UNIVERSITI PUTRA MALAYSIA

POWER AMPLIFIER MEMORY POLYNOMIAL PREDISTORTER
FOR LONG TERM EVOLUTION APPLICATION

HOSSEIN MAZIDI

FK 2015 125
POWER AMPLIFIER MEMORY POLYNOMIAL PREDISTORTER FOR LONG TERM EVOLUTION APPLICATION

By

HOSSEIN MAZIDI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

February 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATIONS

In the name of Allah, Most Gracious, Most Merciful
This thesis is dedicated to:

Father & Mother
Family & Friends
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

POWER AMPLIFIER MEMORY POLYNOMIAL PREDISTORTER FOR LONG TERM EVOLUTION APPLICATION

By

HOSSEIN MAZIDI

February 2015

Chair: Nasri Bin Sulaiman, PhD
Faculty: Engineering

In Radio Frequency (RF) Front-End wireless communications systems, the power amplifier should be efficient in order to support more users and leads to decrease the costs of energy, and to extend the duration of the battery life, accordingly. Modern digital modulated signals like: Long Term Evolution (LTE) and Universal Mobile Telephone System (UMTS) exhibit difficult challenging concerns on the efficiency of the radio frequency power amplifiers and their design. Despite the spectral efficiency of these new modulated schemes, the RF PAs which are excited by the modulated signals like LTE, can experience nonlinear and unstable situation. These situations cause distortions and then result in lots of drawbacks like: power loss or heating. Therefore, some linearization techniques have been proposed to overcome the effects of nonlinearity. The designer can implement the digital predistortion and apply it to the input of the amplifiers for the top speed digital processors. This solution represents a significant paradigm shift for design and compensation of the nonlinear RF PAs. In this thesis, some behavioral modeling approaches of the nonlinear dynamic distortions in the wireless communication systems are investigated to model RF nonlinear PAs in order to compensate the memory effects as terms of their nonlinearity. A brief description of some characterization techniques will be explained. These nonlinear modeling techniques can be applied to the design of successful predistortion algorithms. The overall structure of a linearized transmitter using Memory Polynomial Digital Predistortion (MP DPD) architecture is represented to obtain both linearity and efficiency of the nonlinear PAs. The results are obtained by simulations through MATLAB. An open loop test bench is set up by using ZVE-8G+ power amplifier and Agilent equipment such as Agilent vector signal generator (VSG) EXG-D series and Agilent vector signal analyzer (VSA) PXI series in order to generate LTE down-link signal with 5 MHz bandwidth. Then, the test bench’s output signal is given in arbitrary waveform format (I/Q) to the MATLAB software as the input.
In conclusion, MP DPD is resulted in as improvement between 15 to 20 dB in the adjacent channel power ratio (ACPR). Therefore, the characteristics of the realized amplifiers are measured to satisfy the Error Vector Magnitude (EVM) and desired power spectral density (PSD) is plotted as requirements for Wideband Code Division Multiple Access (WiMAX) base stations and LTE down-link signal. Effect of some elements like: number of iterations, input power back-off (IBO) points, the memory effect modeling ratio (MEMR) matrix for different PAs with memory effects and memory-less respectively, on the performance of predistorter, are investigated.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

POWER AMPLIFIER MEMORY POLYNOMIAL PREDISTORTER UNTUK APLIKASI EVOLUSI JANGKA PANJANG

OLEH

HOSSEIN MAZIDI

Februari 2015

Pengerusi: Nasri Bin Sulaiman, PhD
Fakulti: Kejuruteraan

dalam bentuk format gelombang (I/Q) kepada perisian MATLAB sebagai input. Kesimpulannya, AP DPD yang mengakibatkan peningkatan dalam nisbah kuasa saluran bersebelahan (ACPR) antara 15 hingga 20 dB. Oleh itu, ciri-ciri pengguat diukur untuk mematuhi Magnitud Ralat Vektor (EVM) dan ketumpatan kuasa spektrum (JPA) yang dikehendaki diplotkan sebagai keperluan bagi stesen pangkalan untuk Wideband Code Division Multiple Access (WiMAX) dan LTE turun-link isyarat. Kesah beberapa elemen seperti: bilangan lelaran, titik kuasa input back-off (IBO), pemodelan kesan memori catuan (MEMR) matrik untuk PA yang berbeza dengan kesan memori dan tiada memori, kepada prestasi sebelum distoreter, adalah disiasat.
ACKNOWLEDGEMENTS

