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Abstract of thesis presented to the Senate of Universiti Putra  

Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy 

 

SYNTHESIS, CHARACTERISATION AND ELECTRICAL PROPERTIES OF 

PYROCHLORE MATERIALS IN Bi2O3-CuO-M2O5 (M = Ta AND Nb) 

TERNARY SYSTEMS 

 

By 

 

CHON MUN PING 

 

April 2015 

 

Chairman: Tan Kar Ban, PhD 

Faculty: Science 

 

Detailed investigations of phase diagrams and electrical properties of novel pyrochlores 

in the Bi2O3-CuO-M2O5 (M = Ta and Nb) ternary systems were presented. The 

materials were synthesised through solid state reaction. Careful phase identification 

using X-ray diffraction analysis was performed to confirm the phase purities of the 

prepared materials and to determine the subsolidus areas in these systems. The Gibbs’ 

phase rule approach and disappearing phase method were applied for the construction 

of the phase diagrams. The complete subsolidus ternary phase diagrams of the BCN 

and BCT systems were determined using various samples which were prepared over a 

wide range of temperatures, i.e. 700°C-925°C and 700-950°C, respectively. Phase-pure 

BCN pyrochlores were found to crystallise in cubic symmetry, space group Fd3m, No. 

227 with lattice constants in the range of 10.4855 (5) < x < 10.5321 (3). The 

mechanism of this limited subsolidus series could be represented by a general formula, 

Bi3.08-xCu1.84+2x/9Nb3.08+7x/9O14.16+6x/9 (0 ≤ x ≤ 0.36).  

 

The cubic pyrochlore subsolidus area of BCT system could be described through two 

compositional variables in an overall general formula of Bi2.48+yCu1.92-xTa3.6+x-

yO14.64+3x/2-y: 0.00 (1) ≤ x ≤ 0.80 (1) and 0.00 (1) ≤ y ≤ 0.60 (1), respectively. On the 

other hand, other binary phases of Bi7Ta3O18, CuTa2O6 were prepared and characterised 

systematically for their phase formation, structural and electrical performance.  

 

Interesting electrical properties were found in BCT cubic pyrochlores for which these 

materials exhibited semiconducting behaviour with recorded activation energies 0.3-0.4 

eV. The dielectric constant, ε’ of BCT material was ~75 with high dielectric losses, in 

the order of 10
-2

-10
-1

 at room temperature and frequency of 1 MHz. A structurally 

related monoclinic phase Bi1.92Cu0.08(Cu0.3Ta0.7)2O7.06 was discovered and high ε’, ~70 

and dielectric loss were also recorded. The ac electrical conductivity of the material 

corresponded well to power-law frequency dependence with distinctive features of 

conductivity in different frequency regimes.  

 

The cubic phase of BCN materials had a relatively lower activation energy range, 0.2-

0.4 eV. Similar electrical behaviour was observed in BCN pyrochlores as to their 
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comparable electrical conductivities to those BCT materials. Meanwhile, the ε’ of BCN 

materials in the range of 45-70 and high dielectric losses (tan δ) of 0.04-0.12 were 

found. 

 

Scanning electron microscopy was performed in order to study the surface 

morphologies of the prepared single phase materials. The spherulite shaped grains were 

randomly distributed with visible pores observed in the materials. Fourier transform 

infrared spectroscopy (FTIR) was used to qualitatively identify the bond stretching and 

bending vibration modes of the pyrochlores. Meanwhile, Raman spectroscopy was 

employed as a complement technique for structural analysis. Thermal analyses showed 

no phase transition and weight loss in BCT and BCN materials. Good stoichiometry for 

the prepared compositions was also confirmed using inductively coupled plasma-

atomic emission spectroscopy (ICP-AES) by which a close agreement between the 

experimental and theoretical values were obtained, neither loss of Bi nor Cu was a 

problem during synthesis. 

 

Divalent cations (M), e.g. Zn, Mg, Ni, Ca, Pb and pentavalent cations (N), e.g. Ta and 

Sb were chemically introduced into selected BCN and BCT materials. A complete 

substitutional solid solution, Bi3.08Cu1.84-xZnxTa3.08O14.16 (0.0 ≤ x ≤ 1.84) was obtained; 

however, only a narrower solid solution limit was found in the BCN system with 

general formula, Bi2.72Cu1.92-xZnxNb3.36O14.40 (0.0 ≤ x ≤ 0.4). The recorded activation 

energies for Zn substituted BCT pyrochlores were in the range of 0.40-1.4 eV. 

