcing such sophisticated large scale postharvest technologies will only lead to failed interventions. As such, need-based postharvest solutions more suitable to small-scale operations are needed as alternatives to maintain postharvest quality, reduce losses and improve the effectiveness of postharvest systems for staple foods like plantain in Rivers State. Small-scale postharvest practices (SSPPs) due to their potentials to reduce losses are appropriate alternatives to manage produce quality in smallholder systems (Bachmann and Earles, 2000; Kitinoja and Kader, 2003; Kitinoja and AlHassan, 2012). Small-scale postharvest practices (SSPPs) are beneficial at strengthening food security and improving the profits of small scale supply chain players.

A few papers have made useful contribution towards giving an understanding on the adoption scenario of small scale postharvest technologies in Nigeria. The study by Mbuk et al. (2011) found that a simple postharvest handling practice of storing fresh tomatoes overnight with paper coverings negatively correlated with the amount of spoilage reported by marketers; however, a low adoption of the practice 6.7% was observed in the study area, Akwa-Ibom State of Nigeria. Similarly another study observed that reasons for non-adoption of re-usable plastic crates in Kano State, Nigeria were related to difficulty in changing old habits, lack of awareness among other factors (Adegbola, Bamishaiye and Olayemi, 2011). These studies failed to study the factors that affect adoption of postharvest practices. There is hardly any study to guide evidence based postharvest interventions in Rivers State which is a high production area for a variety of staple foods; hence the current study. The goal of the current study was to extend the effort made by previous authors by estimating the plantain losses at farm and market levels and their relationship to the use of small-scale postharvest practices. While behavioral theories have been applied to the understand changes in various human behaviors including adoption of several agriculture technologies, the same is yet to be done for postharvest management in smallholder systems. Therefore, to address the inclusion of postharvest management in the Rivers State, the current study investigated the potential adoption of small-scale postharvest practices in the postharvest chain by determining the factors that influence adoption intention. This is to enable an increase in adoption through addressing of influential factors that have limited potential adopters from using small-scale postharvest practices.

1.5 Research Questions

In order to achieve the general objective of this study, it is imperative to address the research questions that have been developed. The research questions were developed to elucidate on the potential adoption of small-scale postharvest practices in urgently reducing plantain postharvest losses and strengthening the inclusion of postharvest
management in Rivers State, which is one of the high production areas for Nigerian staple foods. Thus the research questions addressed in this study are as follows:

1. What are the average plantain postharvest losses experienced by farmers and traders in the supply chain?
2. What is the relationship between postharvest loss incidence and usage of small-scale postharvest practices in Rivers State?
3. What is the current awareness-knowledge level and adoption rate of the selected small-scale postharvest practices?
4. What variables are associated with adoption of small-scale postharvest practices?
5. Are adopters and non-adopters different in their perceptions of small-scale postharvest practices?
6. Can adoption decision factors related to smallholder plantain farmers and traders behavior towards small-scale postharvest practices be meaningfully factorized?
7. What are the simultaneous effects of adoption decision factors (such as awareness-knowledge, perceptions, attitudes and motivation) on intention to use small-scale postharvest practices in Rivers State?

1.6 Objectives of the Study

The general objective of the study is to investigate the potential adoption of small-scale postharvest practices towards reducing losses in plantain supply chain in Rivers State, Nigeria.

The specific objectives of the study are as follows:

1. To estimate the losses at farm and market levels and their relationship with adoption of small-scale postharvest practices.
2. To ascertain the awareness level and adoption rate of selected small-scale postharvest practices in the postharvest chain.
3. To determine the personal factors that are associated with adoption of small-scale postharvest practices.
4. To model the adoption decision factors, and evaluate their influence on smallholder plantain farmers and traders intention to use small-scale postharvest practices.