I am using this opportunity to express my gratitude to everyone who supported me throughout the study period of the master degree in Communication and Network Engineering. I am thankful for their aspiring guidance, invaluably constructive criticism and friendly advice.

I want to express my warm appreciations to my dear supervisor Assoc. Prof. Dr. Nasri Bin Sulaiman for the useful comments, remarks and engagement through the learning process of my master thesis.

I also would like to thank my co-supervisor Dr. Pooria Varahram, who has willingly shared his precious time and knowledge throughout entire stages of my research.

Finally, I am grateful to my loved ones, who have supported me, specially my family, by keeping me harmonious and patient during my graduate journey.
I certify that a Thesis Examination Committee has met on 12 February 2015 to conduct the final examination of Hossein Mazidi on his thesis entitled "Power Amplifier Memory Polynomial Predistorter for Long Term Evolution Application" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Wan Zuha bin Wan Hasan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Borhanuddin bin Mohd Ali, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Roslina binti Mohd Sidek, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Sharul Kamal bin Abdul Rahim, PhD
Associate Professor Ir.
Universiti Teknologi Malaysia
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 February 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science.

The members of the Supervisory Committee were as follows:

Nasri b. Sulaiman, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Pooria Varahram, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
University Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _____________________________ Date: _____________________________

Name and Matric No.: Hossein Mazidi, GS30904
Declaration by Members of Supervisory Committee

This is to confirm that:

• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee:
Nasri Sulaiman, PhD

Signature:
Name of Member of Supervisory Committee:
Pooria Varahram, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 2
1.3 Objectives of the Study 3
1.4 Scope of the Thesis 3
1.5 Thesis Organisation 4

2 LITERATURE REVIEW

2.1 Overview 5
2.2 LTE Fundamentals 5
2.2.1 LTE Concepts and Demands 5
2.2.2 History and Evolution of LTE 6
2.2.3 LTE Physical Layer 6
2.3 PA Characterization Setup 13
2.4 Effects of Power Amplifier Nonlinearity 18
2.4.1 Harmonic Generation 20
2.4.2 Intermodulation Distortion 21
2.4.3 Spectral Regrowth, ACPR and EVM Measurements 21
2.5 Memory Effects 25
2.5.1 Electrical Memory Effects (Short-Term) 26
2.5.2 Thermal Memory Effects (Long-Term) 27
2.6 Power Amplifier Modeling 29
2.6.1 Memory-less Model 29
2.6.2 Quasi-Memoryless Model 30
2.6.3 Power Amplifier Modeling with Memory 30
2.7 Linearization Techniques 34
2.7.1 Feedback 34
2.7.2 Addition of a Non-Linear Component (LINC) 36
2.7.3 Feed-Forward 37
2.7.4 Predistortion Concept and Baseband Digital Predistortion 38
2.7.5 Memoryless Digital Predistortions 41
2.7.6 Generic Adaptation Algorithms for Digital Predistortions 42
2.8 Generic Digital Predistortion Technique with Memory 43
 2.8.1 Memory Polynomial 44
 2.8.2 Complex Vector Mapping Look-Up Table 45
 2.8.3 Complex Gain Look-Up Table 46
2.9 Summary 48

