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In this thesis, the development of path loss prediction model for wave propagation into 

buildings at Universiti Putra Malaysia is described. Field strength measurements due to 

three base stations were carried out in three different buildings in the Universiti Putra 

Malaysia campus. The measurement setup consisted of an ADVANTEST U3641 

Spectrum Analyzer and an AHSISAS-5 19-4 log periodic antenna A computer program 

has been developed to calculate the path loss from the measured field strength which in 

turn was used for comparison with available path loss models. The results indicate poor 

agreement between the measured and existing predicted path loss models where even the 

widely accepted COST 231 model deviated as high as 9.46%. The discrepancy between 

the measured and predicted path loss was even greater for other models such as the 

Microcell model (17.69%) and outdoor-indoor model (24.71%). An improved version of 

COST 23 1 model and an empirical path loss models have been proposed in this work to 

iii 



replace the COST 231 model. The improved COST 231 model was found from an 

optimization procedure by fitting the original model to the measured data, whilst the 

empirical model was obtained from regression analysis. The accuracy of the Improved 

COST 231 and empirical models was tested on different buildings and found to agree 

with measured data within 6.31%, and 7.85%, respectively. The Agilent VEE software 

was used to develop and execute the integrated ITMAPL program for wave propagation 

into buildings. The ITMAPL program is a user friendly program to calculate and display 

the path loss of radio propagation paths. It is implemented in the run time format version 

and has three options which are COST 231 model (CST), improved COST 231 model 

(ICS) and ITMANE new empirical model. 
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Mei 2005 
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Institut : Teknologi Maju 

Dalam tesis ini, pembinaan model untuk meramal kehilangan lintasan bagi rambatan 

gelombang ke dalam bangunan di Universiti Putra Malaysia akan diperihalkan. 

Kekuatan medan magnet dari tiga stesen puma telah dilakukan pada tiga bangunan yang 

berlainan di kawasan karnpus Universiti Putra Malaysia. Alat pengukuran yang 

digunakan adalah Penganalisis Spektnun ADVANTEST U3641 dan Antena Berkala 

AHSISAS-5 19-4. Satu program komputer telah dicipta untuk mengira nilai kehilangan 

lintasan daripada nilai pengukuran medan magnet di mana nilai ini digunakan untufr 

membuat perbandingan dengan nilai kehilangan lintasan yang sedia ada. Keputusan 

yang diperolehi menunjukkan ketidaksamaan antara nilai ukuran dan juga model 

kehilangan lintasan yang sedia ada walaupun model COST 231 menyisih sebanyak 

9.46%. Penyisihan antara nilai ukuran d m  juga ramalan kehilangan lintasan lebih tinggi 

bagi model yang lain seperti model microcell (17.69%) clan model outdoor-indoor 



(24.71%). Versi model COST 231 yang dipedxhnu dan juga model empirikal telah 

dicadangkan di dalam kerja ini untuk menggantikan model COST 23 1 yang asal. Model 

COST 231 yang diperbaharui diperolehi daripada presedur pengotimuman dengan 

menyesuaikan nilai ukuran dengan model asal. Model empirikal pula diperolehi daripada 

analisis regresi. Ketepatan model COST 231 yang diperbaharui dan model empirikal 

telah diuji pada bangunan yang berlainan dan telah menepati nilai data ukuran dengan 

nil& perbezaan 6.3 1% dan 7.83% masing-masing. Perisian Agilent WE telah digunakan 

dalarn pembinaan dan perlaksanaan program penggabungan kehilangan lintasan Institut 

Teknologi Maju (ITMAPL) untuk rambatan gelombang ke dalam bangunan. Program 

I W L  hi adalah program yang mudah digunakan untuk mengira dan menunjukkan 

nilai kehilangan lintasan bagi rambatan gelombang radio. Ianya dilaksanakan dalam 

versi format run time dan mengandungi tiga pilihan iaitu model COST 231 (CST), 

model COST 231 yang diperbaharui (ICS) dan juga model empirikal yang baru 

ITMANE. 
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CHAPTER 1 

INTRODUCTION 

Introdnction to Wireless Commnnieation Channel 

Communication in fixed links providing telephone service has been established since 

1940 while satellite links are being used for intercontinental communication since 

1960s. The idea of wireless communication begun when Maxwell predicted the 

existence of electromagnetic waves in 1873 followed by Hertz who demonstrated the 

radio waves in 1 888 (Saunders, 1 999). 

