UNIVERSITI PUTRA MALAYSIA

INTEGRATIVE TAXONOMY AND MOLECULAR PHYLOGENETIC ANALYSIS OF BENT-WINGED FIREFLIES (COLEOPTERA: LAMPYRIDAE: Pteroptyx) IN PENINSULAR MALAYSIA AND SARAWAK

WAN FARIDAH AKMAL W. JUSOH

FP 2015 93
INTEGRATIVE TAXONOMY AND MOLECULAR PHYLOGENETIC ANALYSIS OF BENT-WINGED FIREFLIES (COLEOPTERA: LAMPyRIDAE: Pteroptyx) IN PENINSULAR MALAYSIA AND SARAWAK

By

WAN FARIDAH AKMAL W. JUSOH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Species delineation using integrative taxonomy has become popular since about a decade ago. Integrative taxonomy entails the use of multiple tools including DNA barcoding and morphological examination of specimens. Integrative taxonomy has reduced major problems in taxonomy such as the presence of cryptic species and the overabundance of synonymous names. In this study, the application of integrative taxonomy in Malaysian firefly taxonomy was presented. To do so, the diversity of fireflies in mangrove estuaries was explored by combining data of geographic distribution, morphology, DNA sequencing and phylogeny of fireflies. The geographic location was restricted to 11 mangrove sites in Malaysia, from which 756 specimens were studied. Morphological data was found to be compatible with molecular data and all species were monophyletic, i.e. both indicated 12 species including non-bent-winged firefly species. However, inclusion of females and larvae in DNA barcoding analysis increased the species count to 14 species. Using combined molecular datasets of three genes (mitochondrial DNA (mtDNA) cytochrome oxidase I (COI), mtDNA fragment containing the 3’ end of COI gene, the adjacent complete of tRNAleu gene and the 5’ end of the COII gene (COI-COII) and nuclear protein coding gene CAD)), the Bayesian analysis revealed that Pteroptyx was a monophyletic clade but it was clustered into two groups: A. (Pteroptyx asymmetria + P. tener + P. bearni); B (Pteroptyx gelasina, Pteroptyx malaccae and Pteroptyx valida). The intraspecific variations in two bent-winged firefly species, Pteroptyx bearni Olivier and Pteroptyx tener Olivier arising from geographical isolation were confirmed. The analysis also supported the position of P. gelasina in the same clade with P. malaccae but with strong posterior probability to be distinguished as a distinct species. Consequently, a list of species and DNA barcode
reference library of Malaysian fireflies were created for the first time. This study therefore supports the perspective that integrative taxonomy will speed up species discovery while maintaining species inventories. The application of such information for firefly and mangrove conservation is highly recommended.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

TAKSONOMI BERSEPADU DAN ANALISIS FILOGENI MOLEKUL BAGI KELIP-KELIP BERSAYAP LIPAT (COLEOPTERA: LAMPYRIDAE: Pteroptyx) DI SEMENANJUNG MALAYSIA DAN SARAWAK

Oleh

WAN FARIDAH AKMAL W. JUSOH

Mac 2015

Chair: Nur Azura Adam, PhD

Fakulti: Pertanian

sebagai spesies berbeza oleh kebarangkalian posterior yang tinggi. Di akhir kajian ini, satu senarai spesies dan rujukan perpustakaan kod bar DNA kelip-kelip Malaysia telah diwujudkan buat kali pertama. Objektif utama kajian ini menyokong perspektif yang taksonomi integratif akan mempercepatkan penemuan spesies yang sama mengekalkan spesies inventori. Penggunaan maklumat tersebut untuk kelip-kelip dan pemuliharaan bakau amat disyorkan.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisory committee members: Associate Professor Dr. Nur Azura Adam, Professor Dr. Rita Muhamad and Professor Dr. Niklas Wahlberg who had been very helpful and supportive throughout my studies. I am grateful to Niklas for his constructive criticisms and thoughtful words which greatly improved my understanding in molecular systematics. I thank my former supervisors: Dr. Nor Rasidah Hashim, Associate Professor Dr. Zelina Zaiton Ibrahim and Dr. Law Yao Hua for sharing their expert advice in this study.

