ETHNOBOTANICAL SURVEY AND BIOLOGICAL PROPERTIES OF MEDICINAL PLANTS USED FOR TRADITIONAL MATERNAL HEALTHCARE IN KATSINA STATE, NIGERIA

SULAIMAN SANI KANKARA
ETHNOBOTANICAL SURVEY AND BIOLOGICAL PROPERTIES OF MEDICINAL PLANTS USED FOR TRADITIONAL MATERNAL HEALTHCARE IN KATSINA STATE, NIGERIA

By

SULAIMAN SANI KANKARA

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright© Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Doctor of Philosophy

ETHNOBOTANICAL SURVEY AND BIOLOGICAL PROPERTIES OF MEDICINAL PLANTS USED FOR TRADITIONAL MATERNAL HEALTHCARE IN KATSINA STATE, NIGERIA

By

SULAIMAN SANI KANKARA

December 2015

Chairman : Associate Professor Rusea Go, PhD
Faculty : Science

In Katsina State, Northern Nigeria, medicinal plants are widely used for the management of many medical conditions including maternal health since time immemorial. In this study, an ethnobotanical survey was conducted using semi-structured questionnaire method to obtain information on the use of medicinal plants for traditional maternal healthcare in the study area. The respondents comprised of herbalists, traditional birth attendants (TBAs), traditional medical practitioners (TMPs), housewives, farmers and others. 111 medicinal plants belonging to 101 genera, distributed across 50 families were documented. *Acacia nilotica* (L) Delile and *Guiera senegalensis* J.F Gmel had the highest Relative Frequency of Citations (RFC) and Fidelity Levels (FL). 22.52% of the cited species belong to Fabaceae family followed by Asteraceae (7.21%), Malvaceae (5.41%) and Anacardiaceae (4.51%). 25.23% of the cited species are used for general wellbeing during and after pregnancy. 68.47% of the cited species were herbs and shrubs and 84.68% of them are sourced from the wild. Leaves were the most frequently used plant’s part (32.14%). 32% of the medications are prepared as decoctions and preparations are mostly (84.68%) administered orally.

A literature survey was conducted with the aid of online database, text books and unpublished theses using keywords such as “biological activities”, “ethnobotanical uses”, “medicinal properties”, “toxicity studies” and the name of the species under review. Only species that have the combination of Relative Frequency of Citation (RFC) and Fidelity Level (FL) of at least 0.50 and 50%, respectively, were included for the literature survey. The literature survey revealed that with the exception of *Acacia nilotica*, *Euphorbia convolvuloides* and *Indigofera astragalina* DC, all the species reviewed had one or more reported biological activity substantiating its folkloric use in managing maternal health related conditions. The survey also disclosed that some of the surveyed plants are toxic. Species like *Jatropha carcus* and *Ipomoea asarifolia* were reported to be highly toxic to humans. *Acanthospermum hispidum*, *Artemisia annua*, *Citrus aurantifolia* and *Mangifera indica* were reported to have adverse effects on pregnancy in rats. *Anchomanes difformis* and *Euphorbia balsamifera* were also...
reported to be highly toxic in mice and rats, respectively. No developmental toxicity of *Guiera senegalensis* was reported despite its wide use during pregnancy in the study area.

Another study was also conducted to assess the wound healing properties of *Acacia nilotica* using Sprague Dawley rats. The wound healing parameters assessed include wound contraction rate, level of proinflammatory cytokines (IL-1β and TNF-α) and histopathological analysis of the wound area. Wounds were assessed on 7th and 14th post wounding days. The extract showed a good, dose-dependent DPPH-radical scavenging activity comparable to trolox (standard antioxidant). Topical application of *A. nilotica* cream significantly (P< 0.05) enhances wound contraction rate compared to the control groups in both 7th and 14th days of evaluation. The extract also significantly suppressed the expression of both IL-1β and TNF-α in dose-dependent manner throughout the study period. The histological analysis revealed that the extract treatment enhanced tissues regeneration.

Another study was also conducted to evaluate the effects of extraction methods on the antioxidant properties of *Guiera senegalensis*. Extraction of *G. senegalensis* alone was found to be more effective than combining it with either *E. balsamifera, I. asarifolia* or both. Air drying appeared to be the best drying method as it produced significantly higher phenolic contents and antioxidant activities. Optimum extraction temperature was found to be 40°C, while 60 minutes appeared to be best extraction time. Although addition of natron up to 5 mg/mL was found to increase the TPC and TFC values, both antioxidant assays (DPPH, FRAP and TAC) were significantly affected adversely.

Finally, developmental toxicity of *G. senegalensis* leaves water extract on zebrafish (*Danio rerio*) embryo was also studied. Survival rate, hatching rate and teratogenic effects were used to assess the toxicity. Both survival rate and hatching rate were found to be significantly lowered by the higher doses of the extract. LC₅₀ of the extract was found to be 61.88 mg/mL. The extract also induced some structural malformations including bent tail, curved body, embryo sac edema, short body length and spinal cord curving on the hatched embryo.