In 1945, Clarke proposed geostationary communications satellites followed by 

launching of Sputnik 1 communication satellite by Soviet Union in 1957. In 1969, Bell 

Laboratories (US) invented the cellular concept and followed by NTT (1979) and 

JTACS (1988) cellular system in Japan. Then, it was continued by NMT in Scandinavia 

(1 98l), AMPS cellular frequencies allocated in US (1 983), TACS in Europe (1 985) and 

USDC in US (1991). In Europe (1991), the GSM cellular system was deployed followed 

by DECT and DCS (1993) while PHs cordless system was deployed in Japan in the 

same year. IS95 CDMA was introduced in US (1995) continued by the launching of 

Iridium global satellite system in 1998 and IMT-2000 third generation cellular mobile 

systems was deployed in 2002. 



Before mid 1960s, research of mobile radio to Mfill the specific operational and 

economic needs was a minor action in terms of international scale even though the 

demand for mobile radio services was continuously increased. Since the existing 

systems had reached the development limit that can support the technology that time, the 

strategic research was justified and it obviously results in most of the developed 

countries. After that, it was apparently seen that the contribution in mobile radio has 

affected the national economy by the use of pocket radios, hand-held and vehicle-borne 

transceivers and pan-European digital systems using wideband TDMA techniques. 

The research activities mainly involved characterization and modeling of radio 

propagation channel which are the principle contributor to problems and limitations 

occurred in mobile radio systems such as multipath propagation. The multipath 

propagation is a main characteristic of mobile channel caused by difhction and 

scattering from terrain features and buildings. This leads to distortion in analogue 

communication systems and severely affects the performance of digital systems by 

reducing the carrier-to-noise and carrier-to-interference ratios. 

Nowadays, cellular mobile communications industry becomes one of the fastest-growing 

industries with a great number of users increased rapidly. This has resulted in 

stimulation of financial investment in such systems as well as to the rise of a large 

number in technical challenges which required a deep understanding on the 

characteristics of the wireless channel for their solution. 



Concept of a Wireless Channel 

The study of wireless channel is an important element of the operation, design and 

analysis of any wireless system such as cellular mobile phones or mobile satellite 

systems. The design of generic communication system was originally presented by 

Claude Shannon of Bell Laboratories in his classic 1948 paper (Shannon, 1948). The 

generic communication system is used for all types of systems which are wireless or 

otherwise. In wireless channel, fading is wnsidered to be one of the main causes of 

performance degradation in a mobile radio system. If fading is taken into account, it 

would affect the data transmission. There are three types of itding; path loss, shadowing 

or slow fading and fast fading or multi path fading. They are appearing as time-varying 

processes between the transmitter and receiver. It also varies with the relative position of 

both antennas (Saunders, 1 999). 

The fading processes presented the mobile receiver received the signal that moving 

away fiom the base station. Normally, the path loss is decreased in field strength with 

increasing distance between the transmitter and receiver. This phenomenon is due to the 

external distribution of waves itom the transmitter and obstructing effects of buildings. 

Furthermore, the shadowing which is a superimposed on the path loss changes faster 

with large variations over distances of hundreds of meters and generally involving 

variations up to around 20 dB. It arises fiom the varying nature of the exacting 

obstructions between both antennas. Besides, the fast fading involves variations on the 

scale of a half-wavelength, about 50 cm at 300 MHz, 17 cm at 900 MHz and frequently 

introduces variations as large as 35 to 40 dB. The last results are fiom the beneficial and 



critical interference between multiple waves reaching the receiver fiom the transmitter. 

The total signal is the combinations of path loss, shadowing and fast fading. 

The Electromagnetic Spectrum 

The electromagnetic spectrum is an essential resource demoralized in wireless 

communication systems as seen in Table 1.1. From the figure, the frequencies around 3 

kHz to 300 GHz is for radio wmmunication where it corresponds to wavelengths in fiee 

space from 100 km to 1 mm. The conventional division of the spectrum into frequency 

bands is defined as in Table 1.2 from 3 kHz to 300 GHz. A further subdivision creates 

the UHF, SHF and lower EHF bands (Saunders, 1999). 

The demand for wireless communication as the frequencies chosen for new systems 

have tended to enhance through the years due to the availability of huge bandwidths at 

the higher frequencies. The change has formed the technology challenges needed to 

support reliable communications as the advantage of antenna structures can be smaller in 

absolute size to support a given level of performance. This study will only be concerned 

in communication at VHF fiequencies and above. The wavelength is typically small 

compared with the size of macroscopic obstructions like buildings. As the size of 

obstructions relative to a wavelength increases, their obstructing effects also tend to 

increase, reducing the range for systems operated at increasing fiequencies. 


