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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirement for the degree of Doctor of Philosophy 

 

 

PRODUCTION AND CHARACTERIZATION OF BIOCHAR DERIVED 

FROM OIL PALM WASTES, AND OPTIMIZATION FOR ZINC 

ADSORPTION 

 

 

By 

 

 

SEYED ALI ZAMANI  

 

 

June 2015 

 

 

Chairman :   Professor Robiah Bt. Yunus, PhD 

Faculty :   Engineering 

 

 

Today, using low cost materials such as agricultural wastes as an adsorbent for heavy 

metals removal has gained attention in water and waste water treatment. This 

research aims to produce biochar (a porous material with high carbon content and 

low density) from three different types of oil palm wastes via pyrolysis process in a 

lab scale fixed bed reactor. The raw feed stocks for the pyrolysis experiment include 

oil palm frond (OPF), oil palm empty fruit bunches (OPEFB), and oil palm Mesocarp 

fiber (OPMF). The synthesized biochars were then characterized for their 

physiochemical properties using CHNS elemental analysis, proximate analysis, 

scanning electron microscopy (SEM), BET surface area, and Fourier transform 

infrared spectroscopy (FTIR).  

 

 

The adsorption capacity of produced biochars for removing zinc from aqueous 

solution was investigated by performing batch adsorption experiments. The result of 

batch adsorption experiments showed that oil palm empty fruit bunches biochar 

(OPEFBB) had the best efficiency for zinc removal and therefore was chosen for 

further optimization study.  

 

 

The estimation and modeling capacities of two statistical tools; response surface 

methodology (RSM) and artificial neural networks (ANNs) in determining and 

optimizing the effect of pyrolysis conditions on percentage of yield and adsorption 

capacity of OPEFBB toward zinc removal were evaluated. The effect of three 

independent variables namely: highest treatment temperature (HTT), heating rate 

(HR) and residence time (RT) on OPEFBB percentage of yield and adsorption 

capacity were determined. A central composite design was utilized to determine the 
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effect of these factors as well as the interaction of them on responses. Based on 

central composite design, two second order regression models were developed for 

OPEFBB adsorption capacity and percentage of yield. The optimum actual values for 

percentage of yield and adsorption capacity were 25.49% and 15.18mg/g, 

respectively, under the predicted conditions of 615°C for HTT, 8°C/min for HR, and 

128 minute for RT. The input and output of the RSM design was used in artificial 

neural networks for training purpose. The incremental back propagation algorithm 

demonstrated the best results and which has been used as learning algorithm for 

ANN in combination with Genetic Algorithm in the optimization. The estimated 

production conditions to reach the optimum actual values of yield at 25.38% and 

adsorption capacity of 15.29mg/g were HTT of 625°C, HR of 9 ̊ C/min and RT of 

130 min. 

 

 

In both RSM and ANN methods, percentage of yield and adsorption capacity of 

OPEFBB were mostly influenced by the highest treatment temperature (HTT) 

followed by heating rate (HR) and residence time (RT). The performance of RSM 

and ANNs were compared in terms of root mean square error (RMSE), coefficient of 

determination (R²), and absolute average deviation (AAD). The results demonstrated 

that both models fitted the experimental data well; however the predicted values 

confirmed that ANN outperformed RSM due to superiority of ANN model in 

capturing non linear behavior and better estimating capability rather than RSM. 

 

 

The batch adsorption experiments for removal of zinc by optimum product were 

carried out by determining the impact of solution pH, biochar dosage and heavy 

metal concentration on the adsorption process. The results suggest that solution pH is 

one of the most important factors influencing the adsorption capacity. At low pHs, 

the removal of zinc ions was low due to high concentration of protons in sorption 

media and competition of protons with zinc ions for binding sites. By increasing pH, 

the removal of zinc showed an upward trend and reached the maximum value at pH6. 

After that by rising pH, precipitation and hydroxyl formation occurred which masked 

the true adsorption. Biochar dosage and heavy metal concentration also influenced 

the removal of zinc and the optimum values were found to be 10 g/l and 80 mg/l 

respectively.  

