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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Master of Science

CANONICAL GROUP QUANTISATION ON ONE-DIMENSIONAL
COMPLEX PROJECTIVE SPACE

By

AHMAD HAZAZI AHAMAD SUMADI

November 2015

Chairman: Associate Professor Hishamuddin Zainuddin, PhD
Faculty: Science

In this thesis we study the idea of quantisation approach to study the mathematical
formalism of quantum theory with the intent to relate it with the idea of geometry
of quantum states, particularly, Isham’s group-theoretic quantisation technique to
quantise compact manifold. The core of the discussions is based upon the Isham’s
quantisation programme and the compact classical phase space S2 and CP1. In Chap-
ter 2, we review some of the literature that give some motivations to our investigation
and also of those closely related to our present work.

In Chapter 3, we emphasize on reviewing several mathematical ingredients needed
and also the idea of Isham’s group-theoretic quantisation method and discussed some
insights to further the investigation in the subsequent chapter.

Chapter 4 consists of the author’s original contributions to the thesis. In this chap-
ter, by using the aforementioned technique proposed in Chapter 3, we quantise the
systems on one-dimensional complex projective space which is topologically home-
omorphic to two-dimensional sphere. These two topological spaces are regarded as
the underlying compact phase spaces for which there is no longer a cotangent bundle
structure. These spaces have natural symplectic structure that allows one to use them
for quantisation. The crucial part is to identify canonical group that acts on the phase
space. The first phase is completed by finding all the algebras related to the groups.

With the canonical groups SO(3) and SU(2) found, we complete the quantisation
process by finding representations of the canonical groups for CP1. It is also dis-
cussed that Isham’s group-theoretic quantisation can be used for quantising complex
projective spaces in general and study the complex projective space from group the-
oretical aspects for infinite-dimensional Hilbert space. Finally, Chapter 5 is a con-
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clusion, in this chapter we summarise all our work and suggest some idea for future
research.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Sarjana Sains

PENGQUANTUMAN KUMPULAN BERKANUN KE ATAS RUANG
UNJURAN KOMPLEKS BERMATRA SATU

Oleh

AHMAD HAZAZI AHAMAD SUMADI

November 2015

Pengerusi: Profesor Madya Hishamuddin Zainuddin, PhD
Fakulti: Sains

Dalam tesis ini kami mengkaji idea pengquantuman bagi menyelidiki formulasi
matematik bagi teori quantum dengan bermatlamat untuk mengaitkannya den-
gan idea geometri keadaan quantum, terutamanya teknik pengquantuman berteori-
kumpulan Isham untuk mengquantumkan manifold padat.Teras perbincangan adalah
berdasarkan program pengquantuman Isham pada ruang fasa klasik padat S2 dan
CP1. Dalam Bab 2, kami melakukan tinjauan susastera yang berkait rapat dan mem-
berikan motivasi kepada kajian kami.

Dalam Bab 3, kami memberi ulasan kepada beberapa topik matematik yang diper-
lukan bagi memahami keseluruhan kerja-kerja dan program Isham ini serta kami
juga mengulas secara terperinci kaedah pengquantuman berteori-kumpulan Isham
dan membincangkan beberapa pandangan untuk melanjutkan siasatan dalam bab
berikutnya.

Bab 4 mengandungi karya asli penulis tesis. Dalam bab ini, dengan menggunakan
teknik yang dicadangkan dalam Bab 3, kami mengquantumkan sistem pada ruang
unjuran kompleks bermatra satu yang secara topologinya berhomeomorfik dengan
sfera bermatra dua. Kedua-dua ruang topologi ini dianggap sebagai ruang fasa padat
yang tidak lagi mengambil kira struktur berkas kotangen. Ruang topologi ini mem-
punyai struktur simplektik tabii yang boleh digunakannya untuk tujuan pengquantu-
man. Bahagian yang penting adalah untuk mengenal pasti kumpulan berkanun yang
bertindak pada ruang fasa. Fasa pertama selesai dengan mencari semua aljabar yang
berkaitan dengan kumpulan.