Extensive solid solutions were also found for the Ta replacement by Sb dopant in the 

BCT system. The resulted activation energies did not change significantly but remained 

reasonably low, i.e. in the range of 0.30-0.35 eV. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia  

Sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 

SINTESIS, PENCIRIAN DAN SIFAT ELEKTRIK BAHAN PIROKLOR 

DALAM SISTEM TERNARI Bi2O3-CuO-M2O5 (M = Ta DAN Nb) 

  

Oleh 

 

CHON MUN PING 

 

April 2015 

 

Pengerusi: Tan Kar Ban, PhD 

Fakulti: Sains 

 

Penyelidikan mengenai gambar rajah fasa dan sifat elektrik dalam sistem baru ternari 

piroklor Bi2O3-CuO-M2O5 (M = Ta dan Nb) telan dikaji dengan teliti. Bahan piroklor 

telah disintesis melalui tindak balas dalam keadaan pepejal. Data pembelauan sinar X 

telah digunakan untuk mengenal pasti ketulenan fasa dan untuk menentukan kawasan 

subsolidus bagi kedua-dua sistem. Gambar rajah fasa ternari bagi sistem BCT dan BCN 

dibina dengan menggunakan aturan fasa Gibbs’ dan kaedah fasa menghilang. Sampel-

sampel yang disintesis dalam julat suhu antara 700°C-925°C dan 700-950°C telah 

digunakan untuk melengkapkan gambar rajah fasa sistem ternari subsolidus BCN dan 

BCT. Piroklor BCN fasa tulen menghablur dalam simetri kubik, kumpulan ruang Fd3m, 

No. 227 dengan pemalar kekisi dalam lingkungan 10.4855 (5) < x < 10.5321 (3). 

Mekanisme untuk siri subsolidus yang terhad ini boleh diwakilkan dengan formula am 

Bi3.08-xCu1.84+2x/9Nb3.08+7x/9O14.16+6x/9 (0 ≤ x ≤ 0.36).  

 

Kawasan subsolidus piroklor BCT dapat digambarkan melalui dua pembolehubah 

komposisi dengan formula am Bi2.48+yCu1.92-xTa3.6+x-yO14.64+3x/2-y: 0.00 (1) ≤ x ≤ 0.80 (1) 

and 0.00 (1) ≤ y ≤ 0.60 (1). Selain itu, fasa binari Bi7Ta3O18, CuTa2O6 telah disintesis 

dan ciri-ciri pembentukan fasa, struktur dan sifat elektrik juga dikaji dengan sistematik.  

 

Sifat elecktrik piroklor BCT menunjukkan ciri semikonduktor dengan tenaga 

pengaktifan antara 0.3-0.4 eV.  Pemalar dielektrik bagi bahan BCT adalah ~75 dan 

kehilangan dielektrik yang agak tinggi, iaitu dalam lingkungan 10
-2

-10
-1 

pada suhu bilik 

dan frekuensi 1 MHz. Fasa struktur yang berkaitan dengan fasa monoklinik 

Bi1.92Cu0.08(Cu0.3Ta0.7)2O7.06 telah ditemui dan mempunyai pemalar dielektrik pukal, 

~70 serta kehilangan dielektrik yang tinggi. AC kekonduksian elecktrik ini berkait 

rapat dengan hukum kuasa yang bergantung pada frekuensi di mana kekonduksian 

dalam rejim frekuensi yang berbeza boleh diwakili dengan ciri-ciri tersendiri.  

 

Fasa kubik BCN mempunyai tenaga pengaktifan yang rendah, 0.2-0.4 eV. Sifat elektrik 

yang ditunjukkan oleh kubik BCN adalah setanding dengan kubik piroklor BCT. 