This study provides the first ethnobotanical study on medicinal plants used for traditional maternal healthcare in Northern Nigeria. The results of this study if properly harnessed, hold a great potential in combating maternal mortality cases in the study area thereby achieving one of the United Nation’s Millennium Developmental Goals (MDGs). Future studies directed towards conserving the reported species and standardizing traditional herbal medicine are recommended.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

KAJI SELIDIK ETNOBOTANI DAN SIFAT BIOLOGI TUMBUHAN UBATAN YANG DIGUNAKAN DALAM PENJAGAAN KESIHATAN TRADISIONAL IBU MENGANDUNG DI NEGERI KATSINA, NIGERIA

Oleh

SULAIMAN SANI KANKARA

Disember 2015

Pengerusi : Profesor Madya Rusea Go, PhD
Fakulti : Sains

Tumbuhan ubatan digunakan secara meluas untuk banyak pengurusan kesihatan termasuk kesihatan ibu hamil sejak dahulu lagi di Negeri Katsina, Nigeria Utara. Dalam kajian ini, kajian etnobotani telah dijalankan secara kaedah soal selidik separa berstruktur untuk mendapatkan maklumat mengenai penggunaan tumbuhan ubatan untuk penjagaan kesihatan tradisional ibu mengandung di kawasan kajian. Responden terdiri daripada pakar herba, bidan kelahiran tradisional (TBA), pengamal perubatan tradisional (TMPs), suri rumah, petani dan lain-lain. Sebanyak 111 tumbuhan perubatan dari 101 genus meliputi 50 keluarga telah didokumenkan. Acacia nilotica (L) Delile dan Guiera senegalensis JF Gmel menunjukkan nilai Kekerapan Relatif Petikan (RFC) dan Tahap Fideliti (FL) yang tertinggi. Kira-kira 22.52% daripada spesis yang direkodkan adalah tergolong didalam keluarga Fabaceae diikuti oleh Asteraceae (7.21%), Malvaceae (5.41%) dan Anacardiaceae (4.51%). Sebanyak 25.23% daripada spesis yang dinamakan digunakan untuk kesejahteraan umum semasa dan selepas kehamilan. Manakala 68.47% daripada spesis yang dinamakan adalah pokok herba dan pokok renek dan 84.68% daripadanya diperoleh dari hutan. Daun adalah bahagian tumbuhan yang paling kerap digunakan (32.14%). Sebanyak 32% daripada ubat-ubatan yang disediakan adalah secara rebusan dan kebanyakan ramuan (84.68%) diambil secara oral.

Tinjauan literatur telah dijalankan dengan bantuan pangkalan data dalam talian, buku-buku teks dan tesis yang tidak diterbitkan menggunakan kata kunci seperti "Aktiviti-aktiviti biologi", "Kegunaan etnobotani", "Sifat-sifat ubatan", "Kajian ketoksikan" dan nama spesis di dalam kajian semula. Hanya spesies yang mempunyai nilai gabungan Kekerapan Relatif Petikan (RFC) dan Tahap Fediliti (FL) masing-masing sekurangnya 0.50 dan 50% masing-masing, telah dimasukkan untuk kajian literatur. Tinjauan literatur menunjukkan bahawa kecuali Acacia nilotica, Euphorbia convolvuloides dan Indigofera astragalina DC, semua spesies yang dikenali semula dilaporkan mempunyai satu atau lebih aktiviti biologi didalam penggunaan budaya kaum bagi pengurusan kesihatan ibu hamil. Kaji selidik juga mendedahkan bahawa terdapat beberapa tumbuhan yang dikenali adalah toksik. Spesies seperti Jatropha carcus dan Ipomoea

Kajian lain juga telah dijalankan untuk menilai sifat-sifat penyembuhan luka Acacia nilotica dengan menggunakan tikus Sprague Dawley. Parameter penyembuhan luka yang dinilai termasuklah kadar penguncupan luka, tahap prokeradangan sitokin (IL-1β dan TNF-α) dan analisis histopatologi kawasan luka. Luka telah dinilai pada hari ke 7 dan 14 selepas kecederaan. Ekstrak ini menunjukkan bahawa dos yang berkaitan dengan aktiviti DPPH-dadikal pemerangkap adalah lebih baik berbanding dengan trolox (antioksida piawaian). Aplikasi topikal krim A. nilotica signifikan meningkatkan kadar penguncupan luka (P <0.05) berbanding dengan kumpulan kawalan pada hari ke 7 dan 14 penilaian. Ekstrak ini juga berkesan mengekspresi kedua-dua IL-1β dan TNF-α secara pertanggungan dos sepanjang tempoh kajian. Analisis histologi juga menunjukkan bahawa rawatan ekstrak meningkatkan pertumbuhan tisu semula.

Kajian lain juga telah dijalankan untuk menilai kesan kaedah pengekstrakan terhadap sifat-sifat antioksida Guiera senegalensis. Pengekstrakan G. senegalensis secara berasingan didapati lebih berkesan daripada digabungkan bersama E. balsamifera, I. asarifolia atau kedua-duanya. Pengeringan udara adalah kaedah pengerian yang terbaik kerana ia menghasilkan kandungan fenolik dan aktiviti antioksida yang tertinggi. Suhu pengekstrakan optimum ialah pada 40ºC, manakala 60 minit adalah masa pengekstrakan terbaik. Walaupun penambahan natron sehingga 5 mg/mL didapati meningkatkan nilai TPC dan TFC, namun aktiviti antioksida (DPPH, FRAP dan TAC) menurun secara signifikan.

Akhir sekali, perkembangan ketoksikan ekstrak air daun G. senegalensis pada embrio zebrafish (Danio rerio) juga dikaji. Kadar kelangsungan hidup, kadar penetasan dan kesan teratogenik telah digunakan untuk menilai ketoksikan. Kedua-dua kadar kelangsungan hidup dan kadar penetasan dikesan signifikan diturunkan oleh dos ekstrak yang lebih tinggi. LC₅₀ ekstrak didapati pada 61.88 mg/mL. Ekstrak ini juga menyebabkan beberapa kecacatan struktur termasuk ekor bengkok, badan melengkung, pundi embrio edema, panjang badan yang pendek dan saraf tunjang melengkung pada embrio yang menetas.