3 METHODOLOGY 51
 3.1 Introduction 51
 3.2 Digital Baseband Predistortion Linearization Method 51
 3.3 The Proposed General Memory Polynomial Predistortion Model 52
 3.3.1 Predistortion Identification 52
 3.3.2 Flowchart of the Proposed Memory Polynomial DPD Method 55
 3.4 Experimental Setup 57
 3.4.1 Commercial Power Amplifier used in Test Bench 57
 3.4.2 Agilent Vector Signal Generator 60
 3.4.3 Vector Signal Analyzer 60
 3.5 Summary 61

4 RESULTS AND DISCUSSION 62
 4.1 Introduction 62
 4.2 Power Amplifier Simulation Setup 62
 4.3 Simulation Results of the Generalized Memory Polynomial DPD 63
 4.3.1 Number of the Iterations Effect on Predistortion Performance 64
 4.3.2 IBO Effect on the Performance of Memory Polynomial DPD 67
 4.3.3 MEMR Effect on the DPD for Different PAs with Memory 69
 4.3.4 EVM for Different PAs with Memory Effects and Memory-
 less Saleh-model PA 72
 4.4 Summary 73

5 CONCLUSION AND FUTURE WORK 75
 5.1 Conclusion 75
 5.2 Further Work 76

REFERENCES 77
APPENDICES 87
BIODATA OF STUDENT 104
PUBLICATION 105
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 LTE Downlink (OFDM Modulation) Parameters [7, 21]</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Cyclic Prefix Duration Versus Cyclic Prefix Configuration [7, 21]</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Maximum Output Power Changes across Various Standards [25, 28]</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Comparison of Predistortion Techniques for Nonlinear PAs [115]</td>
<td>50</td>
</tr>
<tr>
<td>4.1 Memory Polynomial Predistorter with Different PAs applied by LTE-DL QPSK Modulated Input Signal with 5 MHz Bandwidth</td>
<td>69</td>
</tr>
<tr>
<td>A.1 Impact of Efficiency and Linearity in Different Classes of PA</td>
<td>96</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Multipath-Induced Time Delays Result in ISI [13–15]</td>
<td>7</td>
</tr>
<tr>
<td>2.2 OFDM Eliminates ISI via Longer Symbol Periods and a Cyclic Prefix [15–17]</td>
<td>7</td>
</tr>
<tr>
<td>2.3 FFT of OFDM Symbol Reveals Distinct Subcarriers [15–17]</td>
<td>8</td>
</tr>
<tr>
<td>2.4 LTE Frame structure of type 1 (T_s is expressing basic time unit corresponding to 30.72 MHz) [4,18,19]</td>
<td>9</td>
</tr>
<tr>
<td>2.5 LTE Frame structure type 2 (for 5 ms switch point periodicity) [10,18,19]</td>
<td>10</td>
</tr>
<tr>
<td>2.6 LTE Downlink Resource grid [10,20]</td>
<td>12</td>
</tr>
<tr>
<td>2.7 Impact of Back-off and 1 dB Compression Point [29]</td>
<td>16</td>
</tr>
<tr>
<td>2.8 AM/AM and AM/PM Characteristics of a SSPA [29]</td>
<td>17</td>
