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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy  

 

MICROSTRIP TECHNIQUE AND MODELING FOR DETERMINATION OF 
MICROWAVE PROPERTIES OF Ni-Zn FERRITE 

 

By 

FAHMIRUDDIN ESA 

January 2015 

Chairperson : Associate Professor Zulkifly Abbas, PhD  

Faculty  : Faculty of Science 

Ni-Zn ferrite has been such important topics since 1900 but the reported 
works are mainly discussed on the sample preparation technique also 
microstructural and morphological analysis. Even though microwave 
properties of Ni-Zn ferrite have also been discovered by various workers 
using waveguide technique however air gap problems are still remain as 
the major issues. Furthermore, the effect of different Ni-Zn ratio in     
NixZn1-xFe2O4 on the reflection, transmission and absorption properties in a 
wideband and higher frequency using microstrip technique has not been 
investigated. This thesis describes a detailed study on the application of a 
microstrip technique to determine the microwave properties of           
NixZn1-xFe2O4 in the frequency range between 1 GHz and 10 GHz. The x 
compositions of the spinel ferrite were 0.1, 0.3, 0.5, 0.7, 0.9. The       
NixZn1-xFe2O4 samples were prepared by 10 hours sintering at 900oC with 
4oC/min increment from room temperature. Particles showed phase purity 
and crystallinity in powder X-ray diffraction (XRD) analysis. Surface 
morphology measurement of Scanning Electron Microcopy (SEM) was 
conducted on the plane surfaces of the molded samples which gave 
information about grain morphology, boundaries and porosity. The 
tabulated grain size for all samples was in the range of 62 nm – 175 nm. 
Energy dispersive X-ray analysis (EDX) was done to confirm the elemental 
composition of the Ni-Zn ferrite samples by their weight and atomic 
percentage of each element for certain particular composition taken from 
specific area of the micrograph.  
 
The transmission (S21) and reflection (S11) properties of the microstrip 
loaded with NixZn1-xFe2O4 were extensively studied theoretically using finite 
element method.  The microstrip measurements were conducted using a 
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HP8720B vector network analyzer. The electromagnetic field distribution of 
the microstrip covered with Ni0.5Zn0.5Fe2O4 sample was visualized using 
FEM software COMSOL. It was found that NixZn1-xFe2O4 with higher 
values of x absorbed more microwave energy which in turn reduced the 
reflection and transmission coefficients. A good linear relationship was 
found between the absorption loss       and fractional composition x at 3 
GHz. The waves were totally absorbed by NixZn1-xFe2O4 at frequencies 
above 7 GHz for x  0.5. An optimization routine was also introduced in 
this work to determine both the permittivity and permeability of 
Ni0.5Zn0.5Fe2O4 sample by matching the theoretical and measured values of 
S11 and S21. The complex permittivity and permeability of Ni0.5Zn0.5Fe2O4 
sample along the frequency ranges were linked to the other findings. The 
measured S-parameters were compared with the results obtained using 
the Nicolson Ross Weir (NRW), Finite Element Method (FEM) and 
optimization method. The optimization method provides the highest 
accuracy when compared with the measured |S11| and |S21| with a mean 
error 0.0403 and 0.0177, respectively.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 

KAEDAH MIKROSTRIP DAN PEMODELAN UNTUK MENENTUKAN 
SIFAT GELOMBANGMIKRO Ni-Zn FERRITE   

 