ACKNOWLEDGEMENTS

All praise be to Allah, the Most Magnificent the Most Merciful, for His countless blessings throughout my life. May His peace and blessings be upon His Messenger, including his companions and household.

I wish to express my profound gratitude to my parents for their support and prayers throughout my life. How I wish they are alive to see what their young “Sule” become today. But Allah the Almighty knows the reason why He takes them away the time I need them most. I asked Him in His infinite mercy to forgive their shortcomings and make them among the dwellers of Jannatul Firdaus.

My heartfelt appreciations goes to the members of the Supervisory Committee under the erudite leadership of Associate Professor Dr Rusea Go, for the painstaking job of objectively criticising and reviewing both the practical and writing aspects of this thesis. I specially recognized the effort of the Chairperson for playing the roles of not only academic mentor but also for her ability to inspire confidence in me.

I sincerely acknowledge the assistance I received from both academic and non-academic staff of Biology Department, Universiti Putra Malaysia who helped me in one way or the other towards successful completion of my research work.

I also thank Dr Dahiru Sani of the Pharmacology Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia for his invaluable assistance during the animal study.

I am also indebted to the members of Plant Systematics and Microbes Laboratory. Their friendship and the sense of belonging I received from them make my stay in Malaysia lively. I thank them all and I wish them success in their academic pursuits and future endeavors.

This study would not have been a success without the support, concern and patience of my immediate and extended families. I appreciate their individual and collective assistance and asked God the Almighty to reward each and every one of them abundantly.

My unalloyed gratitude goes to the Management of Umaru Musa Yar’adua University, Katsina for giving me the golden opportunity to pursue Doctorate Degree in Universiti Putra Malaysia.
Certainly, a project of this nature could not have been completed without the contributions of various individuals and organization too numerous to mentioned due to space constrain, but God the Overseer of the earth and heaven knows each of them. I therefore asked Him with His beautiful names to reward each and every one of them abundantly.
I certify that a Thesis Examination Committee has met on 22 December 2015 to conduct the final examination of Kankara Sulaiman Sani on his thesis entitled "Ethnobotanical Survey and Biological Properties of Medicinal Plants Used for Traditional Maternal Healthcare in Katsina State, Nigeria" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Nor Azwady bin Abd Aziz, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Nur Ashikin Psyquay binti Abdullah, PhD
Associate Professor
Faculty of Agriculture and Food Sciences
Universiti Putra Malaysia (Bintulu Campus)
(Internal Examiner)

Hishamuddin bin Omar, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Haji Mohamed Abdul Majid, PhD
Professor
Universiti Brunei Darussalam
Brunei Darussalam
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 February 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Rusea Go, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairperson)

Muskhazli bin Mustafa, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Mohd Hafiz Ibrahim, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: _____________________
Declaration by graduate student

I hereby confirm that:

- This thesis is my original work;
- quotations, illustrations and citations have been dully referenced;
- This thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- Intellectual property from the thesis and copyright of thesis are fully-owned by university Putra Malaysia, as according to the University Putra Malaysia (Research) Rules 2012;
- Written permission must be obtained from supervisor and the office of Deputy Vice Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the University Putra Malaysia (Research) Rules 2012;
- There is no plagiarism or data falsification/ fabrication in the thesis and scholarly integrity is upheld as according to the University Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and University Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _____________________________ Date: ________________

Name and Matric No: Sulaiman Sani Kankara, GS
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __
Name of Chairman of Supervisory Committee: Associate Professor Dr. Rusea Go

Signature: __
Name of Member of Supervisory Committee: Associate Professor Dr. Muskhazli bin Mustafa

Signature: __
Name of Member of Supervisory Committee: Dr. Mohd Hafiz Ibrahim
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 **GENERAL INTRODUCTION**
1.1 Background of the study
1.2 Objectives of the study

2 **LITERATURE REVIEW**
2.1 Medicinal plant and herbal medicine
2.2 Historical background of herbal medicine
2.3 Ethnobotany
2.3.1 Historical background of ethnobotany
2.3.2 Ethnobotany and the discovery of new drugs
2.3.3 Ethnobotanical studies around the world
2.3.4 Ethnobotanical studies in Africa
2.3.5 Ethnobotanical studies in Nigeria
2.3.6 Ethnobotanical studies on medicinal plants used for maternal healthcare
2.4 Maternal healthcare in Nigeria
2.5 Maternal health and oxidative stress
2.5.1 Antioxidants and pregnancy
2.6 Medicinal plants as source of antioxidants
2.6.1 Polyphenols and antioxidant activity in plants
2.6.2 Methods used for evaluating antioxidant activity
2.6.3 Impact of extraction parameters on polyphenols content and their antioxidant activity
2.7 Toxicity of medicinal plants in pregnancy
2.7.1 Toxicity study of medicinal plants in experimental animals

3 **ETHNOBOTANICAL SURVEY OF MEDICINAL USED FOR TRADITIONAL MATERNAL HEALTHCARE IN KATSINA STATE, NIGERIA**
3.1 Introduction
3.2 Material and methods
3.2.1 Study area
3.2.2 Data collection
3.2.3 Plant specimens collection and identification
3.2.4 Data analysis

3.3 Results and discussion
3.3.1 Socio-demographic information 34
3.3.2 Plant species used for traditional maternal health care 36
3.3.3 Relative Frequency of Citation (RFC) and Fidelity Level (FL) 38
3.3.4 Dosage, mode of preparation and route of administration 49
3.3.5 Informant Consensus Factor (ICF) 51
3.4 Conclusion 52