</tr>
<tr>
<td>2.9 1 dB Compression and Intercept Points of PA [29,31]</td>
<td>18</td>
</tr>
<tr>
<td>2.10 AM-AM and AM-PM characteristics of a typical Class A PA [32]</td>
<td>19</td>
</tr>
<tr>
<td>2.11 IMD Terms of the Two-Tone Test by up to 7th order of nonlinearity [32]</td>
<td>20</td>
</tr>
<tr>
<td>2.12 Spectrum of IMD Products [32]</td>
<td>22</td>
</tr>
<tr>
<td>2.13 Spectrum of IMD of a Digital Modulated Signal [31,32]</td>
<td>22</td>
</tr>
<tr>
<td>2.14 EVM Illustration [35,36]</td>
<td>24</td>
</tr>
<tr>
<td>2.15 Illustration of Memory Effect at the Output of the PA [37]</td>
<td>25</td>
</tr>
<tr>
<td>2.16 Source of Memory in RF PA [41–43]</td>
<td>28</td>
</tr>
<tr>
<td>2.18 PA Models with Memory to Simplify Approximation by Using Filters [40,51,52]</td>
<td>32</td>
</tr>
<tr>
<td>2.19 Basic RF Feedback Technique for Compensating the PA nonlinearity [63,64]</td>
<td>35</td>
</tr>
<tr>
<td>2.20 Block Diagram of the Envelope Feedback Technique to Linearize PAs [57,65–68]</td>
<td>35</td>
</tr>
<tr>
<td>2.21 Block Diagram of the Cartesian Loop Feedback Technique [69–73]</td>
<td>36</td>
</tr>
<tr>
<td>2.22 Block Diagram of the LINC/CALLUM Technique [74–78]</td>
<td>37</td>
</tr>
<tr>
<td>2.23 Block Diagram of the General Feedforward Linearization Technique [79]</td>
<td>38</td>
</tr>
<tr>
<td>2.24 Basic Block Diagram of the Predistortion Linearization Technique [32]</td>
<td>39</td>
</tr>
<tr>
<td>2.25 Respectively, RF, IF, BB Predistortions [63]</td>
<td>40</td>
</tr>
<tr>
<td>2.26 Block Diagram of the Adaptive Memoryless Baseband Digital Predistortion [81]</td>
<td>40</td>
</tr>
<tr>
<td>2.27 Block Diagram of the Memoryless Digital Predistorter LUT arrangement [86,87]</td>
<td>41</td>
</tr>
<tr>
<td>2.28 Linear Convergence Adaptation Algorithm for LUT Digital Predistortion [97–100]</td>
<td>43</td>
</tr>
<tr>
<td>2.29 Illustration of Uncompensated Distortion from Memory-Less Predistortion Technique [37,39]</td>
<td>44</td>
</tr>
</tbody>
</table>
2.30 Indirect learning structure to Extract the Coefficients of the Polynomial [105–109] 45
2.31 Block Diagram of Complex Vector Mapping LUT Predistortion [86] 46
2.32 Block Diagram of Complex Gain LUT Predistortion [86, 110] 47
2.33 Quadrant of I and Q plane [99, 111–114] 48
3.1 Block Diagram of the Baseband Digital Predistortion 52
3.2 State-of-Art of the Indirect Learning Architecture for the Baseband DPD 53
3.3 Flowchart of the Proposed Memory Polynomial Predistortion Technique 56
3.4 Experimental Setup for the Proposed Memory Polynomial Predistortion Technique 58
