MECHANOCHEMICAL SYNTHESIS OF NANOSTRUCTURED NICKEL AND NICKEL-ZINC FERRITES AND INVESTIGATION OF THEIR STRUCTURAL AND MAGNETIC PROPERTIES

ABDOLLAH HAJALILOU

ITMA 2015 12
MECHANOCHEMICAL SYNTHESIS OF NANOSTRUCTURED NICKEL AND NICKEL-ZINC FERRITES AND INVESTIGATION OF THEIR STRUCTURAL AND MAGNETIC PROPERTIES

By

ABDOLLAH HAJALILOU

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

June 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork without limitation is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

MECHANOCHEMICAL SYNTHESIS OF NANOSTRUCTURED NICKEL AND NICKEL-ZINC FERRITES AND INVESTIGATION OF THEIR STRUCTURAL AND MAGNETIC PROPERTIES

By

ABDOLLAH HAJALILOU

June 2015

Chairman: Associate Prof. Mansor Hashim, PhD
Institute: Institute of Advanced Technology

For several past decades, studies of the relationship between morphological and magnetic properties of ferrites have been focusing only on the final sintering temperature, largely neglecting the parallel evolutions of morphological and magnetic properties and their relationship at various sintering temperatures. Hence, here, a new method of high energy ball milling was employed to attempt synthesizing two technologically applicable soft magnetic materials, namely Ni-ferrite and Ni$_{1-x}$Zn$_x$Fe$_2$O$_4$ ferrite, for Zn contents $x = 0.36$ and 0.64, and to elucidate the relationship between morphological, magnetic and electrical properties at different sintering temperatures. Subsequently, common oxides of 0.4CaO + 0.8SiO$_2$ were added to the Ni$_{0.36}$Zn$_{0.64}$Fe$_2$O$_4$ ferrite to observe the resulting property changes.

In the first work section, NiFe$_2$O$_4$ nanoparticles were synthesized by a mechanochemical reaction of NiO and Fe$_2$O$_3$ powders in a high energy planetary ball mill. The X-ray diffraction (XRD) results indicate that the NiO/Fe$_2$O$_3$ particles reacted in a solid-state reaction mode, producing nickel ferrite particles ranging from 5 to 18 nm in size after 18 h of milling. The effects of milling time, rotation speed, and ball to powder weight ratio were investigated and the contribution of each parameter was evaluated by using the Taguchi robust design method. It was found that rotational speed had the most effect on the crystallite size. By sintering 30 h-activated compacted samples from 900 to 1300 °C, with 100 °C increments, a dependence of magnetic and electrical properties on sintering temperature was found, thus improving magnetic properties i.e. saturation magnetization and reduction of electrical resistivity with increase in the sintering temperature.

In the second work section, high-energy ball milling with a subsequent heat treatment method was carried out to synthesize nanocrystalline Ni$_{1-x}$Zn$_x$Fe$_2$O$_4$ ferrite with $x = 0.36$ and 0.64 from a powder mixture of pure metal Zn, Fe$_2$O$_3$ and NiO. The effect of milling atmospheres (argon, air and oxygen), milling time and sintering temperature was investigated. The XRD results indicated that a single phase of Ni-Zn ferrite was not produced after 30 h milling in the all three atmospheres of air, argon and oxygen for
both compositions except for the milled samples in argon for Zn content at $x = 0.64$. However, single phase Ni-Zn ferrite was later produced after sintering the other samples of 30 h-milled powders at 500 °C for 2 h. The 30 h-milled powders in different atmospheres were pressed into pellet/toroid form and subjected to sintering in air in the same conditions from 400 to 900 °C for 2 h. Increasing sintering temperature improved the magnetic properties but degraded the DC electrical resistivity. In terms of milling atmosphere, however, the milled-sintered samples in argon presented the lowest crystallite size, as compared to the two other atmospheres, they exhibited the highest Ms. By increasing the Zn content the lattice parameter and density of the samples increased while the saturation magnetization, crystallite size, porosity and resistivity decreased. Furthermore, by increasing milling time from 6 h to 18 h a synthesis temperature of $\text{Ni}_{0.36}\text{Zn}_{0.64}\text{Fe}_2\text{O}_4$ remarkably was reduced from 500 to 300 °C, respectively. The Ni-Zn ferrite formation mechanism was detected to be in three stages: oxidation of zinc, diffusion of ZnO in Fe_2O_3 thus the forming ZnFe_2O_4, and diffusion of NiO in ZnFe_2O_4 thus forming Ni-Zn ferrite. Furthermore, Fourier transform infrared spectroscopy (FT-IR) results suggested the presence two absorption bands for octahedral and tetrahedral sites in the range of 350-700 cm$^{-1}$.

Finally, the common oxides ($X = 0.4\text{CaO} + 0.8\text{SiO}_2$) were added in different moles ($X = 0, 0.02, 0.06, 0.12, 0.24$ and 0.48) to Fe_2O_3, Zn, and NiO. The mixed powders were mechanically alloyed for 12 h and then were sintered at 1200 °C for different times. It was found that there was a dependence of spinel ferrite properties i.e. microstructure, electrical and magnetic properties with both X contents and sintering time. For example, magnetic parameters such as saturation magnetization (Ms) and induction magnetization (Bs) degraded while resistivity improved by increasing the X content.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doctor Falsafah

SINTESIS MEKANOKIMIA FERIT NIKEl AND FERIT NIKLE-ZINK BERSTRUKTUR NANO DAN PENYELIDIKAN SIFAT-SIFAT STRUKTUR DAN MAGNETIK BAHAN-BAHAN TERSEBUT

Oleh

ABDOLLAH HAJALILOU

Jun 2015

Pengerusi: Prof. Madya Mansor Hashim, PhD
Institut: Institut Teknologi Maju

Untuk beberapa dekad yang lalu, kajian mengenai hubungan diantara sifat morfologi dan sifat magnetik ferit hanya tertumpu kepada suhu pensiteran akhir, dengan mengabaikan evolusi selari sifat morfologi dan sifat magnetik serta hubungan kedua-duanya pada suhu pensiteran yang pelbagai. Oleh itu, suatu kaedah baru pengisaran bebola berkuaas tinggi telah digunakan untuk mensintesis dua bahan yang boleh diaplikasikan dalam teknologi bahan magnet lembut, iaitu ferit-Ni dan ferit-Ni$_{1-x}$Zn$_x$Fe$_2$O$_4$ bagi kandungan Zn, $x = 0.36$ dan 0.64, dan untuk menjelaskan hubungan diantara sifat-sifat morfologi, magnetik dan elektrik pada suhu pensiteran yang berbeza. Seterusnya, oksida-oksida biasa iaitu 0.4CaO + 0.8SiO$_2$ telah ditambah ke ferit Ni$_{0.36}$Zn$_{0.64}$Fe$_2$O$_4$ untuk melihat hasil kepada perubahan sifat bahan.

Dalam bahagian kerja pertama, zarah nano NiFe$_2$O$_4$ telah disintesis menggunakan tindak balas mekanokimia dari serbuk NiO dan Fe$_2$O$_3$ dalam pengisar bebola planetari berkuaas tinggi. Keputusan pembelauan sin ar-X (XRD) menunjukkan zarah-zarah NiO/Fe$_2$O$_3$ bertindak balas dalam mod tindak balas keadaan pepejal, menghasilkan zarah ferit nikel bersaiz dari 5 hingga 18 nm selepas 18 jam tempoh pengisaran. Kesaran masa pengisaran, kelajuan putaran dan nisbah berat bebola kepada serbuk telah diselidik dan sumberan setiap parameter telah dinilai menggunakan pendekatan reka bentuk mantap Taguchi. Didapati kelajuan putaran sangat memberi kesan ke atas saiz kristalit. Dengan mensinter dari suhu 900 hingga 1300 ºC, dengan kenaikan 100 ºC, bagi sampel-sampel yang diaktifkan 30 jam dan telah dimampatkan, didapati satu kebinaan yang sama di mana satu sifat-sifat magnetik dan elektrik terhadap suhu pensiteran; meningkatkan sifat-sifat magnetik iaitu pemagnetan tepu dan pengurangan kerintangan elektrik dengan peningkatan suhu pensiteran.