This study would not be possible without the generous funding from Ministry of Education (MyBrain15). DNA barcoding project was partially funded by Research University Grant Scheme, Malaysia (03-01-12-1602RU) and Nagao Natural Environment Foundation. I thank Dr. Jadranka Rota, Dr. Carlos Peña and Eero Vesterinen for lab assistance and Musa Musbah for sharing his material of Sarawak fireflies. Dr. Lesley Ballantyne (Charles Sturt University, Australia) and Dr. Ilari E. Sääksjärvi (Zoological Museum of University of Turku) provided valuable discussion on taxonomic studies.

I thank the individuals who helped me with my field sampling from 2011-2013: En. Ngatemin Saru (Rembau), Audi Jamaluddin, Neo, Raja Nadia, En. Fadhlullah Abd Aziz (UPM), Hiswani Mislan (Kota Tinggi), Pok Li (Chukai), En. Faizy Said (Merbok), Pak Min (Pekan) and Musa Musbah (Miri). I would also like to thank colleagues and friends at University of Turku for their encouragement and wonderful hospitality during my 32-months-mobility in Finland.

Last but not least, I thank my family and friends for their love and support.
I certify that a Thesis Examination Committee has met on 30 March 2015 to conduct the final examination of Wan Faridah Akmal W. Jusoh on her thesis entitled "Integrative Taxonomy and Molecular Phylogenetic Analysis of Bent-Winged Fireflies (Coleoptera: Lampyridae: Pteroptyx) in Peninsular Malaysia and Sarawak" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Hafidzi bin Mohd Noor, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Nur Ashikin Psyquay binti Abdullah, PhD
Associate Professor
Faculty of Agriculture and Food Sciences
Universiti Putra Malaysia (Bintulu Campus)
(Internal Examiner)

Lau Wei Hong, PhD
Senior Lecturer
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

T. Keith Philips, PhD
Professor
Western Kentucky University
United States
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 13 May 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Nur Azura Adam, PhD
Associate Professor
Department of Plant Protection
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Rita Muhamad Awang, PhD
Professor
Department of Plant Protection
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Niklas Wahlberg, PhD
Professor
Laboratory of Genetics
Department of Biology
University of Turku, Finland
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: Wan Faridah Akmal W. Jusoh (GS29401)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ______________________
Name of Chairman of Supervisory Committee: Nur Azura Adam, PhD Associate Professor

Signature: ______________________
Name of Member of Supervisory Committee: Rita Muhammad Awang, PhD Professor

Signature: ______________________
Name of Member of Supervisory Committee: Niklas Wahlberg, PhD Professor
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Background of study</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem statement</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Objectives</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Outline of thesis</td>
<td>3</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>2.1 Overview of fireflies</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Taxonomy of fireflies</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Phylogeny of fireflies</td>
<td>5</td>
</tr>
<tr>
<td>2.4 Geographic distribution of fireflies</td>
<td>6</td>
</tr>
<tr>
<td>2.5 The bent-winged fireflies</td>
<td>8</td>
</tr>
<tr>
<td>2.5.1 Life history of fireflies</td>
<td>9</td>
</tr>
<tr>
<td>2.5.2 Sexual communication of fireflies</td>
<td>9</td>
</tr>
<tr>
<td>2.5.3 Habitat of fireflies</td>
<td>9</td>
</tr>
<tr>
<td>2.5.4 Conservation of fireflies</td>
<td>10</td>
</tr>
<tr>
<td>3 ANNOTATED CHECKLIST OF MALAYSIAN FIREFLIES (COLEOPTERA: LAMPyRIDAE)</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>12</td>
</tr>
<tr>
<td>3.2 Materials and Methods</td>
<td>12</td>
</tr>
<tr>
<td>3.2.1 Geography of Malaysia</td>
<td>12</td>
</tr>
<tr>
<td>3.2.2 Literature survey and taxonomic cross-checking</td>
<td>12</td>
</tr>
<tr>
<td>3.2.3 Specimen collection and identification</td>
<td>15</td>
</tr>
<tr>
<td>3.3 Results and Discussion</td>
<td>15</td>
</tr>
<tr>
<td>3.4 Conclusion</td>
<td>35</td>
</tr>
</tbody>
</table>
4 SPECIES DELINEATION OF MALAYSIAN FIREFLIES (COLEOPTERA: LAMPYRIDAE) USING DNA BARCODING AND MORPHOLOGICAL CHARACTERS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Materials and Methods</td>
<td>36</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Morphological identification study</td>
<td>36</td>
</tr>
<tr>
<td>4.2.2</td>
<td>DNA extraction and PCR setup</td>
<td>38</td>
</tr>
<tr>
<td>4.2.3</td>
<td>DNA sequence analysis and barcode reference</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>Results and Discussion</td>
<td>39</td>
</tr>
<tr>
<td>4.3.1</td>
<td>DNA barcoding corroborates morphology</td>
<td>39</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Association of female and larvae to males using DNA barcodes</td>
<td>42</td>
</tr>
<tr>
<td>4.3.3</td>
<td>“MYFI” – A DNA barcode reference library for identification of Malaysian fireflies</td>
<td>43</td>
</tr>
<tr>
<td>4.4</td>
<td>Conclusion</td>
<td>46</td>
</tr>
</tbody>
</table>