4 AN OVERVIEW ON THE ETHNOBOTANY, BIOLOGICAL PROPERTIES, AND TOXICITY STATUS OF SOME MEDICINAL PLANTS USED FOR TRADITIONAL MATERNAL HEALTH CARE IN KATSINA STATE, NIGERIA 53
4.1 Introduction 53
4.2 Material and methods 54
4.3 Results and discussions 54
4.3.1 Acacia nilotica (L.) Delile (Figure 4.1) 60
4.3.2 Acacia polyacantha Willd (Figure 4.2) 62
4.3.3 Acanthospermum hispidum DC (Figure 4.3) 63
4.3.4 Albizia chevalieri Harms (Figure 4.4) 65
4.3.5 Allium sativum L. (Figure 4.5) 66
4.3.6 Anacardium occidentale L. (Figure 4.6) 67
4.3.7 Anchomanes difformis (Blume) Engl. (Figure 4.7) 68
4.3.8 Anisopus mannii N.E.Br. (Figure 4.8) 69
4.3.9 Artemisia annua L. (Figure 4.9) 70
4.3.10 Baccharoides adoensis Sch.Bip. ex Walp. (Figure 4.10) 72
4.3.11 Caralluma dalzielii N.E. Brown (Figure 4.11) 73
4.3.12 Citrus aurantifolia (Christm.) Swingle (Figure 4.12) 74
4.3.13 Euphorbia balsamifera Aiton, Hort. (Figure 4.13) 76
4.3.14 Euphorbia convolvuloides Hochst. ex Benth (Figure 4.14) 77
4.3.15 Evolvulus alsinoides (L.) L. (Figure 4.15) 78
4.3.16 Guiera senegalensis J.F. Gmel (Figure 4.16) 80
4.3.17 Indigofera astragalina DC. (Figure 4.17) 82
4.3.18 Ipomoea asarifolia (Desr.) Roem. And Schult (Figure 4.18) 83
4.3.19 Jatropha curcas L. (Figure 4.19) 84
4.3.20 Lannea acida A. Rich. (Figure 4.20) 86
4.3.21 Leptadenia hastata (Pers.) Decne (Figure 4.21) 87
4.3.22 Mangifera indica L. (Figure 4.22) 88
4.3.23 Mitragyna inermis (Willd) Kuntze (Figure 4.23) 90
4.3.24 Moringa oleifera Lam. (Figure 4.24) 91
4.3.25 Ozoroa insignis R. Fernandes (Figure 4.25) 93
4.3.26 Sclerocarya birrea (A. Rich.) Hochst (Figure 4.26) 94
4.4 Conclusion 95
5 WOUND HEALING ACTIVITY OF ACACIA NILOTICA PODS WATER EXTRACT IN SPRAGUE-DAWLEY RATS

5.1 Introduction 97
5.2 Material and methods 98
 5.2.1 Plant collection and identification 98
 5.2.2 Preparation of aqueous extract of A. nilotica pods 98
 5.2.3 Antioxidant activity 99
 5.2.4 Preparation of A. nilotica pods extract cream 99
 5.2.5 Experimental animal 99
 5.2.6 Excision wound model and grouping of animals 99
 5.2.7 Biophysical parameters 100
 5.2.8 Determination of level of pro-inflammatory cytokines 100
 5.2.9 Histopathological Analysis 100
 5.2.10 Statistical analysis 100
5.3 Results and discussions 101
 5.3.1 Antioxidant activity 101
 5.3.2 Rate of wound closure 102
 5.3.3 Pro-inflammatory cytokines 105
 5.3.4 Histopathological analysis 107
5.4 Conclusion 109

6 EFFECT OF EXTRACTION METHODS ON THE ANTIOXIDANT PROPERTIES OF GUIERA SENEGALENSIS J.F. GMEL (COMBRETACEA)

6.1 Introduction 110
6.2 Material and methods 112
 6.2.1 Samples collection, identification and preparation 112
 6.2.2 Experimental design 112
 6.2.3 Extraction of plants material 113
 6.2.4 Determination of total phenolic content (TPC) 113
 6.2.5 Determination of Total Flavonoid Content (TFC) 114
 6.2.6 Ferric reducing antioxidant power (FRAP) 114
 6.2.7 Total antioxidant capacity (TAC) 114
 6.2.8 2,2’-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity 115
 6.2.9 Statistical analysis 115
6.3 Results and discussions 115
 6.3.1 Effect of herbal combination 115
 6.3.2 Effect of drying method 118
 6.3.3 Effect of solid-solvent ratio 120
 6.3.4 Effect of extraction temperature 122
 6.3.5 Effect of extraction time 124
 6.3.6 Effect of natron addition 126
 6.3.7 Pearson correlation analysis 128
6.4 Conclusion 130
7 Toxicity Evaluation of *Guiera senegalensis* Leaves Water Extract in Zebrafish (*Danio rerio*) Embryo

7.1 Introduction 131
7.2 Material and methods 132
7.2.1 Plant material 132
7.2.2 Zebrafish care and embryo collection 132
7.2.3 Embryo exposure 133
7.2.4 Statistical analysis 133
7.3 Results and discussion 133
7.4 Conclusion 136

8 Summary, General Conclusion and Recommendations for Future Studies 137
8.1 Summary 137
8.2 General conclusion 137
8.3 Recommendations for future research 139