1.7 Justification of the Study

The hunger situation in Nigeria is categorized as being serious even when most food commodity supply chains record high postharvest losses. Considering how food losses can reduce the available food, drive food prices high and subsequently reduce
purchasing power of low income households while at the same time reducing smallholder agribusiness income, integration of appropriate small-scale postharvest practices in the commodity supply chains of staple foods is necessary to prevent most of the food from being lost. Preventing as much food loss as possible will be extremely beneficial to reduce the number of people who do not have adequate food to lead food secured lives. Besides, the expected high rate of population growth calls for steps to be taken to increase the food volume in the country.

The concept of sustainability is concerned with improving the quality of life for the current generation without hampering the future generations’ ability to meet their needs. Sustainable food systems are among important aspects of sustainable development of any country. There has been a growing interest towards improving food security in Rivers State and Nigeria as a whole. It is unarguably true that reducing postharvest losses will increase the sustainability of food systems in Nigeria. Therefore, instead of solely targeting to increase food production, priority should be given to the already produced food. More resources and attention should be channeled towards preventing avoidable food losses in order to reduce waste of precious resources being used in food production.

Nigeria already has a large number of food insecure persons, and with the projected population growth, food losses cannot be allowed to continue if the country intends to achieve a sustainable development. This necessitates reduction of postharvest losses as an immediate and sustainable approach to food security. Since modern postharvest infrastructures are currently lacking and as food insecurity continues to worsen, investigating alternative strategies has become very essential. Adoption of small-scale postharvest practices are cheap alternatives to maintaining fresh produce quality, therefore an understanding of the factors that promote adoption is necessary.

The current study is based on the premise that although postharvest losses result due to lack of modern postharvest infrastructure, appropriate small-scale postharvest practices if properly utilized can serve as urgent solutions to reduce food losses in the country. The study, being the first of its kind, assumes that there is a difference in the postharvest losses experienced by supply chain players who at least carry out some form of small-scale postharvest practices notwithstanding how minimal and those who do not. Therefore, the study examined the factors associated with adoption of small-scale postharvest practices. Intending to increase acceptance and consequently adoption of SSPPs, the study evaluated the influence of adoption decision factors on supply chain players intention to use small-scale postharvest practices.

The results of this study is expected to stimulate a re-think in the direction of postharvest research. In addition, findings of the study will also enable policy makers make evidence based decisions on interventions strategies aimed at reducing losses and improving the food systems. Overall, the study will fill the knowledge gap in the adoption literature regarding adoption of postharvest management.
practices in smallholder agriculture systems. The study also lays the foundation for future food production studies in Rivers State which is a high production area for a number of staple foods. Overall, the study positively contributes towards improving the performance of traditional AFSCs.

1.8 **Scope of the Study**

Nigeria has always had an interest towards food security to feed its rapidly increasing population. Increasing food production is one way to increase food security; decreasing postharvest losses is another way to boost food security. The latter is critical because without properly addressing the challenges of postharvest losses in the commodity supply chains, any efforts to increase production will be undermined by the poor postharvest systems and this can lead to an undesired viscous cycle. Therefore the second approach to improvement of food security was the focus of this study.

Food loss is a complex phenomenon and proper understanding of strategies to curb losses in the traditional supply chains, known to be fragmented and complicated calls for a multidisciplinary approach. This study synthesized knowledge form several fields such as supply chain food quality management, postharvest horticulture, human behavior and decision making, adoption of innovations etc. in order to achieve this multidisciplinary approach. The study mainly employed quantitative approach to understand the concepts being investigated. Overall, the study seeks to draw attention to the potentials of small-scale postharvest practices in preventing avoidable losses.

Plantain is one of the most consumed starchy staple in Nigeria and is readily available throughout the year. According to the IITA, more than 70 million people in Sub-Saharan Africa derived their daily carbohydrate requirement from plantains. Plantain, as a staple food in Nigeria, is consumed in different forms by people from all social class. Although demand for plantain is always high and production is throughout the year, the plantain commodity supply chain is plagued by high postharvest losses.

