

UNIVERSITI PUTRA MALAYSIA

RHEOLOGICAL BEHAVIOUR AND PROPERTIES OF INJECTION MOULDED OIL PALM (ELAEIS GUNINEENSIS JACQ.) EMPTY FRUIT BUNCH FIBRES/POLYPROPLENE COMPOSITES)

KHALINA BINTI ABDAN.

ITMA 2005 2

RHEOLOGICAL BEHAVIOUR AND PROPERTIES OF INJECTION MOULDED OIL PALM (*Elaeis Guineensis* Jacq.) EMPTY FRUIT BUNCH FIBRES/POLYPROPYLENE COMPOSITES

Ву

KHALINA BINTI ABDAN

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

November 2005

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

RHEOLOGICAL BEHAVIOUR AND PROPERTIES OF INJECTION MOULDED OIL PALM (*Elaeis Guineensis* Jacq.) EMPTY FRUIT BUNCH FIBRES/POLYPROPYLENE COMPOSITES

By

KHALINA ABDAN

July 2005

Chairman: Jalaludin bin Harun, PhD

Institute: Advanced Technology

The feasibility of processing composite prepared from oil palm empty fruit bunch (EFB) /polypropylene (PP) using injection moulding was investigated. The physical, chemical, and thermal characteristics of EFB fibre were studied.

The effects of fibre size, fibre content, levels of melt flow rate and various concentration of maleated polypropylene (MAPP) on the mechanical, physical, rheological and thermal properties of EFB/PP composites were studied. The effects of types and concentrations of reactive additives (RA) on the irradiated EFB/PP composites were also investigated especially to the rheological behaviour and dynamic mechanical thermal characteristics.

The EFB/PP composites were prepared from thermomechanically pulped EFB fibre and PP resin. The internal mixer was used to mix and the injection moulding machine was employed to form the specimen accordance to the

ASTM standards. Electron beam was used to irradiate the EFB/PP composite in order to investigate the effect on dynamic mechanical thermal properties and rheological behaviour. The rheological behaviour was studied using the rheostress viscometer and the results were compared to the melt flow index. Dynamic mechanical thermal properties were measured using a Triton model dynamic mechanical analyser.

The EFB fibre size and fibre content significantly affected the mechanical and physical properties of EFB/PP composites. However the effect of type and concentration of MAPP only affected the tensile and shrinkage properties of the moulded composites.

The rheology of PP showed pseudoplastic behaviour and the viscosity was constant at low shear rate. The changes in fibre size marked different viscosity condition with fine fibre showed viscosity curve away from the matrix curve particularly at very low shear rate. However the 0.1-0.2 mm fibre size revealed the viscosity trend close to the matrix. When MAPP additives were added in the EFB/PP composites the viscosity curve was changed depending on type and concentration level. 2 % of both types of MAPP produced slightly increase in viscosity but 6% of MAPP dropped down the viscosity. The irradiated EFB/PP significantly decrease the viscosity however the composites treated by trimethylol propane triacrylate (TMPTA) showed increase in viscosity but decrease when hexanediol diacrylate or 1,6-hexadiol diacrylate (HDDA) was used.

The dynamic mechanical thermal properties of EFB/PP composites showed that the storage modulus (E') decreases with increase in temperature. The E' also increases with increase in the fibre loading in the composite. However the E' was not affected by the fibre size. The EFB/PP composite showed the glass transition temperature (T_g) of the composite was shifted to lower temperatures than the T_g of the pure PP.

The MAPP treatment resulted in a remarkable increase in E' and loss modulus (E"). However the damping property (tan δ) is less affected. Type of MAPP showed significant different with MAPP 'A' gives a better performance of E' compare than MAPP 'B'.

The E' and E" increased with the addition of reactive additives compared to those without RA and the T_g reduces to low temperature as compared to the irradiated EFB/PP without RA. The tan δ for the irradiated EFB/PP with RAs also changed with the percentage of RA concentrations.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KELAKUAN REOLOGI DAN SIFAT KOMPOSIT SUNTIKAN TERACU GENTIAN TANDAN KELAPA SAWIT (*Elaeis Guineensis* Jacq.)/POLIPROPILENA

OLEH

KHALINA BINTI ABDAN

Julai 2005

Pengerusi: Jalaludin bin Harun, PhD

Institut: Teknologi Maju

Kajian terhadap kebolehlaksanaan memproses komposit dari gentian tandan buah kosong kelapa sawit (EFB)/polipropilena (PP) menggunakan suntikan acuan telah dilakukan. Ciri-ciri fizikal, kimia and terma EFB turut dikaji.