Oleh 

FAHMIRUDDIN ESA 

Januari 2015 

Pengerusi  : Profesor Madya Zulkifly Abbas, PhD 
 
Fakulti  : Fakulti Sains 

Ni-Zn ferit telah menjadi topik yang penting sejak tahun 1900 tetapi kerja-
kerja yang dilaporkan adalah lebih kepada perbincangan mengenai teknik 
penyediaan bahan juga analisis struktur mikro dan morfologi. Walaupun 
ciri-ciri gelombang mikro telah dipelopori oleh pelbagai penyelidik dengan 
menggunakan teknik pandu gelombang namun masalah ruang udara 
adalah masih menjadi isu besar. Tambahan lagi, kesan nisbah Ni-Zn 
dalam NixZn1-xFe2O4 terhadap ciri pantulan, penghantaran dan penyerapan 
dalam jalur lebar dan frekuensi tinggi menggunakan teknik mikrostrip 
belum lagi dikaji. Tesis ini memperihalkan kajian yang mendalam terhadap 
aplikasi teknik mikrostrip untuk menentukan ciri-ciri gelombang mikro bagi 
NixZn1-xFe2O4 dalam frekuensi antara 1 GHz dan 10 GHz. Komposisi x bagi 
ferit spinel adalah 0.1, 0.3, 0.5, 0.7, 0.9. Sampel NixZn1-xFe2O4 telah 
disediakan menggunakan kaedah pensinteran selama 10 jam pada suhu 
900 oC dengan kadar kenaikan suhu sebanyak 4oC/min dari suhu bilik. 
Zarah sampel yang terbentuk menunjukkan fasa keaslian dan 
penghabluran dalam analisis pembelauan sinaran-X (XRD). Pengukuran 
morfologi permukaan menggunakan imbasan elektron mikrofotokopi 
(SEM) telah dijalankan pada permukaan satah sampel yang telah 
diacukan untuk mendapatkan maklumat berkenaan morfologi, sempadan 
dan keliangan butiran. Saiz butiran untuk semua sampel adalah dalam 
lingkungan 62 nm – 175 nm. Analisis serakan tenaga sinaran-X (EDX) 
dijalankan untuk mengenalpasti komposisi unsur sampel Ni-Zn ferit 
berdasarkan peratusan berat dan atom untuk setiap unsur dalam 
komposisi tertentu yang diambil dari kawasan mikrograf yang spesifik. 

Ciri penghantaran (S21) dan pantulan (S11) bagi mikrostrip yang berisi 
dengan sampel NixZn1-xFe2O4 telah dikaji terperinci berdasarkan teori 
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menggunakan kaedah elemen terhingga (FEM). Pengukuran mikrostrip 
dijalankan dengan menggunakan HP8720B analisis rangkaian vektor 
(VNA). Taburan medan elektromagnetik bagi mikrostrip tertutup dengan 
sampel Ni0.5Zn0.5Fe2O4 telah digambarkan menggunakan perisian FEM 
COMSOL. Hasil kajian ini mendapati NixZn1-xFe2O4 dengan nilai x yang 
tinggi menyerap lebih banyak tenaga gelombang mikro yang seterusnya 
merendahkan pekali pantulan dan penghantaran. Hubungan linear yang 
baik telah didapati antara kehilangan penyerapan       dan pecahan 
komposisi x pada 3 GHz. Gelombang ini telah diserap sepenuhnya oleh 
NixZn1-xFe2O4 pada frekuensi lebih daripada 7 GHz bagi sampel dengan   x 
 0.5. Rutin pengoptimuman turut dijalankan untuk menentukan ketelusan 
dan ketelapan sampel Ni0.5Zn0.5Fe2O4 dengan memadankan nilai S11 and 
S21 yang diperolehi daripada perkiraan dan pengukuran. Ketelusan dan 
ketelapan kompleks bagi sampel Ni0.5Zn0.5Fe2O4 sepanjang julat frekuensi 
telah dikaitkan dengan penemuan lain. S-parameter yang diperolehi 
daripada pengukuran dibandingkan dengan S-parameter yang diperolehi 
daripada Nicolson Ross Weir (NRW), kaedah elemen terhingga (FEM) dan 
kaedah pengoptimuman. Kaedah pengoptimuman memberi keputusan 
yang paling tepat apabila dibandingkan dengan |S11| dan |S21| dengan 
purata ralat masing-masing 0.0403 dan 0.0177. 
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CHAPTER 1 

 

INTRODUCTION 

 