References 140
Appendices 214
Biography of Student 251
List of Publications 252
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1:</td>
<td>Some plants from which drugs were derived.</td>
<td>10</td>
</tr>
<tr>
<td>3.1:</td>
<td>Socio-demographic information of the respondents.</td>
<td>35</td>
</tr>
<tr>
<td>3.2:</td>
<td>Medicinal plants used for traditional maternal healthcare in Katsina State, Nigeria.</td>
<td>39</td>
</tr>
<tr>
<td>3.3:</td>
<td>Informant Consensus Factor (ICF) of categories of ailments associated with maternal health in Katsina State, Nigeria.</td>
<td>52</td>
</tr>
<tr>
<td>4.1:</td>
<td>Reported biological properties and toxicity of medicinal plants commonly used for traditional maternal healthcare in Katsina state, Nigeria.</td>
<td>55</td>
</tr>
<tr>
<td>6.1:</td>
<td>Correlation analysis between assays as affected by different extraction methods.</td>
<td>129</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1:</td>
<td>An overview of the reactions leading to the formation of ROS.</td>
<td>18</td>
</tr>
<tr>
<td>2.2:</td>
<td>Classification of antioxidant systems.</td>
<td>21</td>
</tr>
<tr>
<td>2.3:</td>
<td>Frequencies of in vitro (a) and in vivo (b) assays used for antioxidant evaluation of different samples</td>
<td>26</td>
</tr>
<tr>
<td>3.1:</td>
<td>Map of Katsina State, Nigeria showing the selected locations for the study.</td>
<td>32</td>
</tr>
<tr>
<td>3.2:</td>
<td>Distribution of Plants families used for traditional maternal healthcare in Katsina State, Nigeria.</td>
<td>37</td>
</tr>
<tr>
<td>3.3:</td>
<td>Habit status of medicinal plants used for traditional maternal healthcare in Katsina State, Nigeria.</td>
<td>48</td>
</tr>
<tr>
<td>3.4:</td>
<td>Domestication status of medicinal plants used for traditional maternal healthcare in Katsina State, Nigeria.</td>
<td>48</td>
</tr>
<tr>
<td>3.5:</td>
<td>Plant parts used for traditional maternal health care in Katsina State, Nigeria.</td>
<td>49</td>
</tr>
<tr>
<td>3.6:</td>
<td>Mode of preparation of medicinal plants used for traditional maternal healthcare in Katsina State, Nigeria.</td>
<td>50</td>
</tr>
<tr>
<td>3.7:</td>
<td>Route of administration of plants used for traditional maternal healthcare in Katsina State, Nigeria.</td>
<td>50</td>
</tr>
<tr>
<td>4.1:</td>
<td>Acacia nilotica (L.) Delile</td>
<td>62</td>
</tr>
<tr>
<td>4.2:</td>
<td>Acacia polyacantha Willd</td>
<td>63</td>
</tr>
<tr>
<td>4.3:</td>
<td>Acanthospermum hispidum DC</td>
<td>64</td>
</tr>
<tr>
<td>4.4:</td>
<td>Albizia chevalieri Harms</td>
<td>66</td>
</tr>
<tr>
<td>4.5:</td>
<td>Allium sativum L.</td>
<td>67</td>
</tr>
<tr>
<td>4.6:</td>
<td>Anacardium occidentale L.</td>
<td>68</td>
</tr>
<tr>
<td>4.7:</td>
<td>Anchomanes difformis (Blume) Engl.</td>
<td>69</td>
</tr>
<tr>
<td>4.8:</td>
<td>Anisopus manni N.E.Br.</td>
<td>70</td>
</tr>
<tr>
<td>4.9:</td>
<td>Artemisia annua L.</td>
<td>72</td>
</tr>
</tbody>
</table>

xvi
4.10: *Baccharoides adoensis* Sch.Bip. ex Walp.
4.11: *Caralluma dalzielii* N.E. Brown
4.12: *Citrus aurantifolia* (Christm.) Swingle
4.14: *Euphorbia convolvuloides* Hochst. ex Benth
4.15: *Evolvulus alsinoides* (L.) L.
4.16: *Guiera senegalensis* J.F. Gmel
4.17: *Indigofera astragalina* DC.
4.18: *Ipomoea asarifolia* (Desr.) Roem. And Schult
4.19: *Jatropha curcas* L.
4.21: *Leptadenia hastata* (Pers.) Decne
4.22: *Mangifera indica* L.
4.23: *Mitragyna inermis* (Willd) Kuntze
4.25: *Ozoroa insignis* R. Fernandes
4.26: *Sclerocarya birrea* (A. Rich.) Hochst