Dalam bahagian kerja kedua, pengisaran bebola berkuaas tinggi dengan kaedah rawatan haba seterusnya telah dijalankan untuk mensintesis hablur nano ferit-Ni$_{1-x}$Zn$_x$Fe$_2$O$_4$ dengan $x = 0.36$ dan 0.64 dari campuran serbuk logam asli Zn, Fe$_2$O$_3$ dan NiO. Kesaran medium persekitaran semasa pengisaran (argon, udara, dan oksigen), masa pengisaran, suhu pensiteran telah disiasat. Keputusan XRD menunjukkan fasa tunggal ferit-Ni-Zn tidak terhasil selepas 30 jam dikisar dalam tiga medium persekitaran iaitu udara, argon dan oksigen untuk kedua-dua komposisi kecuali untuk pengisaran dalam medium argon.
bagi sampel yang mengandungi Zn pada x = 0.64. Namun begitu, fasa tunggal ferit-Ni-Zn bagi sampel-sampel yang lain yang telah dikisar selama 30 jam terhasil selepas pensinteran pada suhu 500 °C selama 2 jam. Peningkatan suhu pensinteran menambah baik sifat magnetik tetapi merendahkan kerintangan elektrik arus terus. Dari segi persekitaran pengisaran, sampel-sampel yang dikisar dan disinter dalam argon, walaupun bagaimanapun menghasilkan saiz kristalit terkecil dibandingkan dengan dua persekitaran lain, yang mempermerankan Ms tertinggi. Dengan meningkatkan kandungan Zn, parameter kekisi dan ketumpatan sampel bertambah manakala pemagnetan tepu, saiz hablur, keliangan dan kerintangan berkurang. Tambahan pula, dengan meningkatkan masa pengisaran dari 6 jam hingga 18 jam suhu sintesis Ni0,36Zn0,64Fe2O4 telah amat berkurang dari 500 kepada 300 °C, masing-masing. Mekanisme pembentukan NiZnFe2O4 telah dikenalpasti berada dalam bentuk tiga fasa: pengoksidaan zink, peresapan ZnO ke dalam Fe2O3 dengan demikian membentuk ZnFe2O4, dan peresapan NiO ke dalam ZnFe2O4 dengan demikian membentuk ferit Ni-Zn. Seterusnya, keputusan FT-IR mencadangkan dua jalur penyerapan bagi tapak-tapak oktahedral dan tetrahedral dalam julat 350 – 700 cm⁻¹.

Akhirnya, oksida biasa (X = 0.4CaO + 0.8SiO₂) telah ditambah dalam mol yang berbeza (X = 0, 0.02, 0.06, 0.012, 0.24 dan 0.48) ke dalam Fe₃O₄, Zn, dan NiO. Campuran serbuk-serbuk itu telah dialoi secara mekanikal selama 12 jam dan telah disinter pada suhu 1200 °C pada masa berbeza. Kajian mendapati, terdapat suatu kebergaangan sifat ferit spinel seperti struktur mikro, sifat-sifat elektrik dan magnetik terhadap kandungan X dan juga masa pensinteran. Sebagai contoh, parameter-parameter magnet seperti pemagnetan tepu (Ms) dan aruhan pemagnetan (Bs) telah berkurang, manakala kerintangan telah bertambah dengan penambahan kandungan X.
ACKNOWLEDGEMENTS

Firstly, all praises are due to Allah SWT who had given blessing, strength and knowledge in finishing this thesis. Salawat and Salam also offer to the Prophet Muhammad SAW.

Secondly, I would like to express my sincere gratitude to my supervisor Associate Professor Mansor Hashim for his untiring support in my Ph.D program. Thank you for providing me a platform to carry out this research as well as for helping me to complete the thesis including the challenging part that lies behind it. Without his encouragement and constant guidance, I could not have finished this thesis. Besides my supervisor, I would like to thank the rest of my supervisor committee: Assoc. Prof. Dr. Halimah Mohamed Kamari and Dr. Mohamad Amran Bin Mohd Salleh for their encouragement and insightful comments. I am thanking also all students and staff at ITMA who helped me for providing the equipment as well as the faculty science staff.

I am exceedingly grateful to my family, especially my brothers, Rasoul and Asghar, for their warm supports, prayers, love and encouragement they provided me. Alongside my parents, my sisters, thank you for being with me in my life.

My thanks will not be completed until I acknowledge my group members. However, I am afraid to miss one name from the group list so I generalized them that I am so thankful for their timely help and cooperation during this study. Allah knows who they are. To my numerous friends and postgraduate students around me, Hassan Azimi and Marvie Garcia Muyot, thanks for everything.

Last but not the least, the Universiti Putra Malaysia Graduate Research Fellowship (IGRF) section, I am so grateful and honored that the fellowship provided me the financial support for this research work.
I certify that a Thesis Examination Committee has met on 16 June 2015 to conduct the final examination of Abdollah Hajalilou on his thesis entitled "Mechanochemical Synthesis of Nanostructured Nickel and Nickel-Zinc Ferrites and Investigation of their Structural and Magnetic Properties" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Khamirul Amin bin Matori, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Zulkifly bin Abbas, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Azmi bin Zakaria, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Ramaswamy Murugan, PhD
Professor
Pondicherry University
India
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 June 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mansor Hashim, PhD
Associate Professor
Institute of Advanced Technology
Universiti Putra Malaysia
(Chairman)

Halimah Mohamed Kamari, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Mohamad Amran Bin Mohd Salleh, PhD
Senior Lecturer
Department of Chemical and Environmental Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• This thesis is my original work;
• Quotations, illustrations and citations have been duly referenced;
• This thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• Intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to Universiti Putra Malaysia (Research) Rules 2012;
• Written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: __________________________ Date: ________________

Name and Matric No.: Abdollah Hajalilou (GS33099)
Declaration by Members of Supervisory Committee

This is to confirm that:
• The research conducted and the writing of this thesis was under our supervision;
• Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________
Name of Chairman of Supervisory Committee: Mansor Hashim, PhD

Signature: __________________
Name of Member of Supervisory Committee: Halimah Mohamed Kamari, PhD

Signature: __________________
Name of Member of Supervisory Committee: Mohamad Amran Bin Mohd Salleh, PhD
TABLE OF CONTENTS

ABSTRACT	i
ABSTRAK	iii
ACKNOWLEDGEMENTS	v
APPROVAL	vi
DECLARATION	viii
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS AND SYMBOLS	xxii

CHAPTER

1 INTRODUCTION

1.1 Background of the study
1.2 The Microstructural-magnetic relationship of Soft Ferrites
1.3 Problem statements
1.4 Project objectives
1.5 Thesis outline