Electromagnetic (EM) waves at microwave frequencies have found many 
applications in various fields such as wireless telecommunication system, 
radar, local area network, electronic devices, mobile phones, laptops and 
medical equipment (Lim et al., 2003; Maeda et al., 2004; Jing et al., 2009; 
Lakshmi et al., 2009). The effect of growth in various applications has led 
to many electromagnetic interference (EMI) problems that has to be 
suppressed to acceptable limits. EMI reducing materials (absorbers) may 
be dielectric or magnetic (Grimes and Grimes, 1993) and the design 
depends on the frequency range, the desired quantity of shielding and the 
physical characteristics of the devices being shielded. This EMI could be 
suppressed by using ferrite materials (magnetic absorbers) due to their 
various electrical and magnetic properties. A case study on the 
development of EMI shielding ferrite has been made by Chandran and 
Cursetji (1999). Thus it is important to determine their high frequency 
characteristics for the applications of EM in the high GHz ranges (Arshak 
et al., 2001; Da Silva and Mohallem, 2001; Zabetakis et al., 2005; Hwang, 
2006). 
 
 
1.1  EMI Shielding Materials 
 
EMI shielding and suppression materials can be broadly categorized into 
three groups (Ramasamy, 1997); EMI shielding materials, surge or 
transient suppression components and EMI filter materials. The EMI 
shielding is the use of conductive materials such as copper, aluminum, 
silver and nickel in the form of adhesive tape or paint coatings to reduce 
radiated EMI reflection or absorption. It is used for a wide variety of 
commercial/military EMI shielding applications. 
 
The second category is briefly explained in the transient voltage protection 
for alternating current (AC) and direct current (DC) power circuits. Circuits 
or devices protection against high voltage transients or surges of 
thousands volts caused by lightning strike are intensely needed. Electronic 
system might be damaged by the unexpected change in voltages if proper 
protection is not provided. Suppression components such as gas diodes, 
silicon varistors, metal oxide varistors, transient voltage suppressor (TVS) 
diodes and clamping principles may be connected indirectly in parallel 
circuits using decoupling impedances in order to achieve good protection 
to the circuit.          
 
Low pass EMI filters are used to attenuate conducted noise currents in 
variety of applications including shielded enclosures and other electrical or 
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electronic subsystems. Application of filter is very important, whether to 
protect the equipment form incoming interference or to suppress the 
interference generated by the equipment to minimum level or to protect the 
signal lines. The performance of the filter is being judged by its insertion 
loss and attenuation characteristics. Lossy line or dissipative filters can 
perform well at high frequency (500 MHz to 10 GHz) and have the great 
advantage of removing the noise energy in the form of heat. Ferrite beads 
and ferrite rod are the example of lossy line EMI absorptive filters.   
 
The shielding property of the ferrite is strongly influenced by the process 
parameters and microstructure (Chandran and Cursetji, 1999). The 
properties of ferrites which strongly influence the EMI suppression 
capability include the chemical composition, crystalline structure, grain 
size, nature of porosity, thickness of grain boundary and 
magnetocrystalline anisotropy. Each of this property shows an important 
role in the end properties of the ferrites and thus necessitates fine tuning of 
each of these to suit the end applications. 
 
 
1.1.1  Magnetic Absorber 
 
Ferrites are metallic oxides that contain iron for example that occur in 
nature and have been known as hematite. The divalent iron (FeO) contains 
two electrons and the trivalent iron (Fe2O3) contains three electrons with 
uncompensated magnetic moments. In magnetite, half the trivalent iron 
occupies a type A crystallographic sites while the divalent iron and the rest 
of the trivalent iron occupy type B crystallographic sites. At zero Kelvin all 
moments at a given type site are aligned parallel, and the two types of 
sites are antiparallel with each other. The result is the net magnetic 
moment of the divalent iron. Because of the cancellation and dilution by 
oxygen, the magnetic moment is much smaller than for the metals. The 
permeability is therefore also much less. Since hematite is conductive, it is 
not suitable to be as an absorber. Useful material has the divalent iron 
replaced by another divalent metal; a common one is a mixture of nickel 
and zinc. Spinel material is cubic and moments are initially in equivalent 
crystallographic directions. 
 