Sementara itu, pemalar dielektrik, ε’ kubik BCN adalah dalam lingkungan 45-70 

manakala bagi nilai kehilangan dielektrik yang tinggi (tan δ), 0.04-0.12 telah dicatatkan.  
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Mikroskopi elektron pengimbas telah digunakan untuk mengkaji morfologi permukaan 

untuk sampel fasa tulen. Butiran berbentuk sferulit yang berliang dapat dilihat di atas 

permukaan sampel. Fourier spektroskopi inframerah (FTIR) digunakan untuk mengenal 

pasti regangan ikatan dan mod getaran lenturan piroklor. Selain daripada itu, 

specktroskopi Raman juga digunakan untuk menganalisa struktur piroklor. Analisis 

terma untuk piroklor BCT dan BCN tidak menunjukkan sebarang peralihan fasa dan 

kehilangan berat sampel. Komposisi stoikiometri untuk sampel yang dikaji juga turut 

dianalisa dengan spektroskopi pancaran atomik plasma ganding induktif (ICP-AES). 

Nilai eksperimen yang diperoleh adalah setanding dengan nilai teori sampel dan 

menunjukkan kehilangan Bi atau Cu tidak ketara.  

 

Kation divalen (M) seperti Zn, Mg, Ni, Ca, Pb dan kation pentavalen (N) Ta dan Sb 

telah didopkan ke dalam piroklor BCN dan BCT yang terpilih. Penggantian larutan 

pepejal yang lengkap dalam piroklor BCT Bi3.08Cu1.84-xMxTa3.08O14.16 (0.0 ≤ x ≤ 1.84) 

telah disediakan, namun larutan pepejal dalam sistem BCN dengan formula umum 

Bi2.72Cu1.92-xZnxNb3.36O14.40 adalah terhad (0.0 ≤ x ≤ 0.4). Tenaga pengaktifan yang 

dicatatkan dalam piroklor yang diganti dengan Zn berada dalam lingkungan 0.40-1.4 

eV. Bagi penggantian kation pentavalen Sb ke bahan BCT, had larutan pepejal yang 

terbentuk adalah ekstensif. Tenaga pengaktifan tidak menunjukkan perubahan yang 

ketara dan berada pada tahap rendah, iaitu 0.30-0.35 eV.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Electroceramics  

 

Research advancement in the field of electroceramics is driven by their technological 

applications. Microelectronics are the superior form of the ceramic substances whose 

properties and applications are found in many areas, such as power conversion and 

storage, communications, computation, automation, consumer products and medical 

industries. Electroceramics are widely applied in insulating materials, high dielectric 

capacitors, ultrasonic transducers, resistors, thin film capacitors and communications 

filters, solid oxide fuel cells (SOFC) and batteries. Therefore, their unique functional 

capabilities provide a wide spectrum of electrical and microelectronic devices and other 

related applications. 

In fact, the advanced functional components are made of integrated materials which are 

useful in the miniaturised systems where interfaces of the materials play a crucial role. 

The integration of electroceramic thin films onto the substrates and the combination of 

bulk ceramics of different kinds or other materials such as glasses, metals or polymers 

are common in the evolution of multifunctional components. The objectives of 

electrical and electronic components miniaturisation are to produce materials with the 

specific properties, required shapes and sizes within the specified dimensional 

tolerances and at reasonable cost. Electroceramics have experienced the progression 

from microtechnology towards nanotechnology. The nanosize effects and the 

application of new characterisation techniques that reveal the nanometric scale features 

are therefore of the realm of research (Setter et al., 2000).  

Practically, these materials are produced by conventional powder processing, tape 

casting or screen printing techniques and then followed by sintering processes. In the 

late 1980s, these techniques were progressively supplemented by thin film deposition 

techniques such as sputtering, pulsed laser deposition (PLD), chemical solution 

deposition (CSD) and the chemical vapour deposition (CVD). During the deposition 

processes, these materials are prepared on a microscopic scale without powder 

processing as an intermediate step because the synthesised temperatures are below the 

typical sintering temperatures of the bulk ceramics (Setter et al., 2000). 

