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It is well known that the superconducting properties are strongly dependent on the 

synthesis technique and processing conditions. Coprecipitation method is frequently 

used in sample synthesis and thus, chosen in this project due to high homogeneity, low 

reaction temperature, fine and uniform particle size with non-agglomerate particles, 

easy set-up and economical, and time saving processing. The Yttrium Barium Copper 

Oxide (YBCO) samples have been prepared by coprecipitation of metal ion oxalates 

method added with Nd2O3, Gd2O3 and Sm2O3, x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 wt%. 

Phase formation and volume fraction of each sample were examined using X-ray 

diffraction and Rietveld refinement technique. All samples show predominantly Y-123 

with non-superconducting phase, Y-211 and impurities, Nd2O3, Gd2O3 and Sm2O3 with 

orthorhombic structure and Pmmm space group. The volume fractions of non-

superconducting phase, Y-211 abruptly increase in all systems, might be due to the 

local differences in the size of Y-211, thus, affect the Tc and Jc in the Y123 system. The 

microstructure scanning electron microscope (SEM) revealed that the average grain 

sizes calculated from the Image J, decreased in all systems as the addition of magnetic 

nanoparticles, Nd2O3, Gd2O3 and Sm2O3 increased indicating that the poor grain 

connectivity due to the porosities and weak links. The transport measurement of 

resistance dependence, Tc-onset was measured by using standard four point probe 

technique. Tc for pure sample is about 92 K. However, Tc decreased to 74 K, 80 K and 

88 K for Nd2O3, Gd2O3 and Sm2O3, respectively. The suppression on Tc-onset was 

attributed to the lowering oxygen content in samples. Since YBCO is granular in 

nature, AC susceptibility is used as an effective tool to characterize granular of this 

system. The inter-granular vortex was investigated with different applied field, Hac, 

0.005 – 3.0 Oe at fixed frequency 123 Hz. The matrix critical current density, Jcm was 

calculated in the framework of Bean’s critical state model. Flux creep activation energy 

is determined in vortex dynamics exhibited by frequency dependence of AC 

susceptibility in the range of 123 – 6000 Hz. Sample with x = 0.6 wt% Nd2O3 shows 

maximum value of Jcm, 5.77 x 10
-5

 A/cm
2
 and Ea, 9.212 x 10

-19
 J indicating at this point 

it has a optimum pinning centre. As a conclusion, Nd2O3 nanoparticles acting as flux 

pinning centres in matrixes of superconductors Y123 which gave the best result in term 

of Jcm value as compared to Gd2O3 and Sm2O3. 
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Pengerusi :   Profesor Abdul Halim Shari, PhD 
Faculti  :   Sains 
 
 
Telah diketahui bahawa sifat mensuperkonduksi sangat dipengaruhi oleh teknik sintesis 

dan keadaan pemprosesan. Maka, kaedah pemendakan logam sentiasa digunakan dan 

dipilih di dalam kajian ini disebabkan oleh kehomogenan yang tinggi, suhu tindakbalas 

yang rendah, saiz butiran yang halus dan sekata tanpa sebarang gumpalan, mudah 

untuk disediakan dan murah serta menjimatkan masa pemprosesan.  Kesemua sampel 

Yttrium Barium Copper Oxide (YBCO) disediakan melalui kaedah pemendakan ion 

logam oxalate ditambah dengan Nd2O3, Gd2O3 dan Sm2O3, x = 0.0, 0.2, 0.4, 0.6, 0.8 

dan 1.0 peratus berat. Pembentukan fasa dan peratusan pecahan isipadu setiap fasa 

sampel dikaji dengan teknik Pembelauan Tenaga Sinar-X dan pemurniann Rietveld. 