Setelah kumpulan-kumpulan berkanun SO(3) dan SU(2) dijumpai, kami melengkap-
kan proses pengquantuman dengan mencari semua perwakilan tak setara bagi
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kumpulan berkanun. Kami juga membincangkan bahawa pengquantuman berteori-
kumpulan Isham ini boleh digunakan untuk mengquantumkan ruang unjuran kom-
pleks secara umum dan mengkaji ruang unjuran kompleks dari sifat teori kumpulan
bagi ruang Hilbert bermatra ketakterhingga. Akhir sekali Bab 5 adalah kesimpu-
lan dengan kami merumuskan semua kerja-kerja kami dan mencadangkan beberapa
pandangan untuk kajian akan datang.
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CHAPTER 1

INTRODUCTION

1.1 Preamble

Historically, in twentieth century physics, the two major theories that had been a
subject of discourse among physicists are Einstein’s theory of relativity and quan-
tum theory. The former caused a major reformulation of the concepts of space and
time or space-time (Einstein and Lawson, 1920); the latter is the theory that revolu-
tionised physics through the discovery of the “discreteness” energy of the hypothet-
ical black body radiation by a German-born physicist Max Planck (Jammer, 1966).
It has been used widely to understand the nature of microscopic world especially in
Planck’s scale. There are many applications of quantum theory in various fields of
physics such as solid state physics, nuclear physics, atomic and molecular physics,
condensed matter physics, etc.

Recently, the twenty-first century physics has brought us to open a new horizon of
research in which there are group of computer scientists, mathematicians and physi-
cists working together to discover a new ideas in relatively fresh research area viz.
quantum information theory. The advent of this field has found a renewal of interest
into basic quantum theory, asking new kinds of questions and making more devel-
opment on the theory, and at the same time also reawakening interest in the foun-
dational issues of quantum theory itself. For example, attempts are currently being
made to understand quantum entanglement from the information-theoretic point of
view (Bengtsson and Zyczkowski, 2007). In this thesis we use quantisation approach
in order to study the mathematical formalism of quantum theory with the intent to
relate it with the idea of geometry of quantum states.

In general, the word “quantisation” often means the discretisation of particle’s en-
ergy from the ground state energy of atom in microscopic world, but in our spec-
trum of discussion it is different and can be understood as an appropriate proce-
dure to construct the quantum analogue of a given classical system with a specific
phase space S . Despite of being a century old, an effort of investigating the precise
mathematical formalisms are of interest for both physicists and mathematicians ever
since its birth. Indeed, there are different ways to quantise a classical theory such
as Feynman-path integral quantisation, Weyl-Wigner quantisation, C∗-algebra quan-
tisation, Moyal quantisation, stochastic quantisation, quantisation by *-product, ge-
ometric quantisation, Schwinger’s quantisation etc (Ali and Englis, 2005; Shaharir,
2005; Feynman and Hibbs, 1965). From all the quantisation programmes mentioned,
they differ in the fundamental structures assumed on the phase space. There is no
one unique quantisation prescription that converts a classical theory to the quantum
one, producing a “well-defined” quantum formalism.

1
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In our research, we are using a particular quantisation programme initiated by Chris
J. Isham called the group-theoretic quantisation1 (Isham, 1984). Isham’s first at-
tempt was to apply this programme to quantise gravity based on 3-metrics (Isham
and Kakas, 1984a,b). The programme has been generalised by others for different
cases (Jung, 2012; Benevides and Reyes, 2010; Bouketir, 2000; Zainuddin, 1990,
1989). Group-theoretic quantisation, mathematically, shares the same mathemati-
cal language with geometric quantisation, but it emphasises the group-theoretical
aspects. The idea is to focus on the construction of a canonical group describing
the symmetries of the phase space of the system under study. The canonical groups
play a pivotal role corresponding to a global analogue of the canonical commutation
relations (CCR) in Dirac canonical quantisation given by

[qi, p j] = ih̄δ
i
j; [qi,q j] = 0; [pi, p j] = 0 (1.1)

where the h̄ is a Planck’s constant, qi are position variables of the configuration
space of the system studied and their corresponding conjugate momenta p j. Note
that in general, many physicists claimed that the starting point would seem to be the
imposition of this CCR. For the other schemes, they usually have the CCR built in as
an outcome at a later stage of the procedure. However, the CCR may be inappropriate
as a basis for quantising classical systems on non-linear configuration spaces. For
this reason one has to look for another guiding procedure to serve as a basis for
quantisation. A natural ingredient would be the consideration of symmetries of the
system to be quantised. Thus, one of the advantage of this programme is described
by the nature of geometrical notions that allows one to understand the topological
and global aspects of quantum theory in a group-theoretical context.

