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In Radio Frequency (RF) Front-End wireless communications systems, the power
amplifier should be efficient in order to support more users and leads to decrease
the costs of energy, and to extend the duration of the battery life, accordingly.
Modern digital modulated signals like: Long Term Evolution (LTE) and Univer-
sal Mobile Telephone System (UMTS) exhibit difficult challenging concerns on
the efficiency of the radio frequency power amplifiers and their design. Despite
the spectral efficiency of these new modulated schemes, the RF PAs which are
excited by the modulated signals like LTE, can experience nonlinear and unstable
situation. These situations cause distortions and then result in lots of drawbacks
like: power loss or heating. Therefore, some linearization techniques have been
proposed to overcome the effects of nonlinearity. The designer can implement
the digital predistortion and apply it to the input of the amplifiers for the top
speed digital processors. This solution represents a significant paradigm shift for
design and compensation of the nonlinear RF PAs. In this thesis, some behav-
ioral modeling approaches of the nonlinear dynamic distortions in the wireless
communication systems are investigated to model RF nonlinear PAs in order to
compensate the memory effects as terms of their nonlinearity. A brief description
of some characterization techniques will be explained. These nonlinear model-
ing techniques can be applied to the design of successful predistortion algorithms.
The overall structure of a linearized transmitter using Memory Polynomial Digital
Predistortion (MP DPD) architecture is represented to obtain both linearity and
efficiency of the nonlinear PAs. The results are obtained by simulations through
MATLAB. An open loop test bench is set up by using ZVE-8G+ power amplifier
and Agilent equipment such as Agilent vector signal generator (VSG)EXG-D se-
ries and Agilent vector signal analyzer (VSA) PXI series in order to generate LTE
down-link signal with 5 MHz bandwidth. Then, the test bench’s output signal is
given in arbitrary waveform format (I/Q) to the MATLAB software as the input.
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In conclusion, MP DPD is resulted in as improvement between 15 to 20 dB in
the adjacent channel power ratio (ACPR). Therefore, the characteristics of the
realized amplifiers are measured to satisfy the Error Vector Magnitude (EVM)
and desired power spectral density (PSD) is plotted as requirements for Wide-
band Code Division Multiple Access (WiMAX) base stations and LTE down-link
signal. Effect of some elements like: number of iterations, input power back-off
(IBO) points, the memory effect modeling ration (MEMR) matric for different
PAs with memory effects and memory-less respectively, on the performance of
predistorter, are investigated.
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Dalam Radio Frekuensi ( RF) Front-End sistem komunikasi tanpa wayar, pen-
guat kuasa perlu cekap bagi menyokong lebih ramai pengguna dan dapat men-
gurangkan kos tenaga, dan memanjangkan tempoh hayat bateri. Isyarat ter-
modulat digital moden seperti : Evolusi Jangka Panjang (LTE) dan Universal
Sistem Telefon Mudah Alih (UMTS) menunjukkan kebimbangan pada kecekapan
penguat kuasa frekuensi radio dan reka bentuk mereka. Walaupun dengan ke-
cekapan spektrum skim termodulat baru ini, PA RF yang teruja dengan isyarat
termodulat seperti LTE, boleh mengalami keadaan tidak linear dan tidak sta-
bil. Situasi ini menyebabkan kekurangan dan kemudian menyebabkan banyak
keburukan seperti: kehilangan kuasa atau pemanasan. Oleh itu, beberapa teknik
linear telah dicadangkan untuk mengatasi kesan tidak linear. Pereka bentuk
boleh melaksanakan pra-penyelewengan digital dan gunakan kepada input pen-
guat untuk mendapatkan kelajuan maksimum pemproses digital. Penyelesaian
ini mewakili satu anjakan paradigma yang besar untuk reka bentuk dan penyele-
saian daripada PA RF tidak linear. Dalam tesis ini, beberapa pendekatan model
tingkah laku gangguan dinamik tidak linear dalam sistem komunikasi tanpa wayar
disiasat untuk model PA RF tidak linear untuk mengimbangi kesan memori segi
tidak linear. Penerangan ringkas mengenai beberapa teknik pencirian akan dit-
erangkan. Teknik-teknik pemodelan linear boleh digunakan untuk reka bentuk
berjaya algoritma pra-penyelewengan. Struktur keseluruhan sebuah pemancar
terlinear menggunakan seni bina memori polinomial Digital Pre-penyelewengan
(MP DPD) digunakan untuk mendapatkan kedua-dua kelinearan dan kecekapan
PA tak linear. Keputusan yang diperolehi oleh simulasi melalui MATLAB. Ujian
gelung terbuka dijalankan dengan menggunakan penguat kuasa ZVE-8G + dan
peralatan Agilent seperti penjana isyarat vektor (VSG) Siri EXG-D Agilent dan
isyarat vektor penganalisa (VSA) Siri PXI Agilent untuk menjana LTE turun-link
isyarat dengan jalur lebar 5 MHz. Kemudian, isyarat keluaran ujian ini diberikan
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dalam bentuk format gelombang (I/Q) kepada perisian MATLAB sebagai input.
Kesimpulannya, AP DPD yang mengakibatkan peningkatan dalam nisbah kuasa
saluran bersebelahan (ACPR) antara 15 hingga 20 dB. Oleh itu, ciri-ciri pen-
guat diukur untuk mematuhi Magnitud Ralat Vektor (EVM) dan ketumpatan
kuasa spektrum (JPA) yang dikehendaki diplotkan sebagai keperluan bagi stesen
pangkalan untuk Wideband Code Division Multiple Access (WiMAX) dan LTE
turun- link isyarat. Kesan beberapa elemen seperti: bilangan lelaran, titik kuasa
input back- off (IBO), pemodelan kesan memori catuan (MEMR) matrik untuk
PA yang berbeza dengan kesan memori dan tiada memori, kepada prestasi se-
belum distorter , adalah disiasat.
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CHAPTER 1