3.5 Photo of the Test Bed of the Experimental Setup 59
3.6 Photograph of the Power Amplifier used in the Experimental Setup 59
3.7 Photograph of the Signal Generator used in the Experimental Setup 60
4.1 AM-AM Characteristic of the amplifier of the Simulated PA When it is excited with LTE Down-link Signal with 5 MHz Bandwidth 63
4.2 AM-PM Characteristic of the amplifier of the Simulated PA When it is excited with LTE Down-link Signal with 5 MHz Bandwidth 64
4.3 AM-AM Characteristic of the Simulated PA After Applying Memory Polynomial DPD with 1 iteration While, it is excited with LTE Down-link Signal with 5 MHz Bandwidth 65
4.4 AM-PM Characteristic of the Simulated PA After Applying Memory Polynomial DPD with 1 Iteration While, it is excited with LTE Down-link Signal with 5 MHz Bandwidth 65
4.5 AM-AM Characteristic of the Simulated PA After Applying Memory Polynomial DPD with 5 iterations While, it is excited with LTE Down-link Signal with 5 MHz Bandwidth 66
4.6 AM-PM Characteristic of the Simulated PA After Applying Memory Polynomial DPD with 5 Iterations While, it is excited with LTE Down-link Signal with 5 MHz Bandwidth 66
4.7 AM-AM Characteristic of the Saleh-model PA After Applying Memory Polynomial DPD While, m=0 and it is excited with LTE Down-link Signal with 5 MHz Bandwidth 67
4.8 AM-PM Characteristic of the Saleh-model PA After Applying Memory Polynomial DPD While, m=0 and it is excited with LTE Down-link Signal with 5 MHz Bandwidth 68
4.9 Power Spectral Density (PSD) of the simulated amplifier with memory effect, MEMR=1 and for Different IBO: 1 dB, 3 dB, 5 dB, 7 dB respectively from Top to the Bottom 68
4.10 Power Spectral Density (PSD) of the simulated amplifier with memory effect, MEMR=1 for Different Cases 70
4.11 Power Spectral Density of Both: the Simulated PA and ZVE-8G+ PA with Different Memory Length (m), and Number of the Non-linearity Orders (n) 71
4.12 Power Spectral Density of the ZVE-8G+ Amplifier with Memory Effect, MEMR=0.62 for Different Cases 71
4.13 Power Spectral Density of the ZVE-8G+ Amplifier with Memory Effect, MEMR=0.62 with 5 Iterations for Different Cases 72
4.14 EVM of the Simulated Amplifier with Memory Effect, MEMR=1 with 1 and 5 Iterations 72
4.15 EVM of the Simulated Amplifier with Memory Effect, MEMR=1 and 1 Iteration compared with Memory-less Saleh-model PA 73
4.16 EVM of the Simulated Amplifier with Memory Effect, MEMR=1 and 5 Iterations compared with Memory-less Saleh-model PA 74
4.17 EVM of the Simulated Amplifier with Memory Effect, MEMR=1 and ZVE-8G+ PA with MEMR=0.62 74