2 LITERATURE REVIEW

2.1 Introduction
2.2 Some Aspects of Doping and Temperature Effects on Soft Ferrites
2.3 Spinel Ferrite Preparation
2.3.1 Sol-Gel Method
2.3.2 Chemical Precipitation Technique
2.3.3 Conventional Solid-State Method
2.4 Mechanical Alloying (MA)
2.4.1 History of Mechanical Alloying
2.4.2 Mechanical Alloying Process for Soft Magnetic Ferrites
2.4.3 Mechanical Alloying (MA) process
2.4.4 Process Variables
2.4.4.1 Type of Mill
2.4.4.2 Grinding Medium of Milling
2.4.4.3 Rotation Speed of Milling
2.4.4.4 Milling Time
2.4.4.5 Ball-to-Powder Weight Ratio (BPR)
2.4.4.6 Milling Atmosphere
2.5 Microstructural Considerations
2.5.1 The Effects of Grain Size on Magnetic, Electrical and Dielectric Properties
2.5.2 The Effects of Density and Porosity on Magnetic Behavior
2.5.3 Grain Boundary Consideration
2.5.4 The Effects of Composition and Temperature on
Magnetic Behavior

3 THEORY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>Sintering</td>
<td>21</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Categories of Sintering</td>
<td>22</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Driving Forces of Solid-state Sintering</td>
<td>23</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Stages of Sintering</td>
<td>23</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Mechanisms of Sintering</td>
<td>24</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Grain Growth and Coarsening</td>
<td>25</td>
</tr>
<tr>
<td>3.2.5.1</td>
<td>Normal Grain Growth</td>
<td>26</td>
</tr>
<tr>
<td>3.2.5.2</td>
<td>Abnormal Grain Growth</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Fundamental of Magnetization</td>
<td>26</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Diamagnetism</td>
<td>28</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Paramagnetism</td>
<td>28</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Ferromagnetism</td>
<td>29</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Antiferromagnetism</td>
<td>29</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Ferrimagnetism</td>
<td>29</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Superparamagnetism</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Classification of ferrites</td>
<td>32</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Spinel Ferrites Crystal Structure</td>
<td>32</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Site preference of Ions in spinel ferrites</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>Magnetic Properties of Ferrites</td>
<td>34</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Intrinsic Properties</td>
<td>34</td>
</tr>
<tr>
<td>3.5.1.1</td>
<td>Saturation Magnetization (Ms)</td>
<td>34</td>
</tr>
<tr>
<td>3.5.1.2</td>
<td>Curie Temperature (θ_C)</td>
<td>34</td>
</tr>
<tr>
<td>3.5.1.3</td>
<td>Magnetic Anisotropy</td>
<td>35</td>
</tr>
<tr>
<td>3.5.1.4</td>
<td>Magnetostriction (λ)</td>
<td>35</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Extrinsic Properties</td>
<td>36</td>
</tr>
<tr>
<td>3.5.2.1</td>
<td>Grain Size and Porosity</td>
<td>36</td>
</tr>
<tr>
<td>3.5.2.2</td>
<td>Magnetic Domains and their Walls</td>
<td>36</td>
</tr>
<tr>
<td>3.5.2.3</td>
<td>Electrical Resistivity</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Magnetic Losses</td>
<td>38</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Eddy current losses</td>
<td>38</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Residual Losses</td>
<td>39</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Hysteresis losses</td>
<td>39</td>
</tr>
<tr>
<td>3.7</td>
<td>Soft and Hard magnetic materials</td>
<td>39</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Soft magnetic materials</td>
<td>39</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Hard magnetic materials</td>
<td>39</td>
</tr>
<tr>
<td>3.8</td>
<td>Hysteresis loop</td>
<td>40</td>
</tr>
<tr>
<td>3.9</td>
<td>Dielectric Properties</td>
<td>41</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Dielectric Polarization</td>
<td>41</td>
</tr>
<tr>
<td>3.10</td>
<td>Mechanism of mechanical Alloynig</td>
<td>42</td>
</tr>
</tbody>
</table>

4 METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Alloys Selection</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Research Design</td>
<td>44</td>
</tr>
<tr>
<td>4.4</td>
<td>Raw Chemical Materials</td>
<td>45</td>
</tr>
<tr>
<td>4.5</td>
<td>Sample Preparation Procedure and Carried out Experimental</td>
<td>45</td>
</tr>
</tbody>
</table>
4.5.1 NiFe$_2$O$_4$ ferrite system 45
4.5.2 Ni$_{1-x}$Zn$_x$Fe$_2$O$_4$ ferrite system 46
4.5.3 Ni$_{0.36}$Zn$_{0.64}$Fe$_2$O$_4$-$(0.4$CaO + 0.8SiO$_2$) system 49

4.6 Toroid/Pellet Preparation 50
4.7 Heat Treatment (Sintering/Annealing/firing) 51
4.8 Materials Characteristics Measurements 51
4.8.1 Physical/Structural Measurement 51
 4.8.1.1 X-ray Diffraction Spectroscopy (XRD) 51
 4.8.1.2 Transmission Electron Microscopy (TEM) 54
 4.8.1.3 Field Emission Scanning Electron Microscopy (FeSEM) and Energy Dispersive X-Ray (EDX) 55
 4.8.1.4 Atomic force microscopy (AFM) 56
4.8.2 Samples Density Measurement 56
4.8.3 Magnetic Characteristic Measurements 57
 4.8.3.1 M-H hysteresis loop 57
 4.8.3.2 B-H hysteresis loop 58
4.8.4 Dielectric Behaviors Measurement 58
4.8.5 Resistivity Measurement 58
4.8.6 Infra-Red (IR) Spectroscopy 59
4.8.7 Thermal Analysis 59
4.8.8 Error Estimate 60

5 RESULTS AND DISCUSSION
5.1 Introduction 61
5.2 Mechnochemically synthesis of Ni-ferrite 61
 5.2.1 Phase and structural evaluation 61
 5.2.2 Crystal structure evaluation of Fe$_2$O$_3$ during mechanical activation 63
 5.2.3 Crystal structure evaluation of NiO during mechanical activation 65
 5.2.4 Crystal structure evaluation of NiFe$_2$O$_4$ during mechanical activation 66
5.3 Mechanism 67
5.4 Alloying Process Optimization 68
 5.4.1 Evaluation of the effect of milling time 68
 5.4.2 Evaluation the effect of rotation speed 71
 5.4.3 Evaluation of the effect of ball-to-powder weight ratio (BPR) 73
5.5 Taguchi Method 73
 5.5.1 Experiment design 74
 5.5.1.1 Controlling and non-controlling factors 74
 5.5.1.2 Determining the optimal conditions 75
 5.5.1.3 Analysis of variance (ANOVA) 77
5.6 Thermal analysis 78
5.7 Characterization of sintering process 80
5.8 DC electrical resistivity 86
5.9 Magnetic characterization 87
5.10 FT-IR characterization of NiFe$_2$O$_4$ nanoparticles 91
5.11 Mechanical alloying process in the system of Ni$_{0.64}$Zn$_{0.34}$Fe$_2$O$_4$ 93
5.11.1 Phase and Structural evaluation in the milled samples in different atmospheres for different times 93
5.11.2 Crystal structure evaluation of NiO and Fe₂O₃ during ball milling 96
5.11.3 Evaluation of morphological changes in the ball-milled samples 98
5.11.4 Effect of milling time and atmosphere on the mean crystallite size and lattice strain 100
5.12 Thermal analysis 101
5.13 Evaluation of phase, structural, morphological variations in the sintered samples 102
5.14 Electrical resistivity 113
5.15 Absorption band evaluation by FT-IR spectroscopy 116
5.16 Magnetic behavior evaluation of Ni₀.₆₄Zn₀.₃₆Fe₂O₄ 118
5.17 Mechanical alloying process in the system of Ni₀.₃₆Zn₀.₆₄Fe₂O₄ 123
5.17.1 Phase and Structural evaluation in the milled samples in different atmospheres for different times 124
5.17.2 The effect of milling time on the crystallite size and lattice strain 129
5.17.3 Evaluation of morphological changes in ball-milled samples 131
5.18 Evaluation of phase, structural, morphological variations in the sintered samples 132
5.19 DC electrical resistivity in the composition of Ni₀.₆₄Zn₀.₃₆Fe₂O₄ 141
5.20 Dielectric characteristics of nanocrystalline Ni₀.₃₆Zn₀.₆₄Fe₂O₄ 143
5.21 Magnetic behavior evaluation of Ni₀.₃₆Zn₀.₆₄Fe₂O₄ 146
5.22 The effect of milling time on synthesis temperature 152
5.23 Effects of additives on the microstructure of Ni-Zn ferrite and its electrical and magnetic properties 161
5.23.1 Effect of different percentage of additives 162
5.23.2 Effect of sintering time at the constant percentage of additives 167

