
© C
OPYRIG

HT U
PM 

 

UNIVERSITI PUTRA MALAYSIA 
 

DESIGN AND SYNTHESIS OF NEW 1-ALKYL-3-BUTYLIMIDAZOLIUM 
BROMIDE IONIC LIQUIDS AS MEDIA FOR DNA SOLVATION 

 

 
 
 
 
 
 
 
 
 

KHAIRULAZHAR BIN JUMBRI 
 
 
 
 
 
 
 
 
 
 
 
 

FS 2015 73 



© C
OPYRIG

HT U
PM

 
 

 

 

 

DESIGN AND SYNTHESIS OF NEW 1-ALKYL-3-

BUTYLIMIDAZOLIUM BROMIDE IONIC LIQUIDS AS 

MEDIA FOR DNA SOLVATION 

 

 

 

 

By 

 

KHAIRULAZHAR BIN JUMBRI 

 

 

 

 

Thesis Submitted to the School of Graduate Studies, 
Universiti Putra Malaysia, in Fulfilment of the 

Requirements for the Degree of Doctor of Philosophy 

February 2015



© C
OPYRIG

HT U
PM

 
 

All material contained within the thesis, including without limitation 
text, logos, icons, photographs and all other artwork, is copyright 
material of Universiti Putra Malaysia unless otherwise stated. Use 
may be made of any material contained within the thesis for non-
commercial purposes from the copyright holder. Commercial use of 
material may only be made with the express, prior, written permission 
of Universiti Putra Malaysia.  

 

Copyright © Universiti Putra Malaysia 



© C
OPYRIG

HT U
PM

i 
 

Abstract of thesis presented to the Senate of Universiti Putra 
Malaysia in fulfilment of the requirement for the degree of Doctor of 

Philosophy 

 

DESIGN AND SYNTHESIS OF NEW 1-ALKYL-3-
BUTYLIMIDAZOLIUM BROMIDE IONIC LIQUIDS AS MEDIA FOR 

DNA SOLVATION 

By 

KHAIRULAZHAR BIN JUMBRI 

February 2015 

Chair: Mohd Basyaruddin Abdul Rahman, PhD  

Faculty: Faculty of Science 

The influence of ionic liquids (ILs) on the structural properties of 
DNA was revealed by experimental and molecular dynamics (MD) 
simulation. In the first part of experimental section, six new 1-alkyl-
3-butylimidazolium bromide ILs ([Cnbim][Br] where n = 2, 4, 6, 8, 10 
and 12) were successfully synthesized. All of the ILs was obtained 
using simple alkylation reaction of 1-butylimidazole with various 
bromoalkanes, which gave high yield above 85%. Their physico-
chemical properties, including the spectroscopic characteristics 
have been comprehensively studied. Three of these ILs (C2, C4, C6) 
exist in liquid form while the others appear as semi solid at room 
temperature. Proton and carbon NMR and CHN elemental analysis 
were carried out to identify the molecular structure and purity of ILs 
produced. The thermal stability studied using TGA indicated that 
these new ILs were stable up to 270°C. As expected, the viscosity 
of three liquid salts hugely increased from 199 mPa·s ([C2bim][Br]) 
to 1180 mPa·s ([C6bim][Br]), while the density slightly decreased 
with increasing length of alkyl chains. 
 
The properties of Calf thymus DNA in hydrated ILs were studied 
using spectroscopic analysis. The strong interactions between the 
P-O bond of DNA phosphate groups and the [Cnbim]+ lead to 
compact DNA conformation, which excludes the intercalation of 
ethidium with DNA. Although the DNA stability is mainly due to the 
electrostatic attraction between DNA and ILs’ cation, hydrophobic 
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interactions between hydrocarbon chains of [Cnbim]+ and DNA 
bases also provided a major driving force for the binding of ILs to 
DNA. The effect of ILs concentration at 25°C shows that the DNA 
maintains its B-conformation in all solution of hydrated ILs despite 
the high concentration up to 75% (w/w). During heating process, 
hydrated ILs are observed to stabilize DNA helical structure up to 
56°C ± 1.0°C, almost 11°C higher than DNA in water. The DNA 
melting temperature is found gradually increases with increasing 
length of alkyl chain from 56°C ± 1.0°C (in [C2bim][Br]) to 58°C ± 
1.0°C in the presence of [C6bim][Br]. 
 