5 TAXONOMY AND GEOGRAPHIC DISTRIBUTION OF THE BENT-WINGED FIREFLIES, _PTEROPTYX_ (COLEOPTERA: LAMPYRIDAE: LUCIOLINAE) AND THEIR ASSOCIATED FIREFLY SPECIES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>48</td>
</tr>
<tr>
<td>5.2</td>
<td>Materials and Methods</td>
<td>48</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Refining morphological characters</td>
<td>48</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Digital imaging</td>
<td>50</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Geographic distribution</td>
<td>51</td>
</tr>
<tr>
<td>5.3</td>
<td>Results and Discussion</td>
<td>51</td>
</tr>
<tr>
<td>5.3.1</td>
<td>The bent-winged fireflies (Coleoptera: Lampyridae: Pteroptyx)</td>
<td>51</td>
</tr>
<tr>
<td>5.3.2</td>
<td>The non-bent-winged fireflies (Coleoptera: Lampyridae: Luciolinae, Lampyrinae)</td>
<td>66</td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusion</td>
<td>80</td>
</tr>
</tbody>
</table>

6 PHYLOGENETIC ANALYSIS OF THE BENT-WINGED FIREFLIES IN MALAYSIA USING COMBINED MOLECULAR DATA SETS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>81</td>
</tr>
<tr>
<td>6.2</td>
<td>Materials and Methods</td>
<td>82</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Taxa and DNA sequencing</td>
<td>82</td>
</tr>
<tr>
<td>6.2.2</td>
<td>DNA sequences alignment and phylogenetic analyses</td>
<td>85</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Close-up on morphology and locality</td>
<td>86</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>6.3 Results and Discussion</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>6.3.1 Phylogenetic analyses</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>6.3.2 Intraspecific morphological variation in Pteroptyx</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>6.4 Conclusion</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>7 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1 Summary</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>7.2 Conclusions and Recommendations</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>REFERENCES/BIBLIOGRAPHY</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>APPENDICES</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>BIODATA OF STUDENT</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>119</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>16</td>
</tr>
<tr>
<td>4.1</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>45</td>
</tr>
<tr>
<td>6.1</td>
<td>83</td>
</tr>
<tr>
<td>6.2</td>
<td>84</td>
</tr>
</tbody>
</table>

3.1 List of Malaysian fireflies (Coleoptera: Lampyridae) and occurrence of species in each Malaysian state.

4.1 PCR primers used in this study

4.2 Estimates of evolutionary divergence between twelve species.

6.1 Specimens used in this study with associated geographic localities.

6.2 PCR primers and cycling protocols
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>13</td>
</tr>
<tr>
<td>3.2</td>
<td>35</td>
</tr>
<tr>
<td>4.1</td>
<td>37</td>
</tr>
<tr>
<td>4.2A</td>
<td>41</td>
</tr>
<tr>
<td>4.2B</td>
<td>42</td>
</tr>
<tr>
<td>4.3</td>
<td>44</td>
</tr>
<tr>
<td>5.1</td>
<td>50</td>
</tr>
<tr>
<td>5.2</td>
<td>53</td>
</tr>
<tr>
<td>5.3</td>
<td>56</td>
</tr>
<tr>
<td>5.4</td>
<td>58</td>
</tr>
<tr>
<td>5.5</td>
<td>60</td>
</tr>
</tbody>
</table>