6 CONCLUSIONS AND SUGGESTIONS
6.1 Conclusions 173
6.2 Suggestions 176

REFERENCES 177
APPENDICES 190
BIODATA OF STUDENT 193
LIST OF PUBLICATIONS 194

xiii
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Sintering stages</td>
</tr>
<tr>
<td>3.2</td>
<td>Presented Units and Quantities employed in Magnetism</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary of Various Kinds of Magnetic Behavior</td>
</tr>
<tr>
<td>3.4</td>
<td>Summary of the various types of ferrite crystal structure identified by variation in the Fe$_2$O$_3$-MeO modifier oxide ratios (Louh et al., 2004)</td>
</tr>
<tr>
<td>3.5</td>
<td>Site preference of Ions in some spinel ferrites (Goldman, 1999)</td>
</tr>
<tr>
<td>4.1</td>
<td>Parameters for Ball-Milling of NiFe$_2$O$_4$</td>
</tr>
<tr>
<td>4.2</td>
<td>Estimated error for the sample features measurements</td>
</tr>
<tr>
<td>5.1</td>
<td>Structural factors of the ball-milled NiO powder</td>
</tr>
<tr>
<td>5.2</td>
<td>Lattice constant, calculated and observed values of plane spacing d, and indices for nickel ferrite</td>
</tr>
<tr>
<td>5.3</td>
<td>Structural properties of powder particles as a function of milling time</td>
</tr>
<tr>
<td>5.4</td>
<td>Structural properties of powder particles as a function of rotation speed</td>
</tr>
<tr>
<td>5.5</td>
<td>The main controlling parameters and their levels</td>
</tr>
<tr>
<td>5.6</td>
<td>The conditions of the experiments based on the orthogonal array L9</td>
</tr>
<tr>
<td>5.7</td>
<td>The mean S/N ratio for each level of the parameters for crystallite size based on Taguchi design</td>
</tr>
<tr>
<td>5.8</td>
<td>ANOVA for S/N ratio of the crystallite size</td>
</tr>
<tr>
<td>5.9</td>
<td>Variation some characteristics of Ni-ferrite nanocrystalline with sintering temperature</td>
</tr>
<tr>
<td>5.10</td>
<td>The values of Ms and n$_B$ with elevating sintering temperature</td>
</tr>
<tr>
<td>5.11</td>
<td>The variation of average crystallite size and lattice strain as well as lattice parameter of the NiO, and Fe$_2$O$_3$ powder particles as a function of milling time</td>
</tr>
</tbody>
</table>
5.12 Average crystallite size (d) and the lattice strain (ε) induced by milling according to the Williamson-Hall approach
5.13 Average crystallite size (d) and the lattice strain (ε) after sintering according to the Williamson-Hall approach
5.14 Lattice Parameter, Theoretical Density, Experimental Density, Porosity and Grain size for milled samples under air, argon, and oxygen atmospheres sintered in the range temperature of 400 - 800 ºC
5.15 Room temperature DC electrical resistivity of Ni$_{1-x}$Zn$_x$Fe$_2$O$_4$ ferrite (x = 0.36) for 30 h-milled sample in different atmospheres sintered from 500 to 900 ºC
5.16 The values of Ms and n$_B$ with elevating sintering temperature in the samples milled under different atmospheres
5.17 Average values of crystallite size (d) and the lattice strain (ε) for milled samples according to the Williamson-Hall approach
5.18 Mean crystallite size (d) and lattice strain (ε) of Ni-Zn ferrite at different temperatures
5.19 Lattice Parameter, Theoretical Density, Experimental Density, Porosity and Grain size for milled samples under air, argon, and oxygen atmospheres sintered in the range temperature of 500 - 900 ºC
5.20 Room temperature DC electrical resistivity of Ni$_{1-x}$Zn$_x$Fe$_2$O$_4$ ferrite (x = 0.64) for 30 h-milled samples in different atmospheres sintered from 500 to 900 ºC
5.21 The values of Ms and n$_B$ with the elevating sintering temperature in the samples milled under different atmospheres
5.22 Mean crystallite size and the strain induced by milling process based on Williamson–Hall relation in Zn-NiO-Fe$_2$O$_3$ system for milled and milled-sintered samples
5.23 Structural, electrical, and magnetic characteristics of the samples sintered at 1200 ºC for 240 min with different percentages of X = 0.4CaO + 0.8 SiO$_2$
5.24 Structural, electrical, and magnetic characteristics of the two types of samples at different sintering times
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mechanical ways applied to fabricate the nano-sized/nanocrystalline soft magnetic materials (Chicinas, 2006)</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Phase content of mixtures as a function of milling time in the Me-O-Fe system (Padella et al., 2005)</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>General production pattern of sintering process.</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Different types of sintering in the A-B phase diagram system</td>
<td>22</td>
</tr>
<tr>
<td>3.3</td>
<td>Fundamental phenomena happening during process of sintering under the driving force for sintering, $\Delta(A\gamma)$</td>
<td>23</td>
</tr>
<tr>
<td>3.4</td>
<td>Schematic of the sintering mechanisms for a system of two particles (Kang, 2005)</td>
<td>25</td>
</tr>
<tr>
<td>3.5</td>
<td>Superparamagnetic particles behavior at the presence and without external applied magnetic field (Zalich, 2005)</td>
<td>31</td>
</tr>
<tr>
<td>3.6</td>
<td>Sphere model of the spinel structure indicating octahedral and tetrahedral site positions between oxygen anions (Louh et al., 2003)</td>
<td>33</td>
</tr>
<tr>
<td>3.7</td>
<td>Hysteresis loop of (a) soft and (b) hard magnetic materials</td>
<td>40</td>
</tr>
<tr>
<td>3.8</td>
<td>Ball-powder-ball collision of powder mixture during mechanical alloying (Suryanarayana, 2004)</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>Flow chart for the preparation and characterization of morphological and magnetic properties of the NiFe$_2$O$_4$</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>Flow chart for the preparation and characterization of Ni$_{1-x}$Zn$_x$Fe$_2$O$_4$ ferrite system</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>Flow chart for the preparation and characterization of Ni${0.36}$Zn${0.64}$Fe$_2$O$_4$–(0.4CaO + 0.8SiO$_2$) system</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>Schematic Diagram of the XRD (Cullity and Stock 2001)</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>An Optical Image Showing (a) TEM copper Grid covered with a Lacey Carbon Film, (b) A Lacey Carbon Film (www.soquelec.ca/calibspec90-92b.asp)</td>
<td>54</td>
</tr>
<tr>
<td>4.6</td>
<td>Schematic of the interaction of Primary Electrons Beams of TEM with Sample</td>
<td>55</td>
</tr>
<tr>
<td>4.7</td>
<td>Block diagram of AFM</td>
<td>56</td>
</tr>
</tbody>
</table>
4.8 Density measurement by Archimedes principle