A.1 I_{peak} of an ideal transistor amplifier 87
A.2 Conduction Angle vs. PA Classes 88
A.3 Harmonic Amplitudes vs. PA Classes of Operation mode 89
A.4 Classical Definition of Power Amplifier Classes 90
A.5 Maximum Drain Efficiency versus Conduction Angle 91
A.6 Class-A Power Amplifier Voltage and Current Characteristics 92
A.7 Class-B Power Amplifier Voltage and Current Characteristics 93
A.8 Transfer Functions of Classes A, B, AB 94
A.9 Class-AB Power Amplifier Voltage and Current Characteristics 94
A.10 Voltage and Current Waveforms of Classes D, E, F 96
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3G</td>
<td>Third Generation</td>
</tr>
<tr>
<td>3GPP</td>
<td>Third Generation Partnership Project</td>
</tr>
<tr>
<td>4G</td>
<td>Forth Generation</td>
</tr>
<tr>
<td>AM</td>
<td>Amplitude Modulation</td>
</tr>
<tr>
<td>ACEPR</td>
<td>Adjacent Channel Error Power Ratio</td>
</tr>
<tr>
<td>ACI</td>
<td>Adjacent Channel Interference</td>
</tr>
<tr>
<td>ACLR</td>
<td>Adjacent Channel Leakage Ratio</td>
</tr>
<tr>
<td>ACPR</td>
<td>Adjacent Channel Power Ratio</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog to Digital Converter (A/D)</td>
</tr>
<tr>
<td>ADS</td>
<td>Advanced Design System</td>
</tr>
<tr>
<td>BB</td>
<td>Base-band</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>BPF</td>
<td>Band Pass Filter</td>
</tr>
<tr>
<td>CP</td>
<td>Cyclic Prefix</td>
</tr>
<tr>
<td>CFB</td>
<td>Cartesian-loop Feedback</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital to Analog Converter (D/A)</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DPD</td>
<td>Digital Predistortion</td>
</tr>
<tr>
<td>DUT</td>
<td>Device Under Test</td>
</tr>
<tr>
<td>EDGE</td>
<td>Enhanced Data for GSM Evolution</td>
</tr>
<tr>
<td>EPA</td>
<td>The Error Power Amplifier</td>
</tr>
<tr>
<td>ESG</td>
<td>The Electrical Signal Generator</td>
</tr>
</tbody>
</table>
\begin{tabular}{ll}
\textit{EVM} & Error Vector Magnitude \\
\textit{FB} & Feedback \\
\textit{FDD} & Frequency Division Duplexing \\
\textit{FET} & Field Effect Transistor \\
\textit{FF} & Feed-forward \\
\textit{FIR} & Finite Impulse Response \\
\textit{GA} & Generic Adaptation \\
\textit{HF} & High Frequency \\
\textit{I/Q} & Inphase/Quadrature \\
\textit{IBO} & Input Back-off Point \\
\textit{IF} & Intermediate Frequency \\
\textit{IMD} & Intermodulation Distortion \\
\textit{LINC} & Linear Amplification with Nonlinear Component \\
\textit{LMS} & Least Mean Square \\
\textit{LPF} & Low Pass Filter \\
\textit{LTE} & Long Term Evolution \\
\textit{LUTPD} & Look-Up Table based Predistortion \\
\textit{MEMR} & Memory Effects Modeling Ratio \\
\textit{MPDPD} & Memory Polynomial Digital Predistortion \\
\textit{NMSE} & Normalized Mean Square Error \\
\textit{OFDM} & Orthogonal Frequency Division Multiplexing \\
\textit{OFDM} & Orthogonal Frequency Division Multiple Access \\
\textit{P_{diss}} & Dissipated Power \\
\textit{P_{Max}} & Maximum Power \\
\textit{PINV} & Moore-Penrose pseudo inverse of matrix \\
\textit{PA} & Power Amplifier \\
\end{tabular}
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAE</td>
<td>Power Added Efficiency</td>
</tr>
<tr>
<td>PM</td>
<td>Phase Modulation</td>
</tr>
<tr>
<td>PAPR</td>
<td>Peak to Average Power Ratio</td>
</tr>
<tr>
<td>PSD</td>
<td>Power Spectrum Density</td>
</tr>
<tr>
<td>PSK</td>
<td>Phase Shift Keying</td>
</tr>
<tr>
<td>QAM</td>
<td>Quadrature Amplitude Modulation</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>R_{th}</td>
<td>Thermal Resistance</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Square Error</td>
</tr>
<tr>
<td>RLS</td>
<td>Recursive Least Square</td>
</tr>
<tr>
<td>RRF</td>
<td>Root-raised Cosine Filter</td>
</tr>
<tr>
<td>SFDR</td>
<td>Spurious-free Dynamic Range</td>
</tr>
<tr>
<td>T_{amb}</td>
<td>Ambient Temperature</td>
</tr>
<tr>
<td>TDD</td>
<td>Time Division Duplexing</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telephone System</td>
</tr>
<tr>
<td>VSA</td>
<td>Vector Signal Analyzer</td>
</tr>
<tr>
<td>WCDMA</td>
<td>Wideband Code Division Multiple Access</td>
</tr>
<tr>
<td>WiMAX</td>
<td>Worldwide Interoperability for Microwave Access</td>
</tr>
<tr>
<td>Z_{th}</td>
<td>Thermal Impedance</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