INTRODUCTION

As engineers in the fields of signal processing and digital front-end wireless com-
munication and circuit design, by demonstrating and using the theory and taking
it into account,in order to achieve ideal design methodology with the system-
atic presentation of different algorithms and implementation.Design trade-offs
and comparison between simulation and experimental parts will be investigated.
LTE (Long Term Evolution) is the current element in the development chain of
digital cellular communication systems with following key design targets such as:
Significantly higher peak data rates than older standards (e.g. 100 Mbps in 20
MHz bandwidth Downlink and 50 Mbps in 20 MHz bandwidth Uplink), Scal-
able bandwidth for more spectrum flexibility for the interval from 1.25 MHz, 1.6,
2.5, 5, 10, 15, 20 MHz. Other benefits of using LTE-DL modulated signal like:
MIMO (Multiple-Input Multiple-Output), Low latency (round trip delay < 10
ms), Packet oriented data transmission (all IP network), High UE (User Equip-
ment) mobility conditions: Up to 350 or even 500 km/h are convinced engineers
to use them for the improvement of nonlinear high frequency power amplifiers
with memory effects in the wireless communication systems.

1.1 Background

With the rapid demand for the worldwide deployment of wireless communica-
tion infrastructure and increasing the number of users of digital processing tech-
nology, the drawbacks and problems occur in the way of digital front-end in
transmitters and receivers of wireless communication should be compensated.
Nowadays, by increasing the number of the users beside limited radio frequency
spectrum, new modulation techniques like wideband code division multiple access
(WCDMA), orthogonal frequency division multiplexing (OFDM) and long term
evolution (LTE) are used in order to overcome this limitation and get more effi-
cient radio frequency spectrum.As a matter of fact, by increasing the numbers and
demands of the users, logically more efficient bandwidth and frequency spectrum
is required.So Some diversity techniques have been applied in third generation
(3G) [1]. Currently, it still uses in LTE so far. As more detailed explanation,
long term evolution (LTE) is a next generation mobile communication system, as
a project of the 3rd Generation Partnership Project (3GPP) [2]. Both LTE and
WiMAX support frequency division duplexing (FDD) and time division duplexing
(TDD) modes, and have more deployment flexibility than previous 3G systems by
using scalable channel bandwidths with different numbers of subcarriers, keeping
frequency spacing between subcarriers constant. Orthogonal frequency division
multiplexing (OFDM) with cyclic prefix (CP) is used in the downlink of LTE
systems and both the uplink and the downlink of WiMAX systems rather than
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signal carrier modulation schemes in traditional cellular systems. These two stan-
dards have set specific requirements in the terms of the power spectrum density
(PSD) of the signal for the control of in-band and out-of-band spectrum regrowth.
As a result, it is very important to know the relationship between the spectrum
regrowth and nonlinear parameters of the system power amplifier.