5.1 X-ray diffraction patterns taken from the NiO/Fe$_2$O$_3$ powder mixture after different milling times; NiO (●), Fe$_2$O$_3$ (▼), NiFe$_2$O$_4$ (■)

5.2 Determination of Fe$_2$O$_3$ lattice parameter in the NiO-Fe$_2$O$_3$ system using the Nelson-Riley technique

5.3 Fe$_2$O$_3$ lattice parameters a (nm), c (nm), and the ratio c/a vs. milling time

5.4 FeSEM (a) and TEM (b) image of NiFe$_2$O$_4$ nanoparticles with its particle size distribution histograms after 18 h milling

5.5 The internal lattice strain and average crystallite size as a function of milling time

5.6 XRD patterns of NiO/Fe$_2$O$_3$ powders ball milled at different RPMs by keeping constant milling time at 30 h and BPR 20:1; NiO (●), Fe$_2$O$_3$ (▼), NiFe$_2$O$_4$ (■)

5.7 XRD pattern of NiFe$_2$O$_4$, 30 h milling as a function of BPR (by keeping constant milling time at 30 h and RPM at 20:1); NiO (●), Fe$_2$O$_3$ (▼), NiFe$_2$O$_4$ (■)

5.8 Mean S/N ratio for each level of the parameters for crystallite size based on Taguchi design

5.9 Average crystallite size for each level of the parameters based on Taguchi design

5.10 DSC heating and cooling curves for 30 h-activated sample

5.11 DTA curves traced for the 30 h-activated sample at different heating rates

5.12 XRD patterns of the 30 h-activated sample sintered at different temperatures for 2 h; NiFe$_2$O$_4$ (■)

5.13 FeSEM images of (a) 30 h-activated samples sintered at (b) 900, (c) 1000, (d) 1100, (e) 1200 and (f) 1300 °C with their corresponding grain size distribution histograms

5.14 Plot LnD vs. 1/T for Ni-ferrite samples

5.15 Effect of grain size, porosity, temperature and density on the electrical resistivity (ρ)
5.16 (a) B-H hysteresis loop for sintered at different temperatures and
(b) Plot of Hc versus average grain size

5.17 Room temperature M-H hysteresis loops of 30 h-activated NiFe₂O₄
nanoparticles sintered at different temperatures and (b) Variation of
Ms and Hc with sintering temperature

5.18 FT-IR spectra of nickel ferrite nanoparticles before and after
annealing at different temperatures

5.19 XRD patterns taken from the Zn/NiO/Fe₂O₃ powder mixture after
different milling times under air, argon and oxygen atmospheres;
Fe₂O₃ (▼), NiO (♣), Zn (●)

5.20 FeSEM images of 30 h-milled powder in different atmospheres
with their corresponding EDX spectra

5.21 TEM images of 30 h-milled powder in different atmospheres

5.22 DSC, TG and DTA traces of as-received Zn/NiO/Fe₂O₃ powder
mixture

5.23 X-ray diffraction pattern of 30 h-milled samples under air, argon,
and oxygen atmospheres sintered from 400 to 800 °C

5.24 FeSEM micrographs with their particle size distribution of milled
samples in different atmospheres sintered at 400 °C

5.25 TEM micrographs of 30 h-milled samples in different atmospheres
sintered at 400 °C

5.26 FeSEM images of 30 h-milled powder under oxygen atmosphere
sintered in the range of 500-800 °C with their corresponding
particle size distribution histograms

5.27 AFM images of 30 h-milled samples in different atmospheres
sintered at 800 °C

5.28 Changes in the lattice parameter in Ni-Zn ferrite based on Nelson–
Riley’s parameter in different atmospheres for samples sintered at
400 °C

5.29 Theoretical density (%) vs. sintering temperature for milled
samples in different atmospheres

5.30 Room temperature DC electrical resistivity vs. porosity and grain
size

5.31 Plots of log (grain size) vs. the reciprocal of absolute temperature
(1/T)
5.32 Infrared spectra in the 350-4000 cm$^{-1}$ range for the nanocrystalline Ni$_{0.64}$Zn$_{0.36}$Fe$_2$O$_4$; a) after different milling times, and b) 30 h-milled samples sintered at different temperatures

5.33 Infrared spectra in the 350-4000 cm$^{-1}$ range for nanocrystalline Ni$_{0.64}$Zn$_{0.36}$Fe$_2$O$_4$ in different atmospheres after sintering at 500 ºC

5.34 Room temperature hysteresis loops of Ni-Zn ferrite for 30 h-activated powders in different atmospheres

5.35 Room temperature hysteresis loops of Ni-Zn ferrite for 30 h-activated powders in different atmospheres sintered from 400 to 800 ºC and Ms verse sintering temperature

5.36 Room temperature M-H hysteresis loops of Ni-Zn ferrite for (a) 30 h-activated powders in air, argon and oxygen atmospheres and sintered at 1000 ºC and air atmosphere and, (b) milled in argon atmosphere and sintered at 1000 ºC under argon and air atmospheres

5.37 X-ray diffraction patterns taken from the NiO/Zn/Fe$_2$O$_3$ powder mixture after different milling times under different atmospheres

5.38 FeSEM images and EDX spectra of the 30 h-milled samples under: a) air, b) argon, and c) oxygen

5.39 TEM micrographs of the 30 h-milled samples under: a) air, b) argon, and c) oxygen

5.40 Williamson–Hall equation calculation for 30 h-milled sample in argon atmosphere

5.41 The FeSEM images of the powder particles after different milling times

5.42 XRD patterns of the 30-h milled samples under air, argon and oxygen atmospheres which were sintered from 500 ºC to 900 ºC

5.43 FeSEM images of 30 h-milled samples under (a) Argon, (b) Air, and (c) oxygen atmospheres after sintering at 500 ºC

5.44 TEM images of 30 h-milled samples under air, argon, and oxygen atmospheres after sintering at 500 ºC

5.45 FeSEM images of 30 h-milled samples in oxygen sintered at 600, 700, 800 and 900 ºC with their corresponding particle size distribution histograms

5.46 AFM images of 30 h-milled samples at different atmospheres sintered at 800 ºC
5.47 Room temperature DC electrical resistivity vs. porosity and grain size

5.48 Plots of log (grain size) vs. the reciprocal of absolute temperature (1/T)

5.49 Variation of dielectric constant and dielectric loss with frequency for Ni$_{0.36}$Zn$_{0.64}$Fe$_2$O$_4$ ferrite sintered at different temperatures

5.50 Room temperature M-H hysteresis loops of Ni$_{0.36}$Zn$_{0.64}$Fe$_2$O$_4$ ferrite powders activated for 30 h in different atmospheres and sintered from 500 ºC to 900 ºC

5.51 Relations between Ms and sintering temperature, grain size, porosity, and density in the Ni$_{0.36}$Zn$_{0.64}$Fe$_2$O$_4$ ferrite

5.52 Coercivity vs. sintering temperature from 500 to 900 ºC for Ni$_{0.36}$Zn$_{0.64}$Fe$_2$O$_4$ ferrite

5.53 The effects of grain size on coercivity in the samples sintered from 500 to 900 ºC

5.54 The XRD patterns of Ni-Zn ferrite nanoparticles for (a) 6 h-milled powder, (b) 12 h-milled powder and (c) 18 h milled powder which were sintered at 300, 400 and 500 ºC

5.55 FeSEM images of (a) 6 h-milled, (b) 12 h-milled and (c) 18 milled samples which were sintered at 300, 400 and 500 ºC; (scale bar: 100 nm, X:30,000)