 

Electroceramics are in general comprised of dielectrics, conductive, magnetic and 

optical ceramics. Examples for the dielectrics are piezo, pyro, ferroelectrics whereas 

the superconductors, conductors and semiconductors with both ionically and/or 

electronically are categorised as conductive ceramics. The primary distinction between 

a dielectric (or insulator) and a semiconductor lies in the difference between their 

energy band gap in which the latter has a smaller energy band gap and the dominant 

charge carriers are generated mainly by thermal excitation in the bulk under normal 

ranges of temperature and pressure ranges (Kwan, 2004). In dielectric, charge carriers 

are mainly injected from the electrical contacts or other external sources simply 

because the band gap of dielectric is relatively larger and therefore, higher amount of 

energy is required for the band-to-band transition.  The occurrence of dielectric 



© C
OPYRIG

HT U
PM

2 

 

phenomena are the interaction between the free charges with the external forces, such 

as electric fields, magnetic fields, electromagnetic waves, mechanical stress or 

temperature. For non-magnetic dielectric materials, the phenomena are encompassed 

by mainly electric polarisation, resonance, relaxation, energy storage, energy 

dissipation, thermal, mechanical, optical effects and their interrelations. In general, 

electroceramics offer a wide variety of functions, notably in microelectronics and 

communication components. The fabrication and miniaturisation of electrical and 

electronic devices are prevalent which had made much fascination in the research 

development of electroceramics. 

 

 

1.2 Electrical Conduction 

 

Electrical conduction is primarily governed by the manner of generating charge carriers 

in a material. The electrical conductivities of the materials are ranging from 

superconductors through those of metals, semiconductors and highly resistive 

insulators. Electrical conductivity can be divided into three different categories (Kwan, 

2004) which outlined as below: 

 

i) Intrinsic conductivity: Charge carriers are developed in the material based on 

its chemical structure. 

 

ii) Extrinsic conductivity: Charge carriers are initiated by material impurities, 

which may be introduced by fabrication processes or deliberately doped into it 

for a distinct purpose. 

 

iii) Injection-controlled conductivity: Charge carriers are injected into the material 

mainly from metallic electrodes via a metal-material interface. 

 

The electrical conductivity follows the empirical equation as given in Equation (1.1)  

 

σ = σ0 exp (-Eσ/kT)                (1.1) 

 

where σ0 is the pre-exponential factor, Eσ is the activation energy, k is the Boltzman 

constant and T is the temperature in kelvin.  In reality, the electrical conduction 

involves various transport processes and under certain condition, it may involve both 

ionic and electronic conductions (Kwan, 2004). 

Generally, the fundamental charge carriers are the cations, anions, electrons and 

electron holes and the total conductivity is given as  

σ = σc+ σa+ σn+ σp                 (1.2) 

 

where σc, σa, σn, σp are the cation, anion, electron and electron hole conductivities, 

respectively. The individual conductivity may be written in terms of their transport 

numbers: 

 

           (t): σc = tcσ, σa = taσ, σn = tnσ and σp = tpσ             (1.3) 

 

and the sum of the transport numbers of all the charge carriers are equivalent to unity:  



© C
OPYRIG

HT U
PM

3 

 

 

                                   tc + ta + tn + tp = 1                     (1.4) 

The summation of ionic conductivity (1.5) and electronic conductivity (1.6) gives rise 

to the total electrical conductivity (1.7) (Manning, 1962). 

 

                                          σion = σc + σa                             (1.5) 

 

                                            σel = σn + σp                            (1.6) 

 

                                              σ = σion + σel                        (1.7) 

 

It is common that only one type of charge carrier prevails the charge transport and the 

contribution from minority carriers is insignificant. The mobilities of electrons and 

electron holes in oxides are generally several orders of magnitude (~10
4
-10

8
) greater 

than those of the ions. In some cases, the oxide may still be essentially an electronic 

conductor though the concentration of electron or electrons holes is lower than that of 

the ionic charge carriers. The relative importance of ionic and electronic conductivities 

will always vary incredibly with temperature and oxygen partial pressure (Manning, 

1962).  

 

In fact, most metal oxides are electronic conductors at elevated temperatures. The 

conductivities of these oxides increase with increasing temperature and the reason is 

due to the increase of the number of electronic defects with temperature. Transition 

metal monoxides are metallic conductors for which their conductivities decrease with 

increasing temperature as the mobility of electronic defects decrease with increasing 

temperature. For certain oxides, e.g. p-conducting acceptor-doped perovskites 

demonstrate metallic-like conductivity in which the conductivity decreases with 

temperature and the depreciation of conductivity is attributed to decreased number of 

electron holes with increasing temperature, thus the conductivity cannot be classified as 

metallic (Manning, 1962). 