In the first part of MD simulation, the force fields (FFs) parameter 
for these three liquid ILs ([Cnbim][Br] where n = 2, 4 and 6) was 
validated based on experimental evidences. The modified collision 
parameter (ζ) to 0.369 nm for the anion shows the simulation data 
obtained were in agreement with experimental density and viscosity 
with the percentage error below ± 2.0% and ± 10.0%, respectively. 
The validated FFs were then applied for simulation of DNA in these 
ILs. The MD data offers clear evidence that the DNA maintains its 
B-conformation in all [C4bim]Br systems (25, 50 and 75% w/w). The 
hydration layer around the DNA phosphate group was the main 
factor in determining DNA stabilization. Stronger hydration shells in 
25% [C4bim][Br] in water (w/w) reduced the binding ability of ILs’ 
cations to the DNA phosphate groups. The computed energy shows 
that the electrostatic energy between [C4bim]+–[PO4]- (-46.55 ± 4.75 
kcal mol-1) is lower than water–[PO4]-(-12.78 ± 2.12 kcal mol-1). 
Effect of temperature revealed that ILs was able to retain DNA 
native conformation at high temperature up to 373.15 K in the 
presence of 75% [C4bim]Br. All the simulations findings were in 
agreement with experimental evidences. The prediction solvation 
free energy of nucleic acids bases performed in last part of MD 
simulation revealed that the nucleic acid bases were better solvated 
in ILs rather than in aqueous solution. 
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SOLVASI DNA 

Oleh 

KHAIRULAZHAR BIN JUMBRI 

Febuari 2015 

Pengerusi: Mohd Basyaruddin Abdul Rahman, PhD 
 
Fakulti: Fakulti Sains 

Pengaruh cecair ionik (ILs) pada sifat-sifat struktur DNA telah 
didedahkan oleh experimen dan simulasi molekul dinamik (MD). 
Dalam bahagian pertama seksyen experiment, enam 1-alkil-3-
butilimidazolium bromida ILs baharu ([Cnbim][Br] di mana n = 2, 4, 
6, 8, 10 dan 12) telah berjaya disintesis. Kesemua ILs diperolehi 
menggunakan tindak balas pengalkilan mudah 1-butilimidazol 
dengan pelbagai bromoalkana, yang memberi hasil tinggi di atas 
85%. Sifat-sifat fiziko-kimia termasuk ciri-ciri spektroskopi telah 
dikaji secara menyeluruh. Tiga daripada ILs ini (C2, C4, C6) wujud 
dalam bentuk cecair manakala yang lain muncul sebagai separuh 
pepejal pada suhu bilik. Proton dan karbon NMR dan analisis 
elemen CHN dilakukan untuk mengenal pasti struktur molekul dan 
ketulenan ILs yang dihasilkan. Kestabilan terma yang telah dikaji 
menggunakan TGA menunjukkan bahawa ILs baharu ini stabil 
sehingga suhu 270°C. Seperti yang dijangka, kelikatan tiga garam 
cecair meningkat mendadak daripada 199 mPa·s ([C2bim][Br]) 
kepada 1180 mPa·s ([C6bim][Br]), manakala data ketumpatan 
sedikit menurun dengan peningkatan rantai alkil. 

Sifat-sifat DNA daripada Calf thymus dalam ILs terhidrat telah dikaji 
menggunakan analisis specktroskopi. Interaksi kuat antara ikatan 
P-O kumpulan fosfat DNA dan [Cnbim]+ membawa kepada bentuk 
DNA yang padat, yang mana menyingkirkan interkalasi etidium 
dengan DNA. Walaupun kestabilan DNA terutamanya adalah 
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disebabkan oleh tarikan elektrostatik antara DNA dan kation ILs, 
interaksi hidropobik antara rantaian hidrokarbon [Cnbim]+ dan bes 
DNA juga memberikan daya pendorong utama untuk pengikatan 
ILs kepada DNA. Kesan kepekatan ILs pada suhu 25°C 
menunjukkan bahawa DNA mengekalkan konformasi-B dalam 
semua larutan ILs terhidrat meskipun dalam kepekatan yang tinggi 
sehingga 75% (w/w). Semasa proses pemanasan, larutan ILs 
terhidrat diperhatikan menstabilkan struktur helix DNA sehingga 
suhu 56°C ± 1.0°C, hampir 11°C lebih tinggi daripada DNA di 
dalam air. Suhu lebur DNA didapati beransur-ansur meningkat 
dengan peningkatan panjang rantaian alkil daripada 56°C ± 1.0°C 
(di dalam [C2bim][Br]) kepada 58°C ± 1.0°C dalam kehadiran 
[C6bim][Br]. 