5.56 TEM images of (a) 6 h-milled, (b) 12 h-milled and (c) 18 milled samples which were sintered at 500 ºC with their corresponding particle size distribution histograms

5.57 Williamson–Hall equation calculation in Zn-NiO-Fe$_2$O$_3$ system for the 6 h milled sample

5.58 Schematic representation of Tool and Label Peak in the X’Pert HighScore

5.59 Schematic representation of Bragg Calculator in the X’Pert HighScore

5.60 Schematic representation of calculation of crystallite size and lattice strain in the X’Pert HighScore

5.61 FeSEM micrographs (with their grain size distribution histograms) of the samples with different percentages of the additives X=0.4CaO + 0.8SiO$_2$
5.62 The variation of (a) experimental density and (b) DC electrical resistivity with additive content (X) 165

5.63 Room temperature hysteresis loops: a) B-H; and b) M-H for different percentages of the additives X= 0.4CaO + 0.8SiO$_2$ samples 166

5.64 FeSEM images of the two types of samples sintered at different times with their corresponding grain size distribution histograms 168

5.65 Room temperature hysteresis loops (B-H and M-H) for the two types of samples at different sintering times 172
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>FeSEM</td>
<td>Field emission scanning electron microscopy</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy-dispersive X-ray</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic force microscopy</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer–Emmett–Teller</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>DTA</td>
<td>Differential thermal analysis</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>VSM</td>
<td>Vibrating sample magnetometer</td>
</tr>
<tr>
<td>JCPDS</td>
<td>Joint Committee on Powder Diffraction Standard</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full width at half maximum</td>
</tr>
<tr>
<td>ICDD</td>
<td>International Centre for Diffraction Data</td>
</tr>
<tr>
<td>PVA</td>
<td>Polyvinyl alcohol</td>
</tr>
<tr>
<td>A</td>
<td>Cross sectional area</td>
</tr>
<tr>
<td>ε</td>
<td>Lattice strain</td>
</tr>
<tr>
<td>HEBM</td>
<td>High-energy ball milling</td>
</tr>
<tr>
<td>BPR</td>
<td>Ball-to-powder weight ratio</td>
</tr>
<tr>
<td>Fig.</td>
<td>Figure</td>
</tr>
<tr>
<td>eq.</td>
<td>Equation</td>
</tr>
<tr>
<td>a.u</td>
<td>Arbitrary unit</td>
</tr>
<tr>
<td>2θ</td>
<td>2 theta degree</td>
</tr>
<tr>
<td>wt%</td>
<td>Weight percent</td>
</tr>
<tr>
<td>hkl</td>
<td>Miller indices</td>
</tr>
<tr>
<td>MPa</td>
<td>Megapascal</td>
</tr>
<tr>
<td>W_a</td>
<td>Weight of the sample in air</td>
</tr>
<tr>
<td>W_w</td>
<td>Weight of the sample in water</td>
</tr>
<tr>
<td>ρ_{xrd}</td>
<td>X-ray diffraction density</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>ρ_x</td>
<td>Experimental density</td>
</tr>
<tr>
<td>ρ</td>
<td>Resistivity</td>
</tr>
<tr>
<td>M</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>N_a</td>
<td>Avogadro’s constant</td>
</tr>
<tr>
<td>P</td>
<td>Porosity</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
<tr>
<td>λ</td>
<td>Magnetostriction</td>
</tr>
<tr>
<td>E_k</td>
<td>Magneto anisotropy energy</td>
</tr>
<tr>
<td>K</td>
<td>Magnetocrystalline anisotropy</td>
</tr>
<tr>
<td>μ_s</td>
<td>Spin magnetic moment</td>
</tr>
<tr>
<td>Hc</td>
<td>Coercivity</td>
</tr>
<tr>
<td>H</td>
<td>Magnetic field strength</td>
</tr>
<tr>
<td>B</td>
<td>Magnetic induction/Flux magnet</td>
</tr>
<tr>
<td>B_s</td>
<td>Saturation induction/ saturation flux magnet</td>
</tr>
<tr>
<td>Ms</td>
<td>Saturation magnetization</td>
</tr>
<tr>
<td>μ'</td>
<td>Real part of permeability/initial permeability</td>
</tr>
<tr>
<td>μ''</td>
<td>Imaginary part of permeability/ loss factor</td>
</tr>
<tr>
<td>MA</td>
<td>Mechanical alloying</td>
</tr>
<tr>
<td>d</td>
<td>Average crystallite size</td>
</tr>
<tr>
<td>n_B</td>
<td>Magnetic moments</td>
</tr>
<tr>
<td>μ_b</td>
<td>Bohr magneton</td>
</tr>
<tr>
<td>Q_b</td>
<td>bound charges</td>
</tr>
<tr>
<td>Q_f</td>
<td>free charges</td>
</tr>
<tr>
<td>ε_r</td>
<td>Dielectric constant</td>
</tr>
<tr>
<td>γA</td>
<td>Total interfacial energy of a powder compact</td>
</tr>
<tr>
<td>γ</td>
<td>Specific surface (interface) energy</td>
</tr>
<tr>
<td>A</td>
<td>Total surface (interface) area of the compact</td>
</tr>
<tr>
<td>$\Delta \gamma$</td>
<td>The change in interfacial energy</td>
</tr>
<tr>
<td>CR</td>
<td>Charge ratio</td>
</tr>
<tr>
<td>μ</td>
<td>Diffusion potential</td>
</tr>
<tr>
<td>C</td>
<td>Capacitance</td>
</tr>
<tr>
<td>Co</td>
<td>Capacitance without dielectric</td>
</tr>
<tr>
<td>Q</td>
<td>Magnitude of charge stored</td>
</tr>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
</tbody>
</table>

xxiii
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Permittivity</td>
</tr>
<tr>
<td>ε₀</td>
<td>permittivity of free space</td>
</tr>
<tr>
<td>Mr</td>
<td>Remanent magnetization</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
</tr>
<tr>
<td>Tₜ</td>
<td>Neel temperature</td>
</tr>
<tr>
<td>Tₖ</td>
<td>Curie temperature</td>
</tr>
<tr>
<td>X</td>
<td>Magnetic susceptibility</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the study

Research in nanoparticle/nanocrystalline materials can be framed within three significant goals: synthesis, understanding of new advanced materials and correlated phenomena between them. From the microscopic counterparts, nanomaterials are mostly considered as materials in which the size of the particles is below 100 nm in at least one or more dimensions. At this length scale, a huge fraction of the atoms exists at/or close to the surface of particles which gives the unique characteristics to the materials. Nanomaterials have a large surface to volume ratio, thus, often exhibiting amazing properties that differ from the bulk ones. Recently, synthesis of nanocrystalline spinel ferrites has attracted the interest of many researchers due to their unique and desirable electrical and magnetic behaviors as well as due to the presence of unexpected behavior in the nanoscale regimes with respect to their chemical and physical properties. Ferrites are considered those ceramic materials in which the main constituent of them is metal oxides such as iron oxide. According to the magnetization and their application, ferrite materials fall into two main groups: if a material is easily magnetized and demagnetized, it is considered as a soft magnetic material. If a magnetization and demagnetization of a material is difficult, it is well-known as hard or permanent magnetic material. The soft magnetic materials are mostly utilized in applications such as a microwave communication system, and as core materials for transformers and inductors. In contrast, the hard magnetic materials are broadly used in loudspeakers, motors, and other electrical-mechanical energy conversion devices. Generally speaking, based on the crystal structure type, ferrites are divided in three main groups: (1) the spinel type, considering spinel ferrites, (2) the garnet type, considering garnet ferrites and (3) the magnetoplumbite type, considering hexagonal ferrites. The first and second type of ferrites are often considered a subdivision of soft magnetic ferrites, while, the third type belongs to or under the hard magnetic ferrites.