 

 

Four adsorption isotherms namely: Langmuir, Freundlich, Dubinin–Radushkevich, 

and Temkin were applied for modeling the adsorption equilibrium data. Among them 

Langmuir isotherm could describe the adsorption data better by coefficient of 

determination of 0.9988 and the maximum adsorption capacity was at 19.27 mg/g. 

From Dubinin equation, ion exchange mechanism was found to be predominant 

mechanism in the adsorption of zinc by OPEFBB. 
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Abstrak tesis yang dibentangkan kepada senat Universiti Putra Malaysia 

untuk memenuhi keperluan untuk ijazah Doktor Falsafah 

PENGELURAN DAN PENCIRIAN BIOCHAR DIPEROLEHI DARIPADA 

SISA KELAPA SAWIT, DAN OPTIMISASI UNTUK PENJERAPAN ZINC 

Oleh 

SEYED ALI ZAMANI 

Jun 2015 

Pengerusi :   Profesor Robiah Bt. Yunus, PhD 

Fakulti :   Kejuruteraan 

Hari ini, penggunaan bahan-bahan kos rendah seperti sisa pertanian sebagai bahan 

penjerap untuk mengambil logam berat daripada larutan akueus telah mendapat 

perhatian untuk rawatan air dan sisa air. Kajian ini bertujuan untuk menghasilkan 

biochar (bahan berliang yang tinggi kandungan karbon dan berketumpatan rendah) 

daripada tiga jenis bahan buangan kelapa sawit yang berlainan melalui proses 

pirolisis dalam reaktor lapisan tetap skala makmal. Stok bahan-bahan mentah untuk 

eksperimen pirolisis adalah termasuk pelepah kelapa sawit (OPF), tandan buah 

kosong kelapa sawit (OPEFB), dan serat mesocarp kelapa sawit (OPMF). Biochar 

yang telah disintesis kemudian dicirikan kepada sifat-sifat fisiokimianya 

menggunakan analisis unsure CHNS, analisis proksimat, mikroskop imbasan 

elektron (SEM), luas permukaan (BET) dan spektroskopi inframerah transformasi 

fourier (FTIR). Kapasiti penjerapan biochars yang dihasilkan bagi mengeluarkan 

zink dari larutan akueus telah disiasat dengan melakukan eksperimen penjerapan 

batch. Keputusan eksperimen penjerapan batch menunjukkan yang tandan buah 

kosong kelapa sawit biochar (OPEFBB) mempunyai kecekapan yang terbaik untuk 

penyingkiran zink dan oleh itu telah dipilih untuk kajian pengoptimuman seterusnya. 

Anggaran dan kapasiti permodelan dua alat statistik; kaedah permukaan respon 

(RSM) dan rangkaian neural tiruan (ANN) dalam menentukan dan mengoptimumkan 

kesan keadaan pirolisis kepada peratusan penghasilan dan kapasiti penjerapan 

OPEFBB terhadap penyingkiran zink telah dinilai. Kesan tiga pembolehubah bebas 

iaitu: suhu rawatan paling tinggi (htt), kadar pemanasan (HR) dan masa tinggal (RT) 

terhadap peratusan penghasilan OPEFBB dan kapasiti penjerapan telah ditentukan. 

Reka bentuk komposit pusat telah digunakan untuk menentukan kesan faktor-faktor 

ini serta interaksi mereka pada respon. Berdasarkan reka bentuk komposit pusat, dua 

model regresi peringkat kedua telah dicipta untuk kapasiti penjerapan OPEFBB dan 
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peratusan penghasilan. Nilai optimum untuk peratusan penghasilan dan kapasiti 

penjerapan adalah masing-masing 25.49% dan 15.18 mg/g di bawah kondisi ramalan 

615 ̊ C untuk htt, 8 ̊ C/min untuk HR, dan 128 minit untuk RT. Input dan output reka 

bentuk RSM telah digunakan didalam rangkaian neural buatan sebagai latihan. 

Tambahan algoritma perambatan balik menunjukkan hasil yang terbaik dan 

digunakan sebagai algoritma pembelajaran untuk kombinasi ANN dan algoritma 

genetik untuk pengoptimuman. Kondisi yang dianggarkan untuk mencecah nilai 

optimum untuk peratusan penghasilan 25.38 dan 15.29 untuk kapasiti penjerapan 

adalah pada htt 625°C, HR 9  ̊C / min dan RT 130 min. 