As engineers in the fields of signal processing and digital front-end wireless communication and circuit design, by demonstrating and using the theory and taking it into account, in order to achieve ideal design methodology with the systematic presentation of different algorithms and implementation. Design trade-offs and comparison between simulation and experimental parts will be investigated. LTE (Long Term Evolution) is the current element in the development chain of digital cellular communication systems with following key design targets such as: Significantly higher peak data rates than older standards (e.g. 100 Mbps in 20 MHz bandwidth Downlink and 50 Mbps in 20 MHz bandwidth Uplink), Scalable bandwidth for more spectrum flexibility for the interval from 1.25 MHz, 1.6, 2.5, 5, 10, 15, 20 MHz. Other benefits of using LTE-DL modulated signal like: MIMO (Multiple-Input Multiple-Output), Low latency (round trip delay < 10 ms), Packet oriented data transmission (all IP network), High UE (User Equipment) mobility conditions: Up to 350 or even 500 km/h are convinced engineers to use them for the improvement of nonlinear high frequency power amplifiers with memory effects in the wireless communication systems.

1.1 Background

With the rapid demand for the worldwide deployment of wireless communication infrastructure and increasing the number of users of digital processing technology, the drawbacks and problems occur in the way of digital front-end in transmitters and receivers of wireless communication should be compensated. Nowadays, by increasing the number of the users beside limited radio frequency spectrum, new modulation techniques like wideband code division multiple access (WCDMA), orthogonal frequency division multiplexing (OFDM) and long term evolution (LTE) are used in order to overcome this limitation and get more efficient radio frequency spectrum. As a matter of fact, by increasing the numbers and demands of the users, logically more efficient bandwidth and frequency spectrum is required. So Some diversity techniques have been applied in third generation (3G) [1]. Currently, it still uses in LTE so far. As more detailed explanation, long term evolution (LTE) is a next generation mobile communication system, as a project of the 3rd Generation Partnership Project (3GPP) [2]. Both LTE and WiMAX support frequency division duplexing (FDD) and time division duplexing (TDD) modes, and have more deployment flexibility than previous 3G systems by using scalable channel bandwidths with different numbers of subcarriers, keeping frequency spacing between subcarriers constant. Orthogonal frequency division multiplexing (OFDM) with cyclic prefix (CP) is used in the downlink of LTE systems and both the uplink and the downlink of WiMAX systems rather than
signal carrier modulation schemes in traditional cellular systems. These two standards have set specific requirements in the terms of the power spectrum density (PSD) of the signal for the control of in-band and out-of-band spectrum regrowth. As a result, it is very important to know the relationship between the spectrum regrowth and nonlinear parameters of the system power amplifier.

The OFDM modulation scheme is the superposition of a high number of modulated subchannel signals, base on multiple access technique, usually has some drawbacks like: high peak to average power ratio (PAPR) which causes more power consumption and also inefficiency of the system plus nonlinearity of power amplifier (PA) in transmitter which is not desired in the wireless communication. Therefore, in order to design a system to work with high efficiency and make it cost efficient, then prolong battery life by decreasing power consumption, overcome to the nonlinearity problems is essential. The main source of nonlinearity in communication systems is power amplifier, which this nonlinearity causes two types of distortions: out of band distortion that generates spectral regrowth and in-band distortion respectively. These drawbacks cause the adjacent channel interference (ACI) which effects on reduction in adjacent channel power ratio (ACPR) and increase in bit error rate (BER). Hence, to improve the effects of the nonlinearity and increase the efficiency of amplifier in wireless RF front-end communications system, Some linearization techniques should be applied.

1.2 Problem Statement

In the modern wireless broadband front-end communication systems, the modulated signals contain high peak to average power ratio which caused by big fluctuations as consequence of high spectral efficiency in the envelopes of such signals like: WCDMA, OFDM, WIMAX, LTE. As one of the solutions to avoid and reduce the PAPR, power amplifier needs to be back-off far from its saturation point and work in its linear domain, but this solution results in very low efficiency around less than 10% [3] and 90% of the DC power gets wasted and turns into heat. This means loss of amplifier’s gain and shortens in battery life. Indeed, there is always a trade-off between the linearity and efficiency. This leads to one of the main issues related to choose suitable PA in various fundamental amplifier classes (A-F) in order to perceive the design challenge with respect and compromise to these two characteristics. High PAPR, affect the wireless systems to operate with high power-added efficiency (PAE), while the HF power amplifier is operated nearby the saturation point and then resulted in in-band and out-of-band distortions known as nonlinearities. However, the amplifier is designed to have optimum results in terms of high efficiency and high output power in 1 dB compression point, besides considering the proper return loss and heat dissipation. As a matter of fact, high-efficient amplifier design is relied on burdening the PA characteristics into the band-pass region and also biasing the PA dynamically versus the input signal to attain high
peak powers. As a result, these elements cause nonlinearity in power amplifier in terms of memory effects in which change the characteristics of the power amplifier, especially dynamic AM-AM (Amplitude Modulation to Amplitude Modulation) and AM-PM (Amplitude Modulation to Phase Modulation). Therefore, as the main contribution of this thesis, it is critical to apply some techniques in order to avoid out-of-band distortions which figure as spectral regrowth that cause increment in ACLR. These techniques can be applied with respect to high efficient operations aimed to compensate the dynamic distortions as memory effect of nonlinear power amplifiers.