Relatively, a low externally applied field is required to magnetize the soft magnetic ferrites in a way that a low magnetism is retained in these materials by removing the applied field. The general chemical composition formula of soft ferrites is considered as AB_2O_4, where A includes one or more divalent metallic ions such as Ni, Zn, Mg, Cd, and so on, while B includes the trivalent iron ions, and O stands for oxygen. On the other hand, a hard magnetic material becomes magnetized by a high applied magnetic field. The properties of these materials are characterized with high remnant magnetism. These ferrites are often prepared from iron oxides and strontium or barium oxides.

Soft magnetic materials such as Ni-Zn ferrite and Ni-ferrite are important ceramic-magnetic materials in our daily lives due to their extensive use in electrical devices and telecommunication industries. Due to their unique characteristics such as low eddy current loss, good thermal and chemical stability, high resistivity, low coercivity and high Curie temperature (Ravindranathan and Patil 1987; Bid and Pradhan, 2003), they are also found in a wide variety of applications. Such applications include being used in microwave devices, rod antennas, power transfer systems, and read/write heads for high speed digital tapes.
Furthermore, in respect to their preparation, these soft ferrites are being produced from inexpensive raw materials. They are also more stable ceramic compounds as compared to other soft ferrites. The electrical and magnetic properties of NiFe$_2$O$_4$ and Ni$_{1-x}$Zn$_x$Fe$_2$O$_4$ spinel ferrites are sensitive to the microstructure characteristics and the compositional variability, which are influenced by the applied technique to prepare them (Verma et al., 2005). Moreover, due to the evaporation of zinc at higher temperatures, it gives rise to the formation of non-stoichiometric composition which can alter the Ni-Zn ferrite properties. In this study, firstly, the attempt was to produce NiFe$_2$O$_4$ ferrite then a Ni$_{1-x}$Zn$_x$Fe$_2$O$_4$ ferrite, involving two different compositions in which the Zn content was chosen to be $X = 0.36$ and 0.64.

1.2 The Microstructural-magnetic relationship of Soft Ferrites

Nanometer size particles of spinel ferrites, which were produced by the high-energy ball-milled method, offer fascinating chemical, physical and magnetic properties which remarkably differ from their bulk counterparts. They have been carried out through several studies on the comparison of nano-sized and bulk spinel ferrites properties (Kodama et al., 1996, Chinnasamy et al., 2002, Oliver et al., 2000). Šepelák et al., (1997) recognized that the mechanical activation route can increase the chemical reactivity of nano-sized powders in the aim of the production of spinel ferrites. In another study, preparing nanocrystalline spinel ferrites by the high energy ball milling method, they found a disordered spin configuration, nonequilibrium cation distribution as well as unstable nano-sized particles in the final product. The sintering process leads to the recrystallization of the milled samples and results in their transition from excited metastable state to the low-energy crystalline state. Furthermore, the desirable properties of nano-sized ball-milled spinel ferrites are lost during the sintering process (Šepelák et al., 1998). Due to this, it is required to scrutinize the relaxation mechanism of mechanically alloyed induced metastable states as well as the thermal stability of a spinel ferrite nanostructure. To grasp the response of nanosized crystalline spinel ferrites to variations in temperature is essential not only for basic science (the improvement of microscopic and atomistic theory of the mechanically-alloyed process), but also due to the industrial and technological high-temperature utilizations in information storage, ferrofluids and catalysis. To broaden the knowledge on the correlations microstrurrual-magnetic behavior evolution, this project undertakes on the response of fine nano-size initial powders made up of mechanically alloyed Ni-ferrite and Ni-Zn ferrite to vary in the sintering conditions. Although several investigations have recently been carried out on the nano-sized-milled soft magnetic materials (Jiang et al., 1999, Oliver et al., 2000, Šepelák et al., 2000, Chinnasamy et al., 2002), no measurement of the thermally induced magnetic and structural evolutions in these metastable materials have been stated.

1.3 Problem Statement

Since the electrical and magnetic properties of soft ferrites are strongly dependant on the microstructure and the preparation route, thus, the parallel evolution in the changes in microstructure with controlling process factors must be considered. Furthermore, according to literature studies, the higher sintering temperatures destroy some advantages of the nanostructured materials. Therefore, these questions would seem to be apparent: how to find the best way involving method and raw materials to synthesize
nanocrystalline soft magnetic ferrites like nickel ferrite and nickel-zinc ferrite. How to optimize the variable parameters of the used method to save time and energy? What would be the magnetic-microstructure as well as composition-microstructure correlations for milled samples in different atmospheres, at intermediate sintering process, during the parallel evolutions of the microstructure- magnetic and electrical properties?

1.4 Objectives

The main aim of this study is to examine the parallel evolution of microstructural, electrical and magnetic behaviors of the milled samples in different atmospheres as well as at different sintering temperatures. The achieved results from this research work can be used to develop the new general theoretical models on the parallel evolution of the microstructure and various properties of advanced materials in future studies. Here, in this research work, the work-step objectives are involved in three sections as follows;

Section I
1) To prepare nanocrystalline NiFe$_2$O$_4$ via mechanically alloyed nanoparticles and to optimize the variable parameters of ball milling process using the Taguchi Robust design.
2) To study the effect of a sintering temperature on the microstructure characteristics, electrical and magnetic properties of Ni-ferrite.

Section II
1) To prepare nanocrystalline Ni$_{1-x}$Zn$_x$Fe$_2$O$_4$ ferrite with two different compositions (x = 0.36, 0.64) via mechanically alloyed (high-energy ball milling) and study the effects of the milling time and milling atmosphere including argon, air and oxygen on the products.
2) To examine the evolution of ferrite properties with microstructure modification as a consequence of sintering temperature from 400 to 900 ºC.

Section III
1) Adding common additive oxides of 0.4CaO + 0.8SiO$_2$ to the Ni$_{0.36}$Zn$_{0.64}$Fe$_2$O$_4$ and investigation the effects of additives percentage, sintering time and temperature on the microstructure as well as electrical and magnetic properties.

1.5 Thesis Outline

This chapter briefly describes the general introduction of ferrite, correlation between microstructure and magnetic behaviors of a ferrite, and the problem statement as well as the research objectives. In chapter two, it reports the views of previous literatures about the performed synthesis techniques, high-energy ball milling or mechanical alloying with its effective variable parameters and the effects of microstructure changes on some magnetic behaviors. Chapter three focuses on the basic theories that have been stated about magnetic ferrites and sintered materials. In fact, this chapter describes the basic of magnetization, spinel ferrites structure, sintering process parameters and mechanism of mechanical alloying. Chapter four presents the methodology of sample preparation and the equipments that were used to characterize the occurred changes in
the products; such as phase changes, structural variations, as well as electrical and magnetic behaviors under various conditions. Chapter five is about the obtained results from the current research work and discussion. The summary of the concluded results was presented in Chapter Six which was followed by future research suggested recommendations. Finally, the references, appendix and list of publications were attached, accordingly.
REFERENCES

Ismail, I., Hashim, M., Amin Matori, K., Alias, R., Hassan, J. (2011). Milling time and BPR dependence on permeability and losses of Ni_{0.5}Zn_{0.5}Fe_{2}O_{4} synthesized via mechanical alloying process. *Journal of Magnetism and Magnetic Materials, 323*(11), 1470–1476.