Kesemua sampel menunjukkan pra-mendominasi fasa Y-123 dan fasa tidak 

mensuperkonduksi, Y-211 dengan kewujudan bendasing Nd2O3, Gd2O3 dan Sm2O3, 

dengan struktur ortorombik dan kumpulan ruang Pmmm. Pecahan isipadu fasa 

mensuperkonduksi, Y-211 maningkat secara mendadak adalah disebabkan oleh 

perbezaan saiz penempatan Y-211 yang mempengaruhi Tc dan Jc di dalam sistem Y-

123. Struktur mikro daripada Mikro Pengimbas Elektron mendedahkan bahawa saiz 

zarah yang dikira melalui Imej J berkurangan apabila penambahan nanozarah 

bermagnet Nd2O3, Gd2O3 dan Sm2O3 meningkat, menunjukkan bahawa bahan tersebut 

mempunyai ikatan butiran yang lemah berikutan kewujudan keadaan berliang dan 

lohong. Pengukuran perubahan rintangan dilakukan dengan teknik penduga empat titik. 

Tc untuk sampel tulen ialah 92 K. Walaubagaimanapun, Tc semakin berkurangan 

kepada 74 K, 80 K dan 88 K masing-masing untuk Nd2O3, Gd2O3 and Sm2O3 Didapati 

Tc-onset semakin berkurangan disebabkan oleh kandungan oxigen yang semakin rendah 

di dalam sampel. Memandangkan superkonduktor YBCO bersifat butiran secara 

semulajadi, pengukuran keupayaan arus ulang alik digunakan sebagai alat yang efektif 

untuk mencirikan sifat butiran dalam sistem ini. Vorteks antara butiran diukur dengan 

medan yang dikenakan antara 0.005 Oersted hingga 3.0 Oersted pada frekuensi tetap, 

123 Hz. Manakala ketumpatan arus kritikal matriks, Jcm dikira berdasarkan rangka 

Model Keadaan Kritikal Bean. Pengaktifan tenaga pergerakan fluks, Ea pula ditentukan 

di dalam dinamik vortex yang bersandarkan perubahan frekuensi di dalam keupayaan 

arus ulang-alik iaitu di dalam rangkuman 123 Hz hingga 6000 Hz. Sampel dengan nilai 

peratusan berat, x = 0.6 Nd2O3 mempunyai nilai Jcm, 5.77 x 10
-5

 A/cm
2
 dan Ea, 9.212 x 

10
-19

 J yang maksimum menunjukkan sampel ini mempunyai pusat pengepinan yang 
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optimum. Sebagai kesimpulan, nanozarah Nd2O3 bertindak sebagai pusat pengepinan 

fluks di dalam matriks superkonduktor, telah memberikan keputusan yang terbaik di 

dalam Jcm  jika dibandingkan dengan system Gd2O3 dan Sm2O3. 
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CHAPTER 1 

` 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

 

The discovery of high temperature superconductivity (HTS) in the copper oxide based 

materials by Bednorz and Müller in 1986 resulted in worldwide interest in these 

materials. This breakthrough discovery is very significant because liquid nitrogen can 

be used as a coolant for materials to superconducting at higher temperature and this is 

referred to as high temperature superconductor. Intense research efforts into 

superconductivity have been undertaken during the last two decades in order to search 

for a new superconducting materials with higher critical temperature.  

 

Recently, there are so many applications on cuprate based superconductor that have 

greatly contributed to the society. The fundamental technologies for applications are 

categorized into superconducting bulks, superconducting tapes and superconducting 

devices. Materials for superconducting bulks are REBa2Cu3O7, where RE is either Nd, 