 

 

Dalam kedua-dua kaedah RSM dan ANN, peratusan penghasilan dan kapasiti 

penjerapan OPEFBB kebanyakannya dipengaruhi oleh suhu rawatan paling tinggi 

diikuti dengan kadar pemanasan dan masa tinggal. Prestasi RSM dan ANN 

dibandingkan dari segi punca min ralat kuasa dua (RMSE), pekali penentuan (R2), 

dan sisihan purata mutlak (AAD). Keputusan menggambarkan bahawa kedua-dua 

model sesuai dengan data uji kaji, namun nilai-nilai yang diramalkan mengesahkan 

keupayaan ANN mengatasi RSM kerana keunggulan model ANN dalam menangkap 

tingkah laku bukan linear dan boleh menganalisis dan menganggar kuasa lebih baik 

daripada RSM. 

 

 

Eksperimen penjerapan batch untuk penyingkiran zink dengan produk optimum telah 

dijalankan dengan menentukan kesan larutan pH, dos biochar dan kepekatan logam 

berat terhadap proses penjerapan. Keputusan menunjukkan bahawa larutan pH 

adalah salah satu faktor yang paling penting yang mempengaruhi keupayaan 

penjerapan.. Pada pH rendah, penyingkiran ion zink adalah rendah kerana kepekatan 

proton yang tinggi dalam media penyerapan dan pelengkapan proton dengan ion zink 

berlaku untuk laman mengikat. Dengan meningkatkan pH, penyingkiran zink 

menunjukkan trend menaik dan mencapai nilai maksimum pada pH6 dan selepas itu 

dengan kenaikan pH, pemendakan dan pembentukan hidroksil berlaku yang 

menunjukkan penjerapan yang sebenar. Dos biochar dan kepekatan logam berat juga 

mempengaruhi penyingkiran zink dan nilai optimum didapati masing-masing 10 g / 

L dan 80 mg / L. Empat isoterma penjerapan iaitu: Langmuir, Freundlich, Dubinin-

Radushkevich dan Temkin digunakan untuk model data keseimbangan penjerapan. 

Antaranya Langmuir isoterma boleh menggambarkan data penjerapan yang lebih 

baik dengan pekali penentuan 0.9988 dan kapasiti penjerapan maksimum didapati 

pada 19,27 mg / g. Daripada persamaan Dubinin, mekanisme pertukaran ion didapati 

sebagai mekanisme utama dalam penjerapan zink oleh OPEFBB. 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

1.1 Background and problem statement 

 

 

Biochar is a solid residue which is obtained from thermochemical conversion of 

biomass substrates in an oxygen limited environment. It has attracted considerable 

attention due to its capability to be used as soil amendment in large scale for 

improvement of soil fertility, nutrient retention, crop production, increasing carbon 

storage and decreasing Green House Gas emissions (Brown et al. 2009; Lehmann 

2007; Sohi et al. 2009).  

 

 

Biochar can be obtained from different thermochemical processes such as pyrolysis, 

gasification, hydrothermal carbonization (HTC), and flash pyrolysis under various 

conditions. The production parameters as well as the nature of the parent material 

highly affect the structure and the physiochemical properties of the produced biochar 

(Lehmann and Joseph 2009; Manya 2012). 

 

 

Biochar has a porous structure with extensive surface area and relatively high degree 

of carbon content in its matrix. These properties of biochar along with relatively low 

cost production, suggesting that biochar can act as a surface sorbent for removing 

hazardous contaminant from aquatic environment. Therefore, using biochar is a new 

alternative in controlling contaminants in environment in addition to traditional 

materials such as activated carbon and zeolite. 

 

 

Malaysia is the major oil palm producer in the world which it contributes to 

production of 50% of word oil palm production (Foo and Hameed 2009). The large 

amount of waste produced from palm oil mill industries is a problem in Malaysia as 

palm biomasses contribute to vast amount of biomass production in Malaysia. An 

approach to overcome this problem could be the utilization of these wastes as the 

feedstock to produce value added products such as biochar with relatively high fixed 

carbon content and low ash content. 