The OFDM modulation scheme is the superposition of a high number of mod-
ulated subchannel signals, base on multiple access technique, usually has some
drawbacks like: high peak to average power ratio (PAPR) which causes more
power consumption and also inefficiency of the system plus nonlinearity of power
amplifier (PA) in transmitter which is not desired in the wireless communica-
tion. Therefore, in order to design a system to work with high efficiency and
make it cost efficient, then prolong battery life by decreasing power consumption,
overcome to the nonlinearity problems is essential. The main source of nonlinear-
ity in communication systems is power amplifier, which this nonlinearity causes
two types of distortions: out of band distortion that generates spectral regrowth
and in-band distortion respectively. These drawbacks cause the adjacent chan-
nel interference (ACI) which effects on reduction in adjacent channel power ratio
(ACPR) and increase in bit error rate (BER).Hence, to improve the effects of
the nonlinearity and increase the efficiency of amplifier in wireless RF front-end
communications system, Some linearization techniques should be applied.

1.2 Problem Statement

In the modern wireless broadband front-end communication systems, the mod-
ulated signals contain high peak to average power ratio which caused by big
fluctuations as consequence of high spectral efficiency in the envelopes of such
signals like: WCDMA, OFDM, WIMAX, LTE. As one of the solutions to avoid
and reduce the PAPR, power amplifier needs to be back-off far from its satura-
tion point and work in its linear domain, but this solution results in very low
efficiency around less than 10% [3] and 90% of the DC power gets wasted and
turns into heat. This means loss of amplifier’s gain and shortens in battery life.
Indeed, there is always a trade-off between the linearity and efficiency.This leads
to one of the main issues related to choose suitable PA in various fundamental
amplifier classes (A-F) in order to perceive the design challenge with respect and
compromise to these two characteristics. High PAPR, affect the wireless systems
to operate with high power-added efficiency (PAE), while the HF power amplifier
is operated nearby the saturation point and then resulted in in-band and out-of-
band distortions known as nonlinearities.
However, the amplifier is designed to have optimum results in terms of high ef-
ficiency and high output power in 1 dB compression point, besides considering
the proper return loss and heat dissipation. As a matter of fact, high-efficient
amplifier design is relied on burdening the PA characteristics into the band-pass
region and also biasing the PA dynamically versus the input signal to attain high

2
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peak powers.
As a result, these elements cause nonlinearity in power amplifier in terms of
memory effects in which change the characteristics of the power amplifier, espe-
cially dynamic AM-AM (Amplitude Modulation to Amplitude Modulation) and
AM-PM (Amplitude Modulation to Phase Modulation). Therefore, as the main
contribution of this thesis, it is critical to apply some techniques in order to avoid
out-of-band distortions which figure as spectral regrowth that cause increment
in ACLR. These techniques can be applied with respect to high efficient opera-
tions aimed to compensate the dynamic distortions as memory effect of nonlinear
power amplifiers.

1.3 Objectives of the Study

The objectives of this study are:

1. To simulate and analyze the memory polynomial digital predistortion tech-
nique for compensation of the nonlinearity in the high frequency power
amplifiers

2. To test and evaluate the performance of the memory polynomial DPD, when
applied to the commercial PA with a real-time 5 MHz LTE input signal.

1.4 Scope of the Thesis

The main solutions to overcome the problems caused by nonlinearity of the PAs,
can be counted into two main aspects:
1: Power Amplifier Linearization, which enables the amplifier to be driven nearby
the saturation point.
2: Signal Preconditioning, which deducts PAPR without significant signal distor-
tion.