1.2 Organisation

In Chapter 2, we will review in general some literature that are related to our work
and see how this quantisation scheme is used in a particular system and its generali-
sation.

In Chapter 3 we present the discussions on theory and methodology that we will
use in our research. Here we will further the discussions by reviewing the prelim-
inaries of the mathematical ingredients that are used to understand this quantisa-
tion scheme such as symplectic manifolds (the underlying mathematical structure
of classical mechanics), complex and Kähler manifolds, and fibre bundle theory.
Note that these geometrical tools are used in geometric quantisation programme
(Brian, 2013; Woodhouse, 1997; Weinstein and Bates, 1997). In addition, group-

1. Jung (2012); Benevides and Reyes (2010) and some authors named this scheme as “Canonical
Group Quantisation”, and we adopted this term as our main title of this thesis.
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theoretical features based on Lie group actions on manifold and representation the-
ory are extensively used in this quantisation programme and hence, we will briefly
introduce an overview of, more or less, the fundamentals axioms of quantum the-
ory known among physicists and followed by introducing the mathematical frame-
work of Isham’s group-theoretic quantisation programme with the detailed elabora-
tions. The discussions on comparison between Isham’s group-theoretic and geomet-
ric quantisation are further discussed.

In Chapter 4 is the author’s contribution where this technique is applied to quantise
a simple system on a compact phase spaces. The phase space chosen here is one-
dimensional complex projective space CP1 that is topologically homeomorphic to
the two-sphere S2. The case considered is slightly different compared to those of
Isham and others, since the phase space S is no longer a cotangent bundle. Albeit,
to this particular case we proceed to the next step by finding the appropriate canonical
groups and its relevant unitary irreducible representations.

The final chapter is to summarise all the author’s research findings and proposed
some possible generalisations for future work. We suggest that, in terms of geometry
of quantum states, one can study the idea of describing multiple qubit or qudit states
that arise geometrically from this quantisation framework and hence to understand
the idea of quantum entanglement (Bengtsson and Zyczkowski, 2007).

1.3 Problem Statements and Objectives

Based on Isham’s approach, the quantisation procedure utilise geometry of phase
spaces in the form of cotangent bundle T ∗Q. From there, one has to find its ap-
propriate canonical groups and followed by the unitary irreducible representation
of the groups. This were done by others in several cases, for instance this pro-
gramme is applied on a system of a particle on a two-torus T 2 with a background
field (Zainuddin, 1989), system on a homogeneous space SU(2)/U(1) (Benevides
and Reyes, 2010) and system of a particle on R+(positive real line) with boundary
conditions (Jung, 2012) etc. Furthermore, in comparison, the case of quantisation on
compact phase space is well-known in geometric quantisation school (Woodhouse,
1997; Hurt, 1983; Sniatycki, 1980; Woodhouse and Simms, 1976).

Notwithstanding, motivated from the geometric quantisation school, the question
arises whether it is possible or not that Isham’s method be applied to the case of
non-cotangent bundle structure. From here we proposed our premise of argument
that we want to generalise Isham’s method for the case of compact manifold as an
underlying phase space.

Furthermore, complex projective spaces has been used recently in studying the ge-

3
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ometrical feature of quantum states in the area of geometric quantum information.
In this study we also want to understand the structure of this space, from the group-
theoretical technique, realised as infinite-dimensional Hilbert space.

Therefore, the objectives and motivations for this thesis are as follows;

• To quantise a classical system described by simplest compact manifold. In this
study they are the two-dimensional sphere S2 and one-dimensional complex
projective space CP1.

• To find the appropriate canonical groups of both topological spaces S2 and
CP1.

• To find inequivalent quantisations through inequivalent representations of the
canonical group for CP1.

These three objectives form the bases of our premise of arguments in Chapter 4 later
on.

4
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