5.1: DPPH radical scavenging activity of *Acacia nilotica* pods aqueous extract.
5.2: Percent wound healing rate of *Acacia nilotica* pod aqueous extract on Sprague-Dawley rat
5.3: Wound contraction effect of *Acacia nilotica* pod water extract on Spragu-Dawley rat
5.4: Effect of *Acacia nilotica* pod extracts on the production of IL-1β in healed wounds
5.5: Effect of *Acacia nilotica* pod extracts on the production of TNF-α in healed wounds
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6:</td>
<td>Photomicrographs of H&E-stained sections of wound specimens.</td>
</tr>
<tr>
<td>6.1:</td>
<td>Effect of herbal combination on the antioxidant properties of Guiera senegalensis</td>
</tr>
<tr>
<td>6.2:</td>
<td>Effect of drying methods on the antioxidant properties of Guiera senegalensis</td>
</tr>
<tr>
<td>6.3:</td>
<td>Effect of solid-solvent ratio on the antioxidant properties of Guiera senegalensis</td>
</tr>
<tr>
<td>6.4:</td>
<td>Effect of extraction temperature on the antioxidant properties of Guiera senegalensis</td>
</tr>
<tr>
<td>6.5:</td>
<td>Effect of extraction time on the antioxidant properties of Guiera senegalensis</td>
</tr>
<tr>
<td>6.6:</td>
<td>Effect of natron addition on antioxidant properties of Guiera senegalensis</td>
</tr>
<tr>
<td>7.1:</td>
<td>Effect of Guiera senegalensis leaves water extract on the survival rate of zebrafish (Danio rerio) embryo</td>
</tr>
<tr>
<td>7.2:</td>
<td>Effect of Guiera senegalensis leaves water extract on the survival rate of zebrafish (Danio rerio) embryo</td>
</tr>
<tr>
<td>7.3:</td>
<td>LC$_{50}$ determination of Guiera senegalensis leaves water extract on zebrafish (Danio rerio) embryo</td>
</tr>
<tr>
<td>7.4:</td>
<td>Teratogenic effects of Guiera senegalensis leaves water extract on zebrafish (Danio rerio) larva</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>AAE</td>
<td>Ascorbic Acid Equivalence</td>
</tr>
<tr>
<td>ABTS</td>
<td>2,2’-azino-bis-6-ethylbenzthiazoline-6-sulfonic acid</td>
</tr>
<tr>
<td>AChE</td>
<td>Acetylcholinesterase</td>
</tr>
<tr>
<td>AD</td>
<td>After Death</td>
</tr>
<tr>
<td>AI</td>
<td>Artherogenic Index</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immuno Deficiency Syndrome</td>
</tr>
<tr>
<td>ASNAPP</td>
<td>Agribusiness in Sustainable African Plant Products</td>
</tr>
<tr>
<td>ATM</td>
<td>African Traditional Medicine</td>
</tr>
<tr>
<td>BC</td>
<td>Before Christ</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>COX-2</td>
<td>Cyclooxygenase 2</td>
</tr>
<tr>
<td>CUPRAC</td>
<td>Cupric Ion Reducing Antioxidant Capacity</td>
</tr>
<tr>
<td>DMPD</td>
<td>N,N-dimethyl-p-phenylenediamine dihydrochloride</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2’-diphenyl-1-picryl hydrazyl</td>
</tr>
<tr>
<td>DRC</td>
<td>Democratic Republic of Congo</td>
</tr>
<tr>
<td>DW</td>
<td>Dry Weight</td>
</tr>
<tr>
<td>ENT</td>
<td>Ear Nose and Throat</td>
</tr>
<tr>
<td>EWPs</td>
<td>Edible Wild Plants</td>
</tr>
<tr>
<td>FL</td>
<td>Fidelity Level</td>
</tr>
<tr>
<td>FPV</td>
<td>Fowl Pox Virus</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric Reducing Antioxidant Power</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle Stimulating Hormone</td>
</tr>
<tr>
<td>FTC</td>
<td>Ferric Thiocyanate</td>
</tr>
<tr>
<td>GAE</td>
<td>Gallic Acid Equivalence</td>
</tr>
<tr>
<td>GGT</td>
<td>γ-Glutamyl Transpeptide</td>
</tr>
<tr>
<td>GPx</td>
<td>Glutathione Peroxidase</td>
</tr>
</tbody>
</table>
GR Glutathione Reductase
GST Glutathione-s-transferase
HaCaT Human Keratinocyte Cell Line
HAD High Antioxidant Diet
HCV Hepatitis C Virus
HIV Human Immunodeficiency Virus
HORAC Hydroxyl Radical Averting Capacity
HPLC High Performance Liquid Chromatography
HSPs Heat Shock Proteins
IACUC Institutional Animal Care and Use Committee
ICF Informant Consensus Factor
IDA Iron Deficiency Anemia
IK Indigenous Knowledge
IL-1β Interleukin 1 Beta
IL-6 Interleukin 6
IPM Integrated Pest Management
kg kilogram
LBW Low Birth Weight
LDL Low Density Lipoprotein
LGA Local Government Area
LH Luteinizing Hormone
m meter
MCHC Mean Corpuscular Hemoglobin Concentration
MDA Malandialdehyde
MDGs Millennium Developmental Goals
mg milligram
mL millilitre
mM micromole
mm millimeter
NADPH Nicotinamide Adenine Dinucleotide Phosphate
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDV</td>
<td>Newcastle Disease Virus</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>NNMDA</td>
<td>Nigeria Natural Medicine Development Agency</td>
</tr>
<tr>
<td>NNRTI</td>
<td>Non-nucleoside Reverse Transcriptase Inhibitor</td>
</tr>
<tr>
<td>NPC</td>
<td>National Population Commission</td>
</tr>
<tr>
<td>NTFPs</td>
<td>Non-timber Forest Plants</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>PAI-1</td>
<td>Plasminogen Activator Inhibitor 1</td>
</tr>
<tr>
<td>PAI-2</td>
<td>Plasminogen Activator Inhibitor 2</td>
</tr>
<tr>
<td>PCV</td>
<td>Packed Cell Volume</td>
</tr>
<tr>
<td>PDD</td>
<td>Protein Deficient Diet</td>
</tr>
<tr>
<td>pg</td>
<td>pictogram</td>
</tr>
<tr>
<td>QE</td>
<td>Quercetin Equivalence</td>
</tr>
<tr>
<td>RBC</td>
<td>Red Blood Cells</td>
</tr>
<tr>
<td>RFC</td>
<td>Relative Frequency of Citation</td>
</tr>
<tr>
<td>RNS</td>
<td>Reactive Nitrogen Species</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>SGOT</td>
<td>Serum Glutamic Oxaloacetic Transaminase</td>
</tr>
<tr>
<td>SGPT</td>
<td>Serum Glutamic Pyruvate Transaminase</td>
</tr>
<tr>
<td>SOD</td>
<td>Sulfoxoridine Dismutase</td>
</tr>
<tr>
<td>SSDZ</td>
<td>Silver sulfadiazine</td>
</tr>
<tr>
<td>TAC</td>
<td>Total Antioxidant Capacity</td>
</tr>
<tr>
<td>TAS</td>
<td>Total Antioxidant Status</td>
</tr>
<tr>
<td>TBA</td>
<td>Thibarbutaric Acid</td>
</tr>
<tr>
<td>TBAs</td>
<td>Traditional Birth Attendants</td>
</tr>
<tr>
<td>TCM</td>
<td>Traditional Chinese Medicine</td>
</tr>
<tr>
<td>TEAC</td>
<td>Trolox Equivalent Antioxidant Capacity</td>
</tr>
<tr>
<td>TFC</td>
<td>Total Flavonoid Content</td>
</tr>
<tr>
<td>Th-1</td>
<td>T-helper 1 Cells</td>
</tr>
<tr>
<td>THs</td>
<td>Traditional Healers</td>
</tr>
</tbody>
</table>