3.1 Map of Malaysia and neighbouring countries. On top: map of Malaysia. Malaysia is divided into thirteen political states and three federal territories: Perlis (PL), Kedah (KH), Penang (PG), Perak (PE), Selangor (SE), Melaka (ME), Negeri Sembilan (NS), Johor (JH), Pahang (PH), Terengganu (TE), Kelantan (KN), Sarawak (SK) and Sabah (SA). Kuala Lumpur (KL), Putrajaya (PJ) and Labuan (LA) are federal territories. At bottom: map of Sundaland.

3.2 Distribution of Lampyridae in Malaysia with reference to other fireflies in Sundaland.

4.1 Firefly collection sites in Malaysia.

4.2A Neighbour joining tree of partial COI gene sequences (DNA barcode) for male firefly species based on genetic distances calculated with the Kimura 2 parameter model. (continues on Figure 3.2B)

4.2B Neighbour joining tree of partial COI gene sequences (DNA barcode) for male firefly species based on genetic distances calculated with the Kimura 2 parameter model.

4.3 Female and larval association of firefly species in Malaysia.

5.1 Morphological features of males in genera of Luciolinae, modified from Ballantyne and McLean (1970)

5.2 *Pteroptyx asymmetria*, males (localities: a,c Sepetang River, Perak; b, d-h Rembau River, Negeri Sembilan).

5.3 *Pteroptyx bearni*, males (localities: a-e, h Chukai River, Terengganu; f-g Lebam River, Johor).

5.4 *Pteroptyx gelasina*, male of Balingian River, Sarawak.

5.5 *Pteroptyx malaccae*, males (localities: a-e Rembau River, Negeri Sembilan, f-h Chukai, Terengganu).
5.6 *Pteroptyx tener*, males (localities: a-e Rembau River, Negeri Sembilan; f-h Balingian River, Sarawak).

5.7 *Pteroptyx valida*, male of Sepetang River, Perak.

5.8 Females of *Pteroptyx* associated by DNA barcode: a) *P. asymmetria*, b) *P. bearni*, c) *P. malaccae*, d) *P. tener*, e) *P. valida*.

5.9 Top: *Colophotia praeusta* of Niah (a-h). Bottom: *Colophotia praeusta* complex of Merbok (i-p).

5.10 Luciolinae sp. 1 of Niah.

5.11 Luciolinae sp. 2 of Perak.

5.12 *Poluninius* sp. of Balingian.

5.13 *Pyrocoelia analis* of Perak compared to photos of *P. analis* of Taiwan (a, c-f sketch drawing).

5.14 Geographic distribution of fireflies based on collection in this study.

6.1 Maximum Likelihood tree based on GTR+G+I model using 663 base pairs of mtDNA cytochrome c oxidase I sequence.

6.2 Maximum Likelihood tree based on GTR+G+I model using 654 base pairs of mtDNA cytochrome c oxidase I+II+tRNAleu sequence.

6.3 Maximum Likelihood tree based on GTR+G+I model using 810 base pairs of nuclear DNA CAD sequence.

6.4 Bayesian phylogenetic analysis based on GTR+G+I model using ~2132 base pairs of combined molecular data sets.

6.5 Variety of shape of the apex of deflexed elytra in *Pteroptyx*. Pte: *P. tener*, Pbe: *P. bearni*, Pas: *P. asymmetria*, Pma: *P. malaccae*, Pge: *P. gelasina* and Pva: *P. valida*. Similarity of characters between species were shown by same colouration. B, C. Light organ and deflexed elytra apex shapes in *P. tener* (B) and *P. bearni* (c) from different localities (locality name written
next to an image).