 
1.1.2  Nickel Zinc Ferrite  
  
Nickel Zinc Ferrite (Ni-Zn ferrite), together with manganese zinc ferrites 
(Mn-Zn ferrite) is a major member of spinel ferrite family. The spinel ferrites 
can be magnetized or demagnetized easily by externally applied magnetic 
fields indicating that they have soft magnetic behavior. In addition, they 
have good magnetic properties with enhanced performance when 
compared to metallic magnets such as Fe and layered Fe-Si alloys 
(Sugimoto, 1999). Besides, they have high electrical resistivity, high 
magnetic permeability and possible modification of intrinsic properties over 
wide spectrums which enable them to be used as ceramic materials 
(Hench and West, 1990).  
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Ni-Zn ferrite ceramics are the preferred ceramic material for high frequency 
applications in order to suppress generation of Eddy current (Verma et al. 
1999). Although Ni-Zn ferrite ceramics have high electrical resistivity to 
prevent Eddy current generation, they have moderate magnetic 
permeability compared to Mn-Zn ferrites. However, the electrical and 
magnetic properties of these ferrite ceramics are heavily influenced by its 
microstructural features such as grain size, the nature of grain boundaries 
and the extent and nature of porosity. The microstructural features of 
interest could be attained via chemical composition and high temperature 
processing (Jonker and Stuijts, 1971). 
 
The aim of this study is to determine electromagnetic properties of Ni-Zn 
ferrites prepared at different chemical composition based on chemical 
formula NixZn1-xFe2O4 with 0.1 ≤ x ≤ 0.9 that sintered at constant 
temperature. The variations in the microstructures, elemental composition 
and alterations in scattering parameters as well as their electromagnetic 
properties of the Ni-Zn ferrites are the concern of this study. 
 
 
1.2 An Overview of Microwave Technique 
 
Microwave Non-Destructive Technique (MNDT) has been used effectively 
to measure electromagnetic materials. The technique was firstly described 
in the early 1950’s and since then many studies being published. Before 
this time, there was no equipment for the measurement of such short 
electromagnetic waves. The research and development in this technique 
enable the measurement of electromagnetic materials at higher microwave 
frequencies using more reasonable and robust generators. 
 
The technique allows the measurement of electromagnetic materials at the 
microwave region with frequency and wavelength approximately between 
300 MHz to 300 GHz and 10-3 and 10-1 m, respectively (Ida, 1992). The 
measurement is only limited to non-conducting material since MNDT has 
minimal penetration in good conducting material. However, microwaves 
are affected by a large number of material properties. The properties that 
can be measured by MNDT in lossless or lossy dielectrics are material 
composition, uniformity of the material, moisture and contamination 
content and other varied properties such as porosity.     
 
Other conventional technique is filling a section of a standard closed 
transmission line such as a waveguide to measure microwave permittivity 
and permeability (Singh et al., 2000; Sharma and Afsar, 2011; Bayrakdar, 
2011). However, this technique requires several types of sample 
preparation upon the measurement across the frequency ranges such as 
from 1.7 to 12.4 GHz. The frequency ranges include five frequency bands 
that are R (1.70-2.60 GHz), S (2.60-3.95 GHz), G (3.95-5.85 GHz), C 
(5.85-8.20 GHz) and X (8.20-12.40 GHz). Each band requires a different 
waveguide dimension and hence the volume of sample used also must be 
different for each band.  
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The other great measurement method in a wide band frequency for 
magnetic thin film materials is microstrip transmission method that have 
been studied by Saed (2005) and Wu et al. (2009) which the sample is 
deposited on rigid substrate. The microstrip transmission method is one of 
planar transmission line method since the thin film materials can be easily 
loaded in the measurement test fixture. The microstrip transmission line is 
based on a reflection and transmission technique adapted to a two port 
microstrip transmission line (Liu et al., 2005). The permittivity and 
permeability of the thin film can be determined by analyzing the full S-
parameters of the two ports.  
 
The microstrip line technique is easy to use, quick, non-destructive and 
has high sensitivity and accuracy especially for practical routine work. In 
addition, it should be able to measure samples with small and large cross 
section. 
 