The digital predistortion technique is discussed to be used in this thesis as the
aim of compensating the PA nonlinearities with memory effects.
Therefore, in theoretical part, the mathematical equations required for the mem-
ory polynomial DPD are explained in order to represent the adaptive predistortion
technique, as the aim of compensating the dynamic distortions in terms of mem-
ory effects used in simulation part. Then, in the simulation part, it can be seen
that the computational complexity of the system will be increased for the higher
orders of the polynomial, due to the difficulties in extracting the coefficients in this
case, while the bandwidth is constrained and number of iterations or the amount
of memory length are increased. In the experimental setup, Agilent equipment
are taken into account to make a simple test bench for generating the modern
modulated LTE downlink 5 MHz signal as the input and export the characteris-
tics information of the ZVE-8G+ power amplifier as a real PA with memory in
the arbitrary I/Q waveform format, for the simulation part in MATLAB software.
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At the end, final results of the simulations are discussed with PSD, ACLR, EVM
metrics. Also, the effects of the increasing amplitude and decreasing voltage of
the back-off point (IBO) are studied. DPD performance for different PAs with
different amount of the memory based on the parameter which is named Memory
Effects Modeling Ratio (MEMR), is investigated.

1.5 Thesis Organisation

This thesis contains relevant information about amplifier linearization, from the
fundamentals to the simulation of the memory polynomial digital predistortion.
Hence, this thesis is structured by:
In chapter 1, problem statement and scope and aims and objectives of the this
are explained briefly.
In chapter 2, a good literature is presented to cover the topics of power amplifier
characterization setup and effects of PA behavioral nonlinearity and then, the
power amplifier memory effects and power amplifier modeling, are described in
detailed. At the end of this chapter, different PA linearization techniques are
investigated to answer that why DPD algorithm is required to be taken into
account for PA nonlinearites.
In chapter 3, the proposed memory polynomial DPD is illustrated along the
mathematical equations used to apply in Matlab code. Then, the Agilent signal
generator and analyzer are introduced.
In chapter 4, the proposed method is analyzed with different metrics by using
Matalb software for different input signals such as OFDM, LTE with different
bandwidths which are generated by Agilent equipment in the real time.
In chapter 5, conclusion is resulted from the whole content of the PA nonlinearity
which is discussed in this thesis and finally, the suggestion for the future works
is mentioned.
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télécommunications, 64(11-12):753–762, 2009.

[36] A Springer, T Frauscher, B Adler, D Pimingsdorfer, and R Weigel. Impact
of nonlinear amplifiers on the umts system. In Spread Spectrum Techniques
and Applications, 2000 IEEE Sixth International Symposium on, volume 2,
pages 465–469. IEEE, 2000.

[37] Joel HK Vuolevi, Timo Rahkonen, and Jani PA Manninen. Measurement
technique for characterizing memory effects in rf power amplifiers. Mi-
crowave Theory and Techniques, IEEE Transactions on, 49(8):1383–1389,
2001.

[38] Slim Boumaiza and Fadhel M Ghannouchi. Thermal memory effects mod-
eling and compensation in rf power amplifiers and predistortion linearizers.
Microwave Theory and Techniques, IEEE Transactions on, 51(12):2427–
2433, 2003.

[39] P Draxler, J Deng, D Kimball, I Langmore, and PM Asbeck. Memory effect
evaluation and predistortion of power amplifiers. In Microwave Symposium
Digest, 2005 IEEE MTT-S International, pages 4–pp. IEEE, 2005.

[40] Daniel Silveira, Michael Gadringer, Holger Arthaber, Markus Mayer, and
Gottfried Magerl. Modeling, analysis and classification of a pa based on
identified volterra kernels. In Gallium Arsenide and Other Semiconduc-
tor Application Symposium, 2005. EGAAS 2005. European, pages 405–408.
IEEE, 2005.

79



© C
OPYRIG

HT U
PM

[41] João Paulo Martins, Pedro Miguel Cabral, Nuno Borges Carvalho, and
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