6.6 Colouration of pronotum (lef) and vertex (right) of *P. bearni.*
LIST OF ABBREVIATIONS

Common scientific usage

CAD Cinnamyl alcohol dehydrogenase
COI Cytochrome c Oxidase subunit I
COII Cytochrome c Oxidase subunit II
DNA Deoxyribonucleic acid
PCR Polymerase chain reaction
UV Ultra Violets

Morphological characters

A Indication to a length from dorsal base of lateral lobes to median lobe, usually used to measure the dimension of aedeagus expressed as B/A
B Indication to a length from dorsal base of lateral lobes to apex of lateral lobe, usually used to measure the dimension of aedeagus expressed as B/A
BL Body length (=PL+EL)
BP Basal piece
EL Elytra length
FS Flagellar segments of antenna
LL Lateral lobes of aedeagus
LO Light organ
MFC Metafemoral comb
MPP Median posterior projection
PLP Posterolateral projection
PL Pronotal length
T7, 8 etc. Abdominal tergites
V6, 7 etc. Abdominal ventrites

Specimen depository

AMNH American Museum of Natural History
BBM Bernice Bishop Museum, Hawaii
BORN Borneensis, Sabah
LM National Museum of Natural History Leiden
MNHN Muséum National d'Histoire Naturelle, Paris (France)
MCSNG Museo Civico di Storia Naturale Genoa (Italy)
NHML Natural History Museum London
NMPC National Museum Prague Czech Republic
FAUPM Faculty of Agriculture, Universiti Putra Malaysia
TLC The Linnean Collections, The Linnean Society of London (London)
UPOL Collection of the Palacky University Olomouc Czech Republic
UQ University of Queensland (Department of Entomology)
USNM United States National Museum, Washington (United States)
ZMMU Zoological Museum of Moscow University, Moscow (Russia)
ZMUT Zoological Museum of University of Turku, Finland
CHAPTER 1

INTRODUCTION

1.1 Background of study

Taxonomy is facing a crisis, either known as ‘taxonomic impediment’ (inability to identify species reliably) (Wheeler, 2004) or ‘taxonomic deficit’ (imbalance proportion of expected taxa against named taxa) (Arribas et al., 2012). Historically, morphology has been used as the only approach to delimit species, however, the ‘old-fashioned’ typological approach with which taxonomists still describe the species is believed to be ‘the most over-looked aspects of the taxonomy crisis’ thus creating frustration among non-taxonomist biologists (Dayrat, 2005). The crisis has promoted the emergence of an integrative taxonomy which brings new theories and methods to describing the diversity of life (Dayrat, 2005; DeSalle et al., 2005; Padial et al., 2010).

The integrative taxonomy stands for an approach to use many different sources of data such as morphology, molecular, ecology and behaviour to delimit species (Padial et al., 2010; Yeates et al. 2011; Bergsten et al., 2012) in a stable and transparent manner (Fujita et al., 2012; Riedel et al., 2013). The term has been resounded in recent series of publications, mainly on successful discovery of putative new species using traditional morphology and DNA sequence data (Glaw et al., 2010; Heethoff et al., 2011; Reséndiz-Flores et al., 2014). Integrative taxonomy also paves the way for phylogenetic inference using molecular data (e.g. Wahlberg et al., 2014; Heethoff et al., 2011) or in some cases, using a combined dataset of several molecular markers and a morphological data matrix (Wahlberg et al., 2005). Although some studies are sceptical about the use of integrated data in taxonomy particularly DNA barcodes, they support the idea that taxonomy should be integrative (Will et al., 2005; Valdecasas et al., 2008; Wheeler, 2008). In this sense, it is apparent that taxonomy should be a ‘pluralistic quality’ to enhance species discovery and description (Padial et al., 2010).

DNA barcoding is a technique for sequencing a short standardized segment (~650 base pairs) of the 5’end of the mitochondrial cytochrome c oxidase I for biological species identification (Hebert et al., 2003). The COI gene region is proving highly effective in identifying many animal groups and it is also proven to identify variations among species (Hebert et al., 2004). DNA barcoding is not a replacement for traditional taxonomy in the delineation of species, instead it is a quick and informative tool that will greatly facilitate species identification (Ferri et al., 2009). Some have
suggested that DNA barcoding will facilitate and complement taxonomic study (Hebert et al., 2003; Ferri et al., 2009; Valentini et al., 2009).