Sm, Gd or Y. In bulk, the pinning force of magnetic flux in the superconducting state is 

very strong and at 77 K the critical current density is more than 10
4
 A/cm

2 
(Tanaka, 

2006). As the pinning force of the magnetic flux is strong, the applied magnetic field 

cannot penetrate the bulk in the superconducting state. This results in a strong levitation 

force when the bulk is close to an ordinary permanent magnet, and at 77 K this force 

usually reaches 15 kg/cm
2
. However, when the bulk is in the normal state a magnetic 

field applied from outside is uniformly distributed throughout the bulk. But after the 

bulk is cooled below the critical temperature, the magnetic field is quantized and 

quantized flux is pinned by strong pinning centres. Then the quantized flux is remained 

inside when the external field is removed and behaves like a permanent magnet. The 

strength of the remained magnetic field in GdBa2Cu3O7 bulk reaches more than 2 T at 

77 K and more than 3.5 T at 30 K. This application has been successfully used in water 

cleaning system by using magnetic separation effect (Tanaka, 2006).  

  

In HTS the first generation of superconducting tape is bismuth-based superconductor, 

BSCCO. This multifilament oxide-powder-in-tube (OPIT) tapes with high current 

transmission cable carry large amount of electric power to be sent to central part of 

city. The second generation of superconductor tape is YBCO conductor which has been 

grown either by biaxially textured substrate (RABiTS) method, ion-beam-assisted 

deposition (IBAD) or inclined-substrate deposition (ISD) technique. YBCO with Jc > 

10
6
 A/cm

2 
is able to maintain a high current-carrying capacity in fields up to several 

tesla compare to BSCCO tape the current densities begin to decrease at field well under 

1 T (Owens & Poole, 2002). 
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1.2 Early Discovery of Superconductivity   

 

 

On July 1908, in Leiden University, Netherland, the great Dutch physicist, Heike 

Kamerlingh Onnes was became the first person successfully liquefied helium. Three 

years later, on 8 April 1911 Kamerlingh Onnes and one of his assistants showed that 

the resistance of superconductivity of mercury approached practically zero as the 

superconducting transition temperature dropped to 4.2 K. Infinite conductivity 

indicates that if a current were passed through the material during its superconducting 

phase, the current would flow forever without any dissipation. They studied mercury 

because very pure samples could be easily prepared by distillation. In 1933, the 

German Physicist, Walter Meissner and Robert Ochsenfeld discovered that the 

superconductors are more than a perfect conductor of electricity as they are able to 

expel the applied magnetic field if cooled to below its transition temperature, Tc. It will 

exhibit a perfect diamagnetism. This phenomenon is known as the Meissner effect in 

which the magnet could levitate on the superconducting material  

            

The understanding of superconductors gradually got sophisticated and solving this 

long-standing puzzle required a special set of talents and proficiencies. Only in 1957 

the understanding of basic mechanism of superconductivity was solved by John 

Bardeen, Leon Cooper and Robert Schrieffer. They introduced the Bardeen-Cooper-

Schrieffer (BSC) theory which involved the electron-phonon interaction to form 

Cooper pairs (Bardeen et al., 1957). 

 

In 1973 Nb3Ge alloys was found by Gavaler with A15 phase structure described by 

chemical formulae of A3 B and critical temperature, Tc of 23.2 K. It held the record as 

the highest critical temperature superconductor since no other elements with higher Tc 

was obtained for more than 10 years. But nevertheless, in 1986 Johannes Georg 

Bednorz and Karl Alex Muller, the Swiss researchers from IBM Zurich Laboratory, 

Switzerland discovered a new ceramic material that can achieve superconductivity at 

higher critical temperature and it was barium-lanthanum-copper oxide with perovskite 

structure and Tc up to 35 K (Bednorz & Muller, 1987). They have inspired other 

researches all over the world to search for new ceramic superconducting materials at 

temperatures more than four times higher than the earlier ones. 

 

Just a year after Muller and Bednorz’s breakthrough, Paul Chu and his colleagues at 

University of Houston, Texas found high temperature superconductor (HTS) of 

YBa2Cu3O7-δ with Tc = 92 K which above the boiling point of liquid nitrogen 77 K. 