Ismail, I., Hashim, M., Ibrahim, I. R., Nazlan, R., Mohd Idris, F., Shafie, S. E., Wan Rahman, W. N. (2013). Crystallinity and magnetic properties dependence on sintering temperature and soaking time of mechanically alloyed nanometer-grain Ni_{0.5}Zn_{0.5}Fe_{2}O_{4}. *Journal of Magnetism and Magnetic Materials, 333*, 100–107.

Sivakumar, N., Narayanasamy, A., Ponpandian, N., Govindaraj, G. (2007). Grain size effect on the dielectric behavior of nanostructured Ni$_{10.5}$Zn$_{0.5}$Fe$_2$O$_4$. *Journal of Applied Physics, 101*(8), 084116.

Stefanescu, M., Stoia, M., Caizer, C., Stefanescu, O. (2009). Preparation of \(x(Ni_{0.65}Zn_{0.35}Fe_2O_4)/(100-x)SiO_2 \) nanocomposite powders by a modified sol-gel method. *Materials Chemistry and Physics*, **113**(1), 342–348.

Waje, S. B., Hashim, M., Yusoff, W. D. W., Abbas, Z. (2010). Sintering temperature dependence of room temperature magnetic and dielectric properties of
Co$_{0.5}$Zn$_{0.5}$Fe$_2$O$_4$ prepared using mechanically alloyed nanoparticles. *Journal of Magnetism and Magnetic Materials*, 322(6), 686–691.

<table>
<thead>
<tr>
<th>N.</th>
<th>Title of paper</th>
<th>Corresponding Author</th>
<th>Journal and DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Structure and magnetic properties of Ni_{0.64}Zn_{0.36}Fe_{2}O_{4} nanoparticles synthesized by high-energy milling and subsequent heat treatment” Journal of Materials Science: Materials in Electronics. DOI 10.1007/s10854-014-2597-4. (IF: 1.966, Q2)</td>
<td>A.Hajalilou</td>
<td>A.Hajalilou, Mansor Hashim, Halimah Mohamed Kamari</td>
</tr>
<tr>
<td>2</td>
<td>A comparative study of in-situ mechanochemically synthesized Mn_{0.5}Zn_{0.5}Fe_{2}O_{4} ferrite nanoparticles in the MnO/ZnO/Fe_{2}O_{3} and MnO_{2}/Zn/Fe_{2}O_{3} systems, Ceramics International. Ceramics International, Ceramics International 41 (2015)8070–8079. (IF: 2.086, Q1)</td>
<td>A.Hajalilou</td>
<td>A.Hajalilou, Mansor Hashim, Mohamad Taghi Masoudi</td>
</tr>
<tr>
<td>3</td>
<td>Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical combustion”. Ceramics International 140 (2014)5881–5887. (IF: 2.086, Q1)</td>
<td>A.Hajalilou</td>
<td>A.Hajalilou, Mansor Hashim, Reza Ebrahimi-Kahrizsangi, Halimah Mohamed Kamari, Nahid Sarami</td>
</tr>
<tr>
<td>4</td>
<td>Effects of Additives and Sintering Time on the Microstructure of Ni-Zn Ferrite and Its Electrical and Magnetic Properties” Advances in Materials Science and Engineering, Volume 2014 (2014), Article ID 138789, (IF: 0.897, Q3).</td>
<td>A.Hajalilou</td>
<td>A.Hajalilou, Mansor Hashim and Halimah Mohamed Kamari</td>
</tr>
<tr>
<td>8</td>
<td>Effect of milling atmospheres on the structural and magnetic properties of Ni-Zn ferrite nanocrystalline” Chin. Phys. B Vol.</td>
<td>A.Hajalilou</td>
<td>A.Hajalilou</td>
</tr>
</tbody>
</table>

194
Abdollah Hajalilou, Mansor Hashim, Reza Ebrahimi-Kahrizsangi, and Mohamad Taghi Masoudi

Abdollah Hajalilou, Mansor Hashim, Halimah Mohamed Kamari, Kazem Javadi, Samikannu Kanagesan, Mohammad Parastegari

10 Influence of evolving microstructure on electrical and magnetic characteristics in mechanically synthesized polycrystalline Ni-ferrite nanoparticles”, Journal of Alloys and Compounds, Volume 633, 5 June 2015, Pages 306–316. (IF: 2.726, Q1)

A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, Halimah Mohamed Kamari

Abdollah Hajalilou

12 Mechanochemical carboaluminothermic reduction of rutile to produce TiC–Al$_2$O$_3$ nanocomposite” Advanced powder technology. Volume 25, Issue 1, January 2014, Pages 423–429. (IF: 1.642, Q2)

Abdollah Hajalilou, Mansor Hashim, Mahdi Nahavandi, Ismayadi Ismail

13 Parametric optimization of NiFe$_2$O$_4$ nanoparticles synthesized by mechanical alloying” Materials Science-Poland - Springer. DOI: 10.2478/s13536-013-0173-x. (IF: 0.327, Q4).

Abdollah Hajalilou

Mohamad Taghi Masoudi, Ali Saidi, Mansor Hashim, Abdollah Hajalilou

15 Effects of milling atmosphere and increasing sintering temperature on the magnetic properties of nanocrystalline Ni$_{0.36}$Zn$_{0.64}$Fe$_2$O$_4$” Journal of nanomaterials. (Article ID 615739). (IF: 1.611, Q2)

Abdollah Hajalilou, Mansor Hashim, Mohamad Taghi Masoudi, and Halimah Mohamed Kamari

M. S. E. Shafie, M. Hashim, I. Ismail, S. Kanagesan, M. I.
Fadzidah, I. R. Idza, A. Hajalilou & R. Sabbaghizadeh

17 Effects of Silver and Antimony Content in Lead-Free High-Temperature Solders of Bi-Ag and Bi-Sb on Copper Substrate, Journal of ELECTRONIC MATERIALS, DOI: 10.1007/s11664-013-2873-8. (IF: 1.675, Q2).

M. NAHAVANDI, M.A. AZMAH HANIM, Z.N. ISMARRUBIE, A. HAJALILOU, R. ROHAIZUAN, and M.Z. SHAHRUL FADZLI

Muhammad Aizat Noor Ismail, Mansor Hashim, Abdollah Hajalilou

Ismayadi Ismail, Muhammad Misbah M. Zuikimi, Norhapishah Abdullah, Wan Norailiana A. Rahman, Mutia Suhaibah Abdullah, Masni Manap

S. Kanagesan, M. Hashima, T. Kalaivanib, I. Ismaila, N. A. Rahmana and A. Hajalilou

Taha Roodbar Shojaeia, Mohamad Amran Mohd Salleha, Meisam Tabatabaieb, Alireza Ekramic, Roya Motallebid, Tavoos Rahmani-Cheratie, Abdollah Hajalilou, Raheleh Jorfi

22 Study the effects of milling atmosphere on the synthesis and magnetic behavior of spinel single phase Ni0.62Zn0.36Fe2O4 nano crystalline” Journal of Magnetism and Magnetic Materials. J. Mater.Sci.Electronic (Accepted)
UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION : _______________

TITLE OF THESS / PROJECT REPORT :

__

NAME OF STUDENT : __

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.

2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.

3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as :

*Please tick (✓)

☐ CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).

☐ RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).

☐ OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for :

☐ PATENT Embargo from ___________ until ___________

(date) (date)

Approved by:

(Signature of Student) __

New IC No/ Passport No.: ____________________________

Date : ____________________________

(Signature of Chairman of Supervisory Committee) ____________________________

Name: ____________________________

Date : ____________________________

[Note: If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]