xxi
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV</td>
<td>Traditional Leafy Vegetables</td>
</tr>
<tr>
<td>TM</td>
<td>Traditional Medicine</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor Necrosis Factor Alpha</td>
</tr>
<tr>
<td>TPC</td>
<td>Total Phenolic Content</td>
</tr>
<tr>
<td>TRAP</td>
<td>Total Radical Trapping Antioxidant Parameters</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>USAID</td>
<td>United State Agency for International Development</td>
</tr>
<tr>
<td>WBC</td>
<td>White Blood cells</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
CHAPTER 1

GENERAL INTRODUCTION

1.1 Background of the study

Nigeria, one of the world’s leading producers of oil, is Africa’s most populous country and the majority of the population dwell in rural areas. Due to some reasons beyond the scope of this study, majority of the population lives below the poverty line of US$ 1 per day (Japan International Cooperation Agency, 2011). Healthcare services in Nigeria are inadequate and unevenly distributed, and only a small number of healthcare facilities provide antenatal care, delivery and postnatal services.

World Health Organization (WHO) defined maternal death as “death of a woman while pregnant or within forty two days of termination of pregnancy, from any cause related to or aggravated by the pregnancy, irrespective of the duration and site of the pregnancy or its management but not from accidental or incidental causes.” Maternal mortality is attributed to many causes such as postpartum hemorrhage (24%); indirect causes such as anemia, malaria, and heart disease (20%); infection (15%); unsafe abortion (13%); eclampsia (12%); obstructed labor (8%); and ectopic pregnancy, embolism, and anesthesia complications (8%). WHO (2014) informed that everyday about 800 women die from pregnancy or childbirth-related circumstances globally. Considering this “unacceptably” high maternal mortality figure, improving maternal health is among the eight Millennium Developmental Goals (MDGs) adopted by the international community in 2000.

Majority of maternal deaths (99%) occur in developing countries and half of this figure occur in Sub-Saharan Africa with a life time risk of 1 in every 16 women, while the figure in western countries is 1 in every 28,000 women (Nour, 2008). Access to quality healthcare has been identified as the major factor that contributes to the “vast and unjustifiable” disparities in maternal mortality between developed and developing countries (Prata et al., 2010). Postpartum hemorrhage, infection, unsafe abortion, hypertensive disorders of pregnancy and obstructed labor are the five major causes maternal deaths in developing countries (Khan et al., 2006).

The maternal mortality ratio in Nigeria is 630 per 100,000 live births, which places the country as the country with the tenth highest mortality ratio in the world (WHO, 2014). Nigeria and other five countries account for almost half (49%) of the overall maternal mortality figure worldwide (Hogan et al., 2010). This unprecedented figure cannot be disassociated from the fact that most Nigerian women employ the services of alternative traditional healthcare through the services of Traditional birth Attendants (TBAs) and Traditional Healers (THs), who inevitably use medicinal plants for maternal healthcare, particularly in rural areas where orthodox health facilities are either absent or extremely difficult to access.
Traditional Medicine (TM) defined by the WHO (1978) as “the sum total of knowledge or practices whether explicable or inexplicable, used in diagnosing, preventing or eliminating a physical, mental or social disease which may rely exclusively on past experience or observations handed down from generation to generation, verbally or in writing”, is the main source of healthcare for about 80% of African population in both rural areas- where healthcare facilities are lacking and urban areas- where treatments are offered in modern in modern health centres (Towns and Andel, 2014). People around the world, especially in rural areas utilize plants as source of medicine during pregnancy, birth and postpartum period to cure pregnancy related ailments such as miscarriage, morning sickness, swelling of the legs, abdominal pain, retained placenta, postpartum haemorrhage etc (Abdillahi and Van Staden, 2013).

Various studies (Singh et al.,1984; Browner, 1985; Bourdy and Walter, 1992; Varga and Veale, 1997; Ticktin and Dalle, 2005; Lamxay et al., 2011; Attah et al., 2012; Nordeng et al., 2013; Borokini et al., 2013; Abdillahi and Van Staden, 2013) have documented many medicinal plants used to treat obstetric and gynaecological conditions, such as birth control, complications during pregnancy and child birth and problems associated with infertility. The extensive use of medicinal plants for traditional healthcare could be attributed to their affordability, accessibility and the fear of side effects associated with allopathic drugs. Recently, there is more interest on the use of medicinal plant crude extracts because of the believe that they contain diverse number of secondary metabolites with varied pharmacological features that act synergistically, resulting in combined effects as opposed to isolated single compound which in most cases result in adverse side effects (Mahomoodally, 2013).