 

 

Significant amount of work has been reported on biochar production from plant 

wastes and agricultural byproducts for the organic pollutants sorption purpose, which 

reflects the importance of reusing wastes for controlling pollution in environment 

(Nguyen et al. 2007; Deng et al. 2013; Shi et al. 2014; Tsai and Chen 2013; Wang et 

al. 2010; Cheng et al. 2013; Chen and Chen 2009; Yu et al. 2010, etc.) but, only a 

small number of articles are available on heavy metal adsorption by biochar and 

underlying mechanisms associated with it.  Biochars from broiler litter (Uchimiya et 
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al. 2010), dairy manure (Cao et al. 2009), wood/bark (Mohan et al. 2007), biochar 

from rice husk and pinewood hydrothermal liquefaction (Liu and Zhang. 2009), 

biochar prepared from pyrolysis of manure (Koldynska et al. 2012), switch grass- 

derived biochar (Kumar et al. 2011) have been shown to adsorb heavy metals in 

significant amounts (such as Cd, Pb, As and Cu, Ni, U (VI)). However, there are very 

few works on adsorption capacity of palm wastes- derived biochars in adsorbing 

different heavy metals. 

 

 

Among different types of heavy metals, zinc (Zn) is one of the most broadly used 

metals in industries and one of the most potential source of pollution (Han et al. 

2013).  Zn contamination in natural water is a worldwide problem, which has been 

reported in many countries. The provision of Zinc in free drinking water has been 

always a challenge for scientists since the environmentally admissible levels and 

concentration limit based on health criteria in water, especially in drinking water, 

decreases continuously. 

 

 

Various methods for removal of heavy metals from water and waste water have been 

developed. Traditional methods such as oxidation/precipitation, coagulation, 

adsorption, ion exchange, and membrane technologies were reported to be effective 

in decreasing heavy metal concentration in aquatic environment (Akbal and comic 

2011; Malamis et al. 2011; Boudrahem et al. 2011). High cost of operation of these 

technologies along with their disposal problems leads to extensive researches on 

possibility of using waste biomaterials and developing alternative low cost 

technologies for treatment of water and waste water from heavy metal contaminants 

(Sud et al. 2008). Biochars have been shown to be potential candidates in the area of 

removal of toxic metals due to their low cost. 

 

 

Several influential factors have been addressed on the adsorption mechanism of 

Zn(II) which can be classified in two groups of sorbent characteristics and adsorption 

process conditions. Among adsorption conditions, solution pH, adsorbate and 

adsorbent dosage are important parameters which should be considered. Therefore 

the study on removal mechanism of the treatment processes under pH changes, 

variance in bio-sorbent dosage and Zn concentration, gives essential information on 

the process design in large scale treatment systems.  

 

 

Production of efficient sorbent for waste water and water treatment has been always 

a concern. Among the sorbent characteristics, surface area, surface functionalities 

and acceptable level of yield are important in adsorption process design. These 

characteristics of biochar are controlled by its production conditions and primary 

feed stock properties. In assessing the effect of production conditions, employing an 

adequate experimental design is another key point. Response surface methodology 

(RSM) is a helpful tool in studying the effect of factors and their interactions on 

specific response to optimize the response of interest. Artificial intelligence and 

specifically artificial neural network which is simulated from biological neural 
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system with strong capability of learning and prediction, has also demonstrated to be 

a powerful method for modeling complex problems. Utilizing these two powerful 

techniques in optimizing production parameters will lead to production of effective 

bio-sorbent. 

 

 

1.2 Objectives 

 

 

The objectives of this research are as follow: 

 

 

1- To produce and characterize cost effective, environmental friendly biochars from 

selected wastes of oil palm industry namely Oil Palm Mesocarp Fiber 

(OPMF),Oil Palm Empty Fruit Bunches (OPEFB), and Oil Palm Frond (OPF) 

2- To model and optimize the process using RSM and ANN for predicting the 

percentage of yield and heavy metal adsorption capacity of selected pyrolysis 

product 

3- To investigate the adsorption capability of produced biochars as heavy metal 

adsorbent for Zinc 

 

 

Finding cost effective, environmental friendly bio-sorbent from the wastes of oil 

palm industry to solve the contamination of zinc in polluted water and waste water 

would be important for sustainable development. 