 

The electronic conductivity, σel of a semiconducting oxide is given in Equation (1.6). 

As mentioned earlier, one type of charge carrier will usually dominate and in some 

cases where an oxide is close to stoichiometric, both n- and p-typed conductivity may 

contribute significantly to the electronic conductivity.   

 

 

 

1.3 Dielectric Materials and Type of Polarisations 

 

The important electrical property of dielectric materials is relative permittivity (ε’), 

which is also known as dielectric constant. It relies greatly on the frequency of the 

alternating electric field or the rate of the change of the time-varying field. Likewise, 

the chemical structure and the imperfections such as defects of the materials, as well as 

some other physical parameters including temperature and pressure play a significant 

role in determining the dielectric properties (West, 1999). A dielectric material is made 

up of atoms or molecules that possess one or more basic types of electric polarisation, 

including electronic, atomic (or ionic), dipolar and interface/space charge polarisations. 

The application of an electric field causes the formation and movement of dipoles is 

called polarisation. When an electric field is applied to the material, dipoles within the 

atomic or molecular structure are induced and aligned with the direction of that applied 
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field. Any permanent dipoles that are previously present in the material are also aligned 

with that particular field. In this case, the material is said to be polarised. The degree of 

the overall polarisation is affected by the time variation of the electric field as each type 

of the polarisation requires time to perform.  

 

 

1.3.1 Electronic Polarisation 

 

It is always present in atoms or molecules in all kinds of materials. When the atom is 

located in an electric field, the charged particles experience an electric force as a result 

of which the centre of the negative charge cloud is displaced with respect to the nucleus. 

A dipole moment is induced by electric field and the atom is said to be electronically 

polarised (Raju, 2003).  

 

 

1.3.2 Atomic/Ionic Polarisation 

 

It is sometimes referred as vibrational polarisation due to the distortion of the normal 

lattice vibration and the electric field causes the atoms or ions of a polyatomic 

molecule to be displaced relative to each other. In other words, this is the displacement 

of positive ions with respect to negative ions and the induced dipole moment is slightly 

dependent on temperature (Kwan, 2004).           

   

 

1.3.3 Dipolar/Orientational Polarisation 

 

This polarisation is different from the electronic and ionic polarisations in which it can 

occur even when an external electric field is not applied and this happens only in 

materials consisting of molecules or particles with a permanent dipole moment. The 

electric field causes the reorientation of the dipoles toward the direction of the field. 

When an electric field is applied to a polar dielectric, the following steps will take 

place: 

 

i) The distance between the centres of the negative and positive electric charges 

increases slightly and the dipole moment becomes greater due to the action of 

electric field because the dipole experiences tension. 

 

ii) The dipoles turn so that the positively charged end faces the negative electrode 

and the negatively charged end faces the positively electrode. The sum of the 

individual dipole moments will now not be equal to zero (Rajput, 2004).  

 

 

1.3.4 Space Charge Polarisation 

 

The space charge or translational polarisation is observed in materials containing 

intrinsic free charges such as ions, holes or electrons. This polarisation is caused by the 

accumulation of charges at the multiphase of dielectrics. When one of the phases has a 

higher resistivity than the other, the charge moves on the surface when the material is 

placed in an electric field. This usually found in ferrites and semiconductors at elevated 

temperatures (Raju, 2003).  
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1.4 Overview of Pyrochlore and Applications 

Oxides are the biggest family of solid state materials. Different types of oxides emerge 

from a wide variety of structures, bonding characters and compositions and these 

parameters have strong correlation with their physical and electrical properties. With 

general knowledge on the chemical nature of different elements, the information is 

used to design new materials with the desired properties for many applications. 