 
1.3 Microwave Characterization Techniques 
 
Microwave behaves similar to light wave in terms of travel in straight lines, 
refract, reflect, diffract, scatter and interfere according to the same physical 
length. The only difference between them is a wavelength. The wavelength 
of microwave is usually 105 larger than the wavelength of light wave. 
Therefore, the microwave tends to interact with materials and structures on 
a macroscopic scale. For instance, microwaves are capable of penetrating 
most nonmetallic materials, reflecting and scattering from internal 
boundaries and interacting with molecules (Bahr, 1982).  
 
The interaction between microwaves and materials can be deduced from 
Maxwell’s equations and material properties. The relations define a variety 
of properties such as mode of propagation, reflection, refraction, 
transmission and impedance. Both permittivity and permeability are 
complex numbers of which the imaginary part is associated with losses. 
This rich and complex system of properties allows a very wide range of 
measurement techniques at microwave frequencies. To date, many 
different methods have been proposed for microwave measurements of 
electromagnetic properties of material (Afsar et al., 1986; Ghodgaonkar et 
al., 1990; Queffelec et al., 1994; Baker-Jarvis et al., 1995; Faircloth et al., 
2006).         
 
 
1.4 Electromagnetic Modeling of Wave Interaction with Materials  
 
The microwave sensor design problem is formally solved using the 
conventional analytical techniques but recently, some of numerical 
techniques have been utilized and mostly favored. This is due to the 
increase in computer’s processor speed. Besides, the numerical methods 
are more accurate, easy and time saving compared to the traditional 
empirical modeling method which deals with many complex mathematic 
equations. Currently, variation of the numerical methods, such as finite 
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difference time-domain method (FDTD), method of moment (MoM) and 
finite element method (FEM) are being commercialized. In this work, 
COMSOL interactive environment software for modeling and solving 
scientific and engineering problems is used. The software enables the 
visualization view of the system work which provides clear understanding 
about the designed working system. In this study, the FEM is used to 
separate the solution region of the designed open microstrip and fully 
covered microstrip into small elements. The FEM provides a clear contour 
of field distribution for both cases. The procedure of FEM simulation of the 
microstrip will be explained in Section 4.4.  
 
 
1.5 Problem Statement 
 
Ni-Zn ferrite has been a subject of intense research since 1900. However, 
the reported works were mainly on sample preparation techniques followed 
by conventional characterization techniques such as XRD, FESEM, SEM 
etc. Although microwave properties of Ni-Zn ferrite have also been 
investigated by various workers (Ma et al., 2008; Verma et al., 2003) but 
none has given a detailed description of Ni-Zn ferrite properties in a wide 
frequency range. The frequency limitation was due to the fact that different 
microwave techniques utilized different types of sample holder.  At the 
lower end of the microwave frequencies (less than 1 GHz), the fixture 
holder is usually in the form of parallel plate. At higher frequencies, the 
closed coaxial and waveguide techniques are the most commonly used 
method to determine the transmission and reflection properties of 
materials. Both techniques are prone to measurement error due to the 
demand of fitting the samples snugly into the sample holder without 
leaving air gaps between the sample and the walls of the sample holder. 
An alternative solution is to measure the reflection coefficient of the sample 
using an open ended coaxial technique. Permittivity can be calculated from 
the measured reflection coefficient but the open ended coaxial technique 
could not provide information regarding the transmission and absorption 
properties of the sample. Microstrip techniques have also been used to 
measure permittivity and permeability of ferrites. However, the effect of 
different fractional composition x in Ni-Zn ferrite (NixZn1-xFe2O4) on the 
transmission and absorption properties of the sample have not been 
investigated.   
 