Dalam bahagian pertama simulasi MD, parameter medan daya 
(FFs) untuk tiga cecair ILs ([Cnbim][Br] di mana n = 2, 4 dan 6) telah 
disahkan berdasarkan bukti-bukti eksperimen. Parameter 
perlanggaran (ζ) untuk anion yang telah diubahsuai kepada 0.369 
nm menunjukkan bahawa data simulasi yang diperolehi didapati 
bersetuju dengan data experimen ketumpatan dan kelikatan 
dengan peratus ralat masing-masing di bawah ±2.0% and ±10.0%. 
FFs yang telah disahkan kemudiannya digunakan untuk simulasi 
DNA dalam ILs ini. MD data menunjukkan bukti yang jelas bahawa 
DNA mengekalkan konformasi-B di dalam semua sistem [C4bim]Br 
(25%, 50% dan 75% w/w). Lapisan penghidratan sekitar kumpulan 
fosfat DNA adalah faktor utama dalam menentukan kestabilan 
DNA. Lapisan penghidratan lebih kuat dalam 25% [C4bim][Br] (w/w) 
di dalam air telah mengurangkan keupayaan pengikatan kation ILs 
kepada kumpulan fosfat DNA. Tenaga yang dikira menunjukkan 
bahawa tenaga elektrostatik antara [C4bim]+–[PO4]- (-46.55 ± 4.75 
kcal mol-1) adalah lebih rendah berbanding air–[PO4]- (-12.78 ± 2.12 
kcal mol-1). Kesan suhu mendedahkan bahawa ILs telah berupaya 
mengekalkan konformasi asal DNA pada suhu tinggi sehingga 
373.15 K dalam kehadiran 75% [C4bim][Br]. Semua penemuan 
simulasi didapati bersetuju dengan bukti-bukti eksperimen. 
Ramalan tenaga bebas pensolvatan bes nukleik acid yang 
dilakukan dalam bahagian akhir simulasi MD mendedahkan 
bahawa bes nukleik acid lebih mudah terlarut di dalam ILs 
berbanding di dalam larutan akues. 
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CHAPTER 1 

 

INTRODUCTION 

 
1.1 Background of Research 

 
Since the discovery of DNA over half a century ago, doing research 
on DNA has become a subject of intense interest. In many aspects 
of nucleic acid metabolism, the stability of double helical DNA 
structure is extremely important and plays a main role especially in 
biomedical applications. The specificity of hybridization is at the 
core of many molecular biology techniques including the DNA 
sequencing, polymerase chain reaction (PCR), microarray 
technology as well as an essential material in the development of 
advanced molecular devices (Krishnan and Simmel, 2011; Kutzler 
and Weiner, 2008; Jobling and Gill, 2004).  
 
For many years, the solution environment strongly influences the 
stability of DNA. Both aqueous and organic solvents are widely 
used as an extraction media or molecular solvent for DNA 
solvation. The stability of biological structure of DNA mainly 
depends on the water molecules. Particularly, the conformational 
and stability of DNA are controlled by the interactions between DNA 
and nearby water molecules (Westhof, 1988; Saenger, 1987; 
Texter, 1978). Since there is a close connection between DNA 
structure and their biological function, understanding the water-DNA 
relationship is significantly important. Other than water, the ambient 
environment such as different buffer conditions (pH, types of buffer 
solutions), concentrations of molecules, higher salt concentrations 
or even different type of non-aqueous solvents may all affect the 
stability of DNA conformation (Bonner and Klibanov, 2000). 
Previous studies of DNA in non-aqueous solutions have revealed 
that most organic solvents such as methanol, phenols, chloroform 
and DMSO, whether neat or in a mixture with water, all 
spontaneously denature DNA. 
 
The dry storage of DNA, utilizing the basic concept of anhydrobiosis 
or “life without water” is an alternative to old-style DNA storage 
(Bonnet et al., 2009). The development of other non-aqueous 
media which can stabilize and maintain native DNA structure for a 
long period especially at ambient temperature is increasing. 
Recently, huge attention is directed to the development of specific 
solvent for DNA. Ionic liquids (ILs) which is one of the non-aqueous 
ionic solvent have attracted many attentions due to their interesting 
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properties. The usage of ILs is attractive as they are almost non-
toxic, having good solubility and high conductivity (Sun et al., 
2008a; He et al., 2006; Nishimura et al., 2005; Qin and Li, 2003). 
They offer unique opportunities as alternatives to aqueous and non-
aqueous solvents in DNA biotechnology.  
 