Examples of mixed metal oxides with the formula A2B2O7 are oxide pyrochlores which 

show good chemical and thermal stability. Pyrochlore oxides are useful in various 

devices and applications due to their broad spectrum of properties such as electrical, 

magnetic, dielectric, optical and catalytic behaviour. These properties are generally 

controlled by the factors, i.e. ionic size, polarisability of the ions, electronic 

configuration and the preparative conditions. They could be viewed as doubled unit 

cells of derivative fluorite structure, AO2 for which the cationic sites are differentiated 

into both A and B sites. As a consequence, hundreds of different compositions of 

pyrochlores with various properties could be yielded. Pyrochlore structure has great 

tolerance towards vacancies and therefore, defect pyrochlores with vacancies in A 

and/or O sites can attribute to many compounds in this family.  

Pyrochlore materials can be used as solid electrolytes, oxygen electrodes, catalysts as 

well as in the active and passive electronic components e.g. high permittivity 

microwave filters, thermistors, gas sensor, switching elements and thick film resistors 

(Boivin et al., 1998). Stoichiometric oxide pyrochlores containing elements in their 

maximum oxidation state and high ionic polarisability always exhibit good dielectric 

properties, e.g. Cd2Nb2O7, Ln2Ti2O7 are excellent ferroelectric materials. Dielectric 

constants are fairly large in many niobates, tantalates and titanates and these materials 

can be used as high permittivity ceramics (Tan et al., 2005; Sreekantan et al., 2008; 

Khaw et al., 2009). Thermistors are commonly made from oxide components with 

spinel or related structure, e.g. Bi2CrNbO7 and Bi2CrTaO7 with the pyrochlore 

structures are used for temperature compensation, voltage stabilisation and current time 

relays. Many Pb- and Bi- containing precious metals are used to make thick film 

resistors with low and reproducible sheet resistance. These materials are unaffected by 

humidity and have negligibly small temperature coefficient of resistance (Van Loan, 

1972).  

Zirconate pyrochlores, e.g. Pr2Zr2O7 doped with 10% In2O3 could also be the promising 

materials to be used as electrodes for open cycle magnetohydrodynamic (MHD) power 

generation schemes as they have excellent corrosion and shock resistance, good 

electronic and thermal conductivity (Meadowcroft, 1968). However, more 

experimentation and feasibility studies are required as the commercial utilisation of 

MHD power generation is still much in the experimental stages. On the other hand, 

pyrochlores materials are also applied in switching elements that show sudden and 

abnormally great change in electrical conductivity at a given temperature. The change 

in electrical conductivity can be caused by direct variation of temperature, the element 

by external source or by internal heating effects by the passage of current. Examples 

VO2 and doped BaTiO3 are both applied in switching elements for temperature 

sensitive electrical switches and fire extinguishers (Subramanian et al., 1983). 
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Pyrochlores also play a crucial role in the nuclear waste disposal and the understanding 

of the detailed phase stability relationships enables a careful screening of additives for 

fixation of radioactive ions. Examples such as Ln, Zr, Mo, Ru are introduced into 

pyrochlore or the related crystalline phases for easy transportation, handling and 

disposal. Besides, pyrochlores are also used as microwave dielectrics in microwave 

resonators. The development of microwave dielectric materials depends strongly on the 

materials with high quality factor, Q (reciprocal of dielectric loss) (Q > 10,000). The 

recent device manufactures also emphasise on the process compatibility with low 

resistivity metals and allow low Q dielectrics (Q≈200). Ceramics in the bismuth zinc 

niobate (BZN) and bismuth zinc tantalate (BZT) ternary systems with pyrochlore 

structure are promising dielectrics because of their suitable Q values and the 

temperature coefficient of capacitance which can be compositionally tailor-made to a 

low value (Nino et al., 2001; Youn et al., 2002). 

 

 

 

1.5 Formation of Pyrochlore and Solid Solution 

 

A broad range of cations is substituted at the A and B sites of pyrochlores and this 

leads to hundreds of different compositions with various properties. In Bi2O3-ZnO-

Nb2O5 (BZN) system, an ideal composition could be Bi3Zn2Nb3O14 in which it is 

presumed that the Zn cation is apportioned evenly at both A- and B- sites. Alternatively, 

the chemical formula of BZN could be written as (Bi1.5Zn0.5)(Zn0.5Nb1.5)O6O’. 