Using liquid nitrogen as a cooling medium give benefits to researchers because it is 

cheaper, more efficient, easy handled coolant than liquid helium. Then a year later, 

Maeda and his group at the National Research Institute for Metals, Tsukuba Laboratory 

in Japan working on HTS and they found Bi-Sr-Ca-Cu-O system without any rare earth 

element with Tc about 115 K (Maeda et al., 1988). 

 

Shortly afterwards, the thallium system Tl-Ba-Ca-Cu-O had been discovered by Sheng 

and Hermann at University of Arkansas. The Tc was about 120 K (Sheng & Hermann, 

1998). Because of it is highly toxicity the exploration of thallium system has not widely 

studied. Besides that, in 1993 Schilling and his co-workers discovered Hg-Ba-Ca-Cu-O 

system with Tc of 134 K. In January 2001, Nagamatsu and his colleagues, group from 

Japan reported MgB2 with Tc about 39 K (Nagamatsu et al., 2001). This was the highest 
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Tc for a non-copper-oxide bulk superconductor. Since then, until July 2001 more than 

260 studies about this superconductor have appeared (Buzea & Yamashita, 2001). 

Figure 1.1 shows the time evolution of the transition temperature of superconductors. 

 

 

 
 

Figure 1.1: The evolution of Tc of superconductors (Keimer et al. 2014). 

 

 

1.3 Problem Statement 

 

 

Flux pinning is very crucial in HTS where supercurrent can flow without any energy 

dissipative. However, since polycrystalline superconductor samples are granular in 

nature, the superconducting properties are limited by weak links effect and 

inhomogeneity of the samples. In order to improve the homogeneity and weak links 

effect, coprecipitation method was chosen due to low reaction temperature, fine and 

uniform particle size, easy set-up and economical, and time saving processing. Besides, 

the nanoparticles of Nd2O3, Gd2O3 and Sm2O3 were selected because these magnetic 

rare earth substitutions are compatible to the size of pinning centre thus, may increase 

the critical current densities, Jc. 
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1.4 Objectives 
 

 

The objectives of this work are: 

1) To synthesize the YBa2Cu3O7-δ via co-precipitation method. 

The advantages of co-precipitation method over solid-state method are small particle 

size, high purity and homogeneity because of atomic scale mixing and ability to control 

size and shape of particles.  

 

2) To measure and study the relative effect of nano – Nd2O3, Gd2O3 and Sm2O3 

addition with different weight percentage (0.0 – 1.0 wt%) on superconducting 

transition temperature, Tc of YBa2Cu3O7-δ by measuring the resistance as a function of 

temperature using the standard four point probe set up with a close-cycle helium 

cryostat from 30 K – 300 K to determine the value of Tc-onset and Tc-offset. 

 

3) To study the phase formation and microstructure evolution of YBCO added by 

Nd2O3, Gd2O3 and Sm2O3 using X-ray diffraction and analysed by Rietveld refinement 

method and SEM.  

 

4) To study the effect of Nd2O3, Gd2O3 and Sm2O3 addition on Jc of YBCO and the 

pinning mechanism of superconducting properties by using Bean’s model. 

 

 

1.5 Outline of Thesis 

 

 

The thesis is outlined as follows. Chapter 1 consists of general introduction to the 

research conducted, early discovery of superconductivity, problem statement and the 

objectives of research. In Chapter 2, the basic theory and literature review of basic 

properties of superconductor, crystal structure and the effect of doping and adding 

technique for various types of elements on the superconducting properties of YBCO 

superconductor are briefly discussed. A detailed description of the sample preparation 

and experimental methods to perform the measurements are stated in Chapter 3. While 

Chapter 4 contains all the results that obtained from the measurements and discussion 

of data analysis of thermogravimetric, crystal structure, resistance dependence of 

temperature, morphological images and AC susceptibility at field and frequency 

dependence. Finally, the relation between phase, structure and superconducting 

properties is concluded and suggestions for future works are stated in Chapter 5. 
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