 

 

1.3 Scope of the study 

 

 

The scope of this research is to produce biochars from different oil palm wastes, to 

characterize them and to determine their application for heavy metal adsorption, to 

select the best adsorbent among them and optimization of it, to characterize the 

optimized biochar, and to investigate the best adsorption conditions. 

 

 

The first step was preparing the raw materials from three different types of oil palm 

wastes namely: OPEFB, OPMF, and OPF and subsequently characterizing the 

physical and chemical properties of the wastes. 

 

 

The second step was producing biochars from these palm wastes and evaluating the 

physiochemical properties of the obtained biochars by different methods and 

techniques, which includes elemental analysis, proximate analysis, determining the 

surface morphology, surface area,  and surface functional groups using CHNS 

elemental analyzer, Proximate analysis method,  Scanning Electron Microscopy 

(SEM), N₂ adsorption and applying Brunauer-Emmett-Teller (BET) model, Fourier 

transform infrared (FTIR), respectively. 
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In the third step, adsorption capacity of produced biochars for zinc removal was 

evaluated by performing the batch adsorption experiments. The best adsorbent was 

selected among the three potential adsorbents and was employed for the subsequent 

optimization process. 

 

 

In the optimization step, the best conditions for producing the highest heavy metal 

adsorbent biochar with optimum percentage of yield were explored. Several 

experiments at different stages (production and adsorption stages) have been 

performed to produce the optimum production conditions according to Response 

surface methodology Central Composite Design (CCD). 

 

 

Response surface methodology and being more specific, Central Composite Design 

(CCD) has been used to find the response surface area and also to find optimum 

conditions for producing a biochar based on the optimum percentage of yield and 

adsorption capacity for removing targeted heavy metal. 

 

 

The Artificial Neural Networks (ANNs) has also been used to model and optimize 

the conditions for producing biochar in terms of percentage of yield and adsorption 

capacity. The results obtained using the optimum conditions proposed by ANN were 

compared to the results of RSM and then the best method and conditions were 

selected. The products obtained using these conditions were characterized as well. 

 

 

In the last step, the effect of pH on heavy metal precipitation was investigated to 

analyze its effect on the adsorption. The effects of other experimental conditions 

such as biochar dosage and heavy metal concentration on the adsorption process 

were also investigated. To compare and evaluate produced biochars’ adsorption 

capacities, the Langmuir, Freundlich, Dubinin-Radushkevich (D-R), Temkin 

adsorption isotherms were employed to correlate the sorption data. 

 

 

Based on the above explanations, product of low cost, environmental friendly 

biosorbents namely biochar, from oil palm industry has been considered. The 

synthesized biochar is expected to act efficiently in removal of zinc from aqueous 

solution as the pyrolysis parameters will be optimized for this purposes. (Chen et al, 

2011; Han et al, 2013; Kolodynska et al, 2012). 

 

 

1.4 Organization of the thesis 

 

 

This thesis consists of five chapters. The introduction in Chapter 1 begins with the 

background and the significance of the study and ends with the objectives and scopes 

of the research work. Extensive review of related literature and analytical research in 

producing biochars, characterization of biochars and removal of heavy metal by low 
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cost adsorbents, optimization theory, response surface methodology and artificial 

intelligence and other analytical methods along with their application in current 

research work are presented in chapter2. Chapter 3 discusses the general materials 

and methods used in the study, which begins with the production of biochar from the 

biomass by focusing on the highest treatment temperature, Heating rate, and 

Residence time in order to obtain a high performance biochar in terms of heavy 

metal adsorption beside the characterization methods that have been investigated.  

 

 

Additionally, it covers the statistical analysis and artificial neural network modeling 

for optimization of biochar production conditions to reach the optimum percentage of 

yield and adsorption capacity using Response Surface Methodology Central 

Composite Design (CCD) and artificial neural networks. Chapter 4 is devoted to 

analyzing the results, evaluation and interpretation of them and comparison of the 

achieved results with expected ones utilizing various techniques, discussing the 

characteristics of produced biochars and adsorption of heavy metal. The final chapter 

is a conclusion that is the declaration of achievement of objectives and ideas for 

direction of future work that needs to be done. 
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