1.3 Objectives of the Study

The objectives of this study are:

1. To simulate and analyze the memory polynomial digital predistortion technique for compensation of the nonlinearity in the high frequency power amplifiers

2. To test and evaluate the performance of the memory polynomial DPD, when applied to the commercial PA with a real-time 5 MHz LTE input signal.

1.4 Scope of the Thesis

The main solutions to overcome the problems caused by nonlinearity of the PAs, can be counted into two main aspects:
1: Power Amplifier Linearization, which enables the amplifier to be driven nearby the saturation point.
2: Signal Preconditioning, which deducts PAPR without significant signal distortion.

The digital predistortion technique is discussed to be used in this thesis as the aim of compensating the PA nonlinearities with memory effects.

Therefore, in theoretical part, the mathematical equations required for the memory polynomial DPD are explained in order to represent the adaptive predistortion technique, as the aim of compensating the dynamic distortions in terms of memory effects used in simulation part. Then, in the simulation part, it can be seen that the computational complexity of the system will be increased for the higher orders of the polynomial, due to the difficulties in extracting the coefficients in this case, while the bandwidth is constrained and number of iterations or the amount of memory length are increased. In the experimental setup, Agilent equipment are taken into account to make a simple test bench for generating the modern modulated LTE downlink 5 MHz signal as the input and export the characteristics information of the ZVE-8G+ power amplifier as a real PA with memory in the arbitrary I/Q waveform format, for the simulation part in MATLAB software.
At the end, final results of the simulations are discussed with PSD, ACLR, EVM metrics. Also, the effects of the increasing amplitude and decreasing voltage of the back-off point (IBO) are studied. DPD performance for different PAs with different amount of the memory based on the parameter which is named Memory Effects Modeling Ratio (MEMR), is investigated.

1.5 Thesis Organisation

This thesis contains relevant information about amplifier linearization, from the fundamentals to the simulation of the memory polynomial digital predistortion. Hence, this thesis is structured by:

In chapter 1, problem statement and scope and aims and objectives of the this are explained briefly.

In chapter 2, a good literature is presented to cover the topics of power amplifier characterization setup and effects of PA behavioral nonlinearity and then, the power amplifier memory effects and power amplifier modeling, are described in detailed. At the end of this chapter, different PA linearization techniques are investigated to answer that why DPD algorithm is required to be taken into account for PA nonlinearities.

In chapter 3, the proposed memory polynomial DPD is illustrated along the mathematical equations used to apply in Matlab code. Then, the Agilent signal generator and analyzer are introduced.

In chapter 4, the proposed method is analyzed with different metrics by using Matlab software for different input signals such as OFDM, LTE with different bandwidths which are generated by Agilent equipment in the real time.

In chapter 5, conclusion is resulted from the whole content of the PA nonlinearity which is discussed in this thesis and finally, the suggestion for the future works is mentioned.
REFERENCES

[23] pawiki: Power amplifier figure of merit @ONLINE, January 2010.

[116] Pxiavs:pxi agilent vector signal analyzer @ONLINE, January 2014.