This thesis presents a detailed study on the effect of different composition 
of x in Ni-Zn ferrite overlay on the reflection, transmission and absorption 
of a microstrip transmission line in the frequency range from 1 GHz to 10 
GHz.  The mixing process of Ni-Zn ferrite samples were prepared using 
agate mortar and characterized using XRD, SEM and EDX. This work 
presents a pioneering study on the application of Finite Element Method 
(FEM) to calculate the scattering parameters of a microstrip covered with 
Ni-Zn ferrite. The effect of different values of x in NixZn1-xFe2O4 on the 
reflection, transmission and absorption properties are experimentally 
investigated.   
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1.6 Objectives 
 
The main objectives of this work are 
 

1. To prepare Ni-Zn ferrite samples using conventional mixing 
process method according to NixZn1-xFe2O4 formula (0.1 ≤ x ≤ 0.9) 
and characterize the structure and surface morphology of Ni-Zn 
ferrite by employing XRD and SEM as well as traced element 
identified by EDX.     
 

2. To determine the complex permittivity of pure NiO, ZnO, Fe2O3 and    
NixZn1-xFe2O4 in the frequency range between 1 GHz and 10 GHz. 

 
3. To clarify the variation in S11 and S21 with frequency for an open 

microstrip and covered microstrip on the effect of different 
fractional composition x in Ni-Zn ferrite in the range frequency of  1 
– 10 GHz. 

 
4. To clarify the relationship between power loss and fractional 

composition of x in NixZn1-xFe2O4 as well as the electric and 
magnetic field distribution inside the Ni-Zn ferrite sample using 
FEM.    

 
5. To estimate complex permittivity and permeability of Ni-Zn ferrite 

sample by applying an optimization procedure via MATLAB in 
conjunction with the comparison of the results of S11 and S21 for 
covered microstrip between measurements, Nicolson Ross Weir 
(NRW), FEM and optimization.     

 
 
1.7 Thesis Outline  
 
This thesis is divided into six chapters and six appendices. Chapter 1 is a 
general introduction to give an overview of microwave techniques, nickel 
zinc ferrite material, electromagnetic modeling of wave interaction with 
microstrip and characterization techniques involving morphological and 
electrical properties. This chapter also discusses the problem statements 
and research objectives in details.  
 
Chapter 2 reviews on the crystal structure of spinel ferrites as well as the 
cation distribution. Several microwave measurement techniques for the 
determination of material electromagnetic properties including commercial 
coaxial probe, free space, resonant cavities, waveguide and coaxial line 
technique as well as their limitations. The chapter also gives an overview 
of microstrip transmission line technique and also the advantageous in 
performing microwave characterization measurement. Several numerical 
methods are also reviewed in the structure analysis including the basic 
procedure, advantage and limitations of each technique.  
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Chapter 3 presents a general survey on the characteristic impedance and 
effective permittivity for open microstrip using quasi-TEM approximation. 
Comparison of characteristic impedance calculated between quasi-TEM 
and FEM is shown to be in a good agreement. The calculation of 
characteristic impedance of covered microstrip is performed by finite 
element method (FEM). The calculation of reflection and transmission 
coefficients of the microstrip line is considered in wave approach. The FEM 
formulation applies to determine the reflection and transmission coefficient 
of the covered microstrip. The calculation of S11 and S21 are also been 
reviewed.   
 
Details of sample preparation, structure characterization, surface 
morphology and         S-parameters experimental setup using microstrip 
technique will be discussed in Chapter 4. This chapter also describes the 
implementation procedure of the covered microstrip that has been 
performed using COMSOL software.  
 
Chapter 5 describes microstructural and electromagnetic characterization 
results in details. This chapter shows the results of comprehensive S-
parameters (S11 and S21) measurements for open microstrip as well as for 
microstrip covered with NixZn1-xFe2O4 samples using Vector Network 
Analyzer 8720B (VNA). Permittivity of NixZn1-xFe2O4 samples are also 
performed using Agilent Dielectric Probe Kit 85070B, which can be used 
as an initial guess in the optimization process. There are also comparisons 
of obtained S-parameters using NRW and FEM methods. An optimization 
procedure to improve NRW formulas and to determine S-parameters of 
Ni0.5Zn0.5Fe2O4 material by finding the best values of complex permittivity 
and permeability will be discussed in this chapter.  
 
Finally, in Chapter 6, conclusions are drawn and suggestions are made for 
future research activities in this field.    
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