Although medicinal plants are widely used for maternal healthcare around the world, most of these plants are located in remote areas and only known by the local people (Jorim et al., 2012). The surest way of introducing new ethnobotanicals into modern therapies is therefore, through reviewing the local flora and its ethnobotanical use. In spite of the long-time usage of medicinal plants, their medicinal values are mostly passed on orally from one generation to another, thereby creating a vast “legacy of undocumented materials” (Jantan, 1998). This pattern of transmission of knowledge makes traditional medicine to be vulnerable to disappearance because the custodians of the knowledge who are mostly the older people of the society, are passing away day by day and the younger generations are being exposed to modern culture acculturation (Weldegerima, 2009). This is further compounded by other human activities such as deforestation, bush burning, overgrazing etc, which directly or indirectly affect the medicinal plant diversity negatively. Documenting medicinal plants usage would therefore, go a long way in preserving the cultural heritage as well as creating information repository from which pharmacological studies aimed at production of new drug leads would be conducted.

Despite the increasing interest on the utilization of medicinal plants for traditional medicine, there is a great concern on their efficacy. This is attributed largely to the lack of scientific validation of the folkloric use of majority of medicinal plants employed for traditional medicine (Bent, 2008). One of the problems associated with Traditional Medicine as hinted by WHO (1978) is that it does not keep pace with scientific and
technological advancement and its methods are in most cases, kept secret. More so, traditional medicine is in most cases, based on ritual, mysticism and other unreal factors such as witchcraft, spiritual and moral principles which are very difficult to rationalize (Taylor et al., 2001). To provide society with novel, effective and safe drugs, pharmacological screening of medicinal plants to validate their historical usage is therefore, of utmost importance.

Depending on the type of plant utilised and ailment being treated, herbal remedies are prepared using several, mostly non standardized methods which include decoction, maceration, poultice, tincture compresses etc. These preparation methods are mostly based on cultural belief and long term experience. However, due to the diverse physical and chemical nature of the therapeutic materials, no single preparation condition is optimal for all plants at all times. Hence, there is a need to optimize the extraction conditions in order not to compromise the efficiency and efficacy of medicinal plants.

Based on inherited knowledge and long-term usage for the treatment of various ailments over the centuries and the belief that medicinal plants are natural and therefore considered safer than conventional synthetic pharmaceuticals. There is, however, scarce scientific evidence supporting this belief (Raskin et al., 2002). Recent scientific evidence has revealed that many plants considered to be medicinal are potentially toxic, mutagenic and carcinogenic (Fennell et al., 2004). Poisoning by medicinal plants may be attributed to misidentification, incorrect preparation or inappropriate administration and dosage. Information from health centres and emergency rooms has reported many dangerous and lethal effects from the use of herbal products (Rodriguez-Fragoso et al., 2008).

1.2 Objectives of the study

Taking all these into consideration, an attempt was made to document the medicinal plants used for traditional maternal healthcare in Katsina State, Nigeria. The specific objectives of this study are:

1. To carry out an ethnobotanical survey of medicinal plants used for traditional maternal healthcare in Katsina State, Nigeria.
2. To review the pharmacological properties of some of the surveyed plants.
3. To scientifically validate the folkloric use of some of the surveyed species.
4. To assess the impact of processing methods on the medicinal properties of some of the surveyed species.
5. To evaluate the toxicity of some of the surveyed species.
REFERENCES

Thoo, Y.Y., Ho, S.K., Liang, J.Y., Ho, C.W. and Tan, C.P. (2010). Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (*Morinda citrifolia*). *Food Chemistry*, 120(1): 290-295.

206

LIST OF PUBLICATIONS

Ethnobotanical survey of medicinal plants used for traditional maternal healthcare in Katsina State, Nigeria: *South African Journal of Botany* 2015, 97: 165-175 (IF= 1.34; Q2; Scopus indexed, Published)

Effect of drying method, solid-solvent ratio, extraction temperature and extraction time on phenolic antioxidants and antioxidant activity in *Guiera senegalensis*: *American Journal of Phytomedicine and Clinical Therapeutics* 2015, 2 (12): 1378-1392 (IF= 0.69; ISSN, Published)

Phenolic antioxidants and antioxidant activities of some medicinal plants used for traditional maternal healthcare in Katsina State, Nigeria: *African Journal of Traditional, Complementary and Alternative Medicine* (IF= 0.7; Q3; ISSN, Submitted)

An overview on the biological properties and toxicity of medicinal plants used for traditional maternal healthcare in Katsina State, Nigeria, *Journal of Ethnopharmacology* (IF= 2.99; Q1; Scopus index, Submitted)

Wound healing activity of *Acacia nilotica* pods water extract in Sprague Dawley rat: *BMC Complementary and Alternative Medicine* (IF= 2.02; Scopus index, Submitted).
UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION : __________________

TITLE OF THESIS / PROJECT REPORT :

ETHNOBOTANICAL SURVEY AND BIOLOGICAL PROPERTIES OF MEDICINAL PLANTS USED FOR TRADITIONAL MATERNAL HEALTHCARE IN KATSINA STATE, NIGERIA

NAME OF STUDENT : SULAIMAN SANI KANKARA

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.

2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.

3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as :

*Please tick (✓)

☐ CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).

☐ RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).

☐ OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for :

☐ PATENT Embargo from _________ until _________

(date) (date)

Approved by:

(Signature of Student) (Signature of Chairman of Supervisory Committee)
New IC No/ Passport No.: Name:

Date : Date :

[Note: If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]