The behavior of DNA structure in ILs is of both practical and 
fundamental interest. Structural studies using crystallography and 
NMR provide tremendous amounts of information with the 
determination of three-dimensional pictures of various complexes. 
From a historical point of view, the first structure of DNA solved by 
single crystal x-ray analysis was a tetramer reported by Viswamitra 
et al. (1978). Until now, there are many ligand/compound-DNA 
structures deposited to the Nucleic Acids Database (NDB) and also 
Protein Data Bank (PDB) (Berman et al., 2000). However, these 
techniques only provide static pictures and often it is desirable to 
follow the progression of molecules as a function of time. 
Additionally, not all structures are possible to obtain via these 
methods due to technical issues. Molecular dynamics (MD) 
simulation technique provides another way to look at the structures 
and interactions and complements the experimental evidences 
nicely. 
 
This study focused on understanding of how the ILs influence the 
dynamics and structural stability of DNA from both experimental 
and computational point of views. The results of our work may 
provide more insight into the studied system, allowing a better 
understanding of the IL-DNA binding and expanding the overall 
capabilities and applications of ILs in biological and biomedical 
applications. This study is also vital for future development of 
specific solvent especially for DNA and RNA solutes. 
 
 
1.2 Problem Statements 

 
The problems in current DNA technology are related to the use of 
aqueous and conventional organic solvents as a media for DNA 
solvation. Although DNA is considered stable in aqueous solution, it 
is susceptible to slow hydrolytic reaction such as deamination and 
depurination, which caused serious damage to DNA helical 
structure (Lukin and de los Santos, 2006). Furthermore, aqueous 
solution is not able to stabilize DNA helical structure over a long 
period especially at room temperature (several days up to 1 month) 
(Vijayaraghavan et al., 2010a) due to the degradation by 
contaminating nucleases (Sasaki et al., 2007) and inherent 
chemical instability.  
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Moreover, DNA in various organic solvents such as DMSO, DMF, 
formamide, methanol or pyridine is found to have lost its native 
structure, undergo strand separation or formation of toroid-like 
conformations (Ke et al., 2010; Hammouda and Worcester, 2006; 
Montesi et al., 2004; Bonner and Klibanov, 2000). Even worse, 
addition of ethanol to an aqueous solution induces drastic changes 
in the duplex structure, forcing a B- to A-DNA transition (Herskovits 
and Harrington, 1972). Traditional extractions using 
chloroform/phenol (Muller et al., 1983) can also cause denaturation 
of DNA during the extraction process. More importantly, the 
contamination of extracted DNA by organic solvents is unavoidable 
and creates vital problems for the biological investigations as the 
traditional organic solvents are known to be toxic to bioprocesses 
(Matsumoto et al., 2004; Albarino and Romanowski, 1994). 
Physical factors such as ionic strength, pH and temperature can 
also disturb the helical structure and cause denaturation (Cheng 
and Pettitt, 1992; Lindahl and Nyberg, 1972). Therefore, the 
development of potential molecular solvent is aimed to overcome 
these limitations and its application especially in the DNA 
biotechnology. 
 
Therefore, there is a great need to introduce other solvent for DNA 
such as ILs. Based on their remarkable properties, ILs have proved 
to be preferred solvents to replace traditional organic solvents and 
aqueous solution in many types of reactions. Over the last few 
years, several authors have reported the use of ILs in extraction 
and separation/purification of traces species of interest from 
complex matrixes including metal and organic compounds as well 
as amino acids (Han and Armstrong, 2007). ILs also have been 
used for gene delivery vectors, capillary electrophoresis and DNA 
isolation (Zhang et al., 2009b; Wang et al., 2007a; Qin and Li, 
2003). It has been reported that ILs are able to extract DNA without 
any contamination from proteins and metal specifies during the 
extraction process (Wang et al., 2007a). This finding provides an 
alternate approach for the measurement of DNA in ILs as well as 
for the separation/purification of trace amounts of DNA in real-world 
biological matrices. 
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1.3 Research Objectives 
 
This research was embarked with the main goal to show that ionic 
liquids (ILs) have good properties as molecular solvent for DNA. 
Hence, the experimental and computational studies were performed 
to fulfill the objectives as below: 
 
i) Experimental part 
 

1. To design and synthesize new alkylimidazolium-based ILs. 
2. To characterize the physico-chemical properties of the 

synthesized ILs. 
3. To elucidate the IL-DNA interaction using biophysical 

characterizations. 
 

ii) Computer modeling via MD simulation 
 

4. To study the properties and behavior of ILs and IL-DNA at 
molecular level. 

5. To determine the solvation free energy of nucleic acid bases 
in ILs. 
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