Apart from being a crop that significantly contributes to food security, plantain production and trading is an economically viable activity for smallholders in the Southern region of the country. Hence its selection for studies towards reducing postharvest losses is appropriate. Production of plantain in Nigeria is concentrated only in the Southern part of the country (Akinyemi, Aiyelaagbe and Akyeampong, 2010) due to favorable production conditions such as climatic factors, fertile forests, laterite soils, etc. High yielding plantain production regions are located in South-South states: Bayelsa, Rivers State, Akwa Ibom, and South-West states: Osun, Ogun (Cauthen et al., 2013).
Rivers State was selected as the focus area for this study because agriculture is a dominant economic activity of the people coupled the state’s potentials for agricultural development. Moreover, the state is one of the high yielding production zones for plantain with cultivation in almost all upland localities in the state (Fakayode et al., 2011). Nevertheless, high postharvest losses pose as a challenge to the state’s plantain production efforts.

1.9 Organization of the Thesis

This thesis reports findings of the current study ‘the adoption potential of small-scale postharvest practices towards reducing plantain supply chain losses in Rivers State, Nigeria’. The thesis is divided into six (6) chapters. Chapter one contains the introduction which gives an overview of the Nigerian agricultural sector and challenges encountered in policies that should have developed the sector. The first chapter further discusses the challenges that prevail in traditional agricultural food supply chains as obtainable in the fresh produce commodity in Nigeria and how these challenges relates to food security in the country. The chapter further explains the rationale behind the study, the problem statement, the research questions and the objectives.

Chapter two consists of the literature review based on previous studies and relevant information from which ideas were drawn to systematically design the study. The two broad focus of the literature review were on the postharvest literature and adoption behavior towards new innovations or technologies. In chapter three, the thesis explains the conceptual framework, hypothesized relationships and the methodological details involved in conducting the study.

Chapter four and five present the results and discussions of the findings for the farmers and traders groups, respectively to ease a clear understanding of both supply chain player groups. Chapter six (6) is the last chapter which contains a general conclusion of the discussed results. Relevant recommendations are also given in chapter six. A brief discussion on the limitations of the study is given alongside suggestions for further research that will improve the findings of the study.
REFERENCES

Introduction to Theory and Research. Reading Mass Addison-Wesley.

produce quality, nutritional value and implications for human health.’, in *Proceedings of the International Congress Food Production and Quality of Life*. Sassari, Italy.

Kitinoja, L. and Cantwell, M. (2010) Identification of appropriate postharvest technologies for improving market access and incomes for small horticultural farmers in Sub-Saharan Africa and, ... in three parts for the IHC Postharvest

Okoedo-Okojie, D. U. and Onemolease, E. A. (2009) ‘Factors Affecting the Adoption of Yam Storage Technologies in the Northern Ecological Zone of

202

WFLO (2010) Identification of appropriate postharvest technologies for improving market access and incomes for small horticultural farmers in Sub-Saharan Africa and, ... in three parts for the IHC Postharvest ...

LIST OF PUBLICATIONS

Journal publications

Conferences

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION : ________________

TITLE OF THESIS / PROJECT REPORT :

POTENTIAL OF ADOPTING SMALL SCALE POSTHARVEST PRACTICES TOWARDS REDUCING PLANTAIN SUPPLY CHAIN FOOD LOSSES IN RIVERS STATE, NIGERIA

NAME OF STUDENT: KWAMI JUSTINA KENOBI MORRIS

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.
2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.
3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as :

*Please tick (✓)

☐ CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).

☐ RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).

☐ OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for :

☐ PATENT Embargo from _______________ until _______________

(date) (date)

Approved by:

(Signature of Student) New IC No/ Passport No.: A06333175

Date : 15th March, 2018

(Signature of Chairman of Supervisory Committee) Name:

Date :

[Note: If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]