However, in order to overcome the taxonomic impediment in the study of fireflies, the suitability and efficacy of morphological approach and DNA barcoding concept needs to be addressed. In doing so, the following questions were asked in this study: How well morphology and DNA barcodes reveal true firefly species diversity? How quickly and accurately the species identified by DNA barcodes? Can integration of both techniques be a useful tool for detection of new species?

The use of DNA barcodes in the study of beetles are widely recognized (e.g. Arribas et al., 2012; Bergsten et al., 2012), but it was rarely reported from a group of mostly luminous beetles, Lampyridae. Lampyridae is known as fireflies, lightning bugs or glow-worms. The scientific studies of fireflies were started since two centuries ago (Buck, 1948), mostly on taxonomy. The firefly taxonomy that is based on the morphological characters could be traced back as early as 1800 (see Olivier, 1907). Today over 2000 species are recorded worldwide, of which less than ten percent were from Malaysia (McDermott, 1966). The present study uses an integrative approach to explore species boundaries of Malaysian fireflies, particularly the bent winged fireflies of the genus *Pteroptyx* Olivier by using morphology, DNA sequencing and geographic distribution data. Following successful species identification using integrative data, a species checklist and DNA barcode library of Malaysian firefly species are presented.

1.2 Problem statement

There is no doubt that the taxonomy of the bent-winged fireflies have been well revised since it was first introduced. However, identification and revision of the firefly species have been traditionally performed using morphological characters. Female firefly specimens have been neglected in taxonomic inventories because morphological descriptions relied only on firefly male specimens. In light of successful integrative taxonomy in many invertebrates, this study shows a necessity to integrate molecular data with morphological characters in current study. Since many of the *Pteroptyx* species inhabit mangrove forests, which are in many places threatened by development, the need to properly inventorise and to rapidly establish their distribution is urgent.

1.3 Objectives

The main objectives of this study are as follows:

1. To develop a checklist of Malaysian fireflies;
2. To delineate firefly species using DNA barcode Cytochrome c Oxidase subunit I (COI) sequence;
3. To refine species identification based on genital examination as well as to establish distribution of the bent-winged fireflies in Malaysia and other flashing firefly species occurring in the same vicinity;
4. To infer the phylogenetic relationship among the bent-winged firefly species;

The main objectives above are addressed and covered in the specific objectives as laid out in Chapters 3-6.

1.4 Outline of thesis

This thesis is divided into seven chapters. Following this introductory chapter is Chapter 2 which presents some background for the research presented in this thesis. The literature addresses three important topics of fireflies: taxonomy, phylogeny and geographic distribution with a review of relevant studies on the bent-winged fireflies. In Chapter 3, a thorough review of Lampyridae catalogue to develop a first checklist of Malaysian fireflies are presented. In Chapter 4, the effectiveness of DNA barcodes to delineate and correct assignment of sexes to species are studied. This study determines the potential of barcoding method to identify female fireflies. In Chapter 5, morphology of fireflies are re-described using genital and bursa plate structures to refine species identification. Additionally, species’ geographic distribution are established. In Chapter 6, molecular phylogenetic of the genus *Pteroptyx* inferred from molecular data is carried out to investigate the evolutionary relationships among species and to study possible morphological variation in the studied species. Finally, summary of this study and recommendations for future research are presented in Chapter 7.
REFERENCES

LIST OF PUBLICATIONS

Journal Articles (arised from this thesis)

UNIVERSITI PUTRA MALAYSIA
STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION: ______________________

TITLE OF THESIS / PROJECT REPORT:

__

__

NAME OF STUDENT: ___

I acknowledge that the copyright and other intellectual property in the thesis/project report
belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at
the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.

2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes
 only.

3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic
 exchange.

I declare that this thesis is classified as :

*Please tick (V)

☐ CONFIDENTIAL (Contain confidential information under Official Secret
 Act 1972).

☐ RESTRICTED (Contains restricted information as specified by the
 organization/institution where research was done).

☐ OPEN ACCESS I agree that my thesis/project report to be published
 as hard copy or online open access.

This thesis is submitted for :

☐ PATENT

Embargo from _________ until _________
 (date) (date)

Approved by:

(Signature of Student) ______________________
New IC No/ Passport No.: ______________________
Date: ______________________

(Signature of Chairman of Supervisory Committee) ______________________
Name: ______________________
Date: ______________________