Bismuth-based pyrochlore structure has a great tolerance for accepting different ions at 

the A, B and O sites and the unambiguous correlation among the ionic radii of the A 

and B cations is crucial in order to maintain the stability of pyrochlores. Nevertheless, 

the stability of the pyrochlore structure also depends on the electronegativity of the 

cations, charge neutrality and thermodynamic stability of the competitive phases. The 

combination of A and B cations should yield the same average charge in order to 

maintain electroneutrality. The stability range has been stipulated by the cation radii 

ratio RA/RB. The substituted cations must have appropriate ionic radii to fit into the 

pyrochlore structure based on the upper and lower radius limits at which these values 

are given as 0.87 < rA < 1.17, 0.58 < rB < 0.775 Å and 0.96 < rA < 1.29, 0.54 < rB < 0.76 

Å for A2
3+

B2
4+

O7 and A2
2+

B2
5+

O7 systems, respectively. The stability ranges are 1.46 < 

RA/RB < 1.80 and 1.4 < RA/RB < 2.2, respectively for the combinations of 3+, 4+ and 2+, 

5+ cations (Subramanian et al., 1983). In bismuth-based pyrochlores, the ionic radii of 

B cations, e.g. niobium, tantalum and antimony are comparable in which they are 0.64 

Å for both Nb, Ta and 0.60 Å for Sb under 6 coordination environment. Hence, the 

weighted RA/RB average for both α-(Bi1.5Zn0.5)(Nb1.5Zn0.5)O6O’ (BZN) and 

(Bi1.5Zn0.5)(Ta1.5Zn0.5)O6O’ (BZT) is 1.66 and for (Bi1.5Zn0.5)(Sb1.5Zn0.5)O6O’ (BZS) is 

1.74, which are well within the stability limit for the pyrochlore structure (Mergen et 

al., 1996; Shannon et al., 1976).   

 

It is worthwhile to highlight that a solid solution is referred as a crystalline phase that 

can have variable composition. Substitutional solid solutions and interstitial solid 

solutions are two simple types of solid solutions where the former replaces an atom or 

homovalent ion in the parent structure and the later involves the introduced species 

occupies a site that is either empty or no ions/atoms are left out. There are certain 

prerequisites that must be met to form substitutional solid solutions, i.e. the ions that 

replace each other must have same charge and similar size. Extensive solid solutions 
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generally form at high temperatures and the formation of solid solutions at lower 

temperatures may be more restricted or barely prevailed (West, 1999). 

Meanwhile, ions that are substituted by other ions of different charges and additional 

changes involving creation of vacancies or interstitials (ionic compensation) or 

electrons or holes (electronic compensation) are known as heterovalent or aliovalent 

substitution, where these are solid solutions with complex formation mechanism. In 

addition, two substitutions could take place simultaneously and the substituting ions 

may be of different charge, providing that overall electroneutrality is preserved (West, 

1999). 

 

Practically, solid solution of pyrochlores could be formed by substitution of cations at 

either A or B site of A2B2O7. Inevitably, the substitution may lead to the formation of 

vacancies, holes or interstitial oxygen that may be related to the interesting electrical 

properties.  

 

 

 

1.6 Problem Statement 

Intensive research has been focused on the materials of Bi2O3-ZnO-Nb2O5/Ta2O5 

systems due to their interesting dielectric properties. In this project, copper is chosen as 

the alternative substituent for zinc and investigation of the structural, phase relations 

and electrical properties of pyrochlores in the Bi2O3-CuO-Nb2O5/Ta2O5 (BCN/BCT) 

systems is considerably limited. It is important to study the phase compatibilit ies 

between binary and/or ternary phases in both systems especially to determine the most 

appropriate condition for sample preparation. An attempt to enhance the electrical 

properties of the prepared materials by chemical doping is also part of the 

investigation. The focus of this study is, therefore, to develop an understanding of the 

correlation between electrical properties and compositions in these complicated ternary 

systems. 

 

1.7 Objectives 

 

1. To synthesise new pyrochlore phases and to construct the phase diagrams of 

Bi2O3-CuO-M2O5 (M = Nb and Ta) ternary systems using conventional solid 

state method. 

2. To identify the phase purities and to investigate the thermal and structural 

properties of single phase materials using physical and chemical techniques. 

3. To determine the electrical properties of the prepared samples using ac 

impedance spectroscopy. 

4. To enhance the electrical properties and solubility of the pyrochlores through 

chemical doping.  
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