Kesan saiz gentian, kandungan gentian, aras indeks aliran leburan dan kandungan kepekatan meleat-polipropilena *(MAPP)* terhadap sifat-sifat mekanikal, fizikal, reologi dan terma komposit EFB/PP juga telah diteliti. Kesan jenis dan kepekatan bahan tambah bertindak balas (RA)⁻ ke atas EFB/PP yang telah disinarkan juga turut dikaji terutamanya terhadap kelakuan reologi dan cirri-ciri mekanikal dinamik terma.

Komposit EFB/PP telah dihasilkan daripada gentian EFB pulpa mekanikalterma dan damar PP. Mesin pencampur dalaman digunakan untuk mencampur bahan tersebut dan mesin suntikan acuan telah digunakan untuk membentuk spesimen menurut piawai ASTM. Alur elektron digunakan

untuk menyinarkan komposit EFB/PP bagi mengkaji sifat mekanikal dinamik terma dan kelakuan reologi. Kelakuan reologi telah dikaji menggunakan meter likat *rheostress* dan keputusannya telah dibandingkan dengan indeks aliran leburan komposit.

Saiz dan kandungan gentian telah memberi kesan yang nyata sekali kepada sifat mekanikal dan fizikal komposit EFB/PP. Walau bagaimanapun jenis dan kandungan kepekatan MAPP hanya berkesan kepada sifat tegangan dan pengecutan komposit teracu.

Reologi PP telah menunjukkan kelakuan pseudoplastik dan kelikatannya adalah malar pada kadar ricih yang rendah. Perubahan pada saiz gentian telah memberi kesan yang berbeza pada keadaan kelikatan dengan gentian halus menunjukkan lengkung kelikatan berjauhan dari lengkuk matriks terutamanya pada kadar ricih yang sangat rendah. Namun begitu gentian bersaiz 0.1-0.2 mm memperlihatkan arah lengkung kelikatan yang menghampiri matriks. Apabila bahan tambah MAPP dicampurkan ke dalam komposit EFB/PP lengkung kelikatan telah berubah bergantung kepada jenis dan kandungan kepekatan bahan tambah tersebut. Didapati bahawa untuk kedua-dua jenis MAPP dengan kandungan sebanyak 2%, telah meningkatkan sedikit kelikatan tetapi kepekatan 6% telah mengurangkan kelikatan dengan nyata.

Komposit EFB/PP yang telah disinarkan menampakkan pengurangan yang nyata terhadap kelikatan namun dengan rawatan dari trimetilol propana triakrilat (TMPTA) kelikatan telah menunjukkan kenaikan tetapi berkurangan jika dirawat dengan heksadiol diakrilat (HDDA).

Sifat mekanikal dinamik terma komposit EFB/PP menunjukkan bahawa modulus penyimpanan (E') berkurang dengan pertambahan suhu. E' juga meningkat dengan peningkatan kandungan gentian di dalam komposit. Namun saiz gentian tidak memberi kesan kepada E'. Komposit EFB/PP telah menunjukkan suhu peralihan kaca (T_g) teranjak ke suhu yang lebih rendah berbanding T_g untuk PP yang asli.

Rawatan MAPP telah meningkatkan E' dan modulus pelepasan (E"). Namun begitu (tan δ) kurang berkesan dengan penambahan MAPP. Jenis MAPP menunjukkan perbezaan yang kerata kepada E', dengan MAPP 'A' memberikan kesan yang lebih baik berbanding MAPP 'B'.

E' dan E" telah meningkat dengan mencampurkan bahan tambah reaktif berbanding tanpa RA dan nilai T_g juga telah berkurang ke suhu rendah berbanding komposit EFB/PP yang telah disinar tanpa RA. Tan δ untuk EFB/PP yang telah disinar dengan RA juga telah berubah dengan perbezaan peratusan kepekatan RA.

ACKNOWLEDGEMENTS

The author wishes to express her thank to her supersivors: Dr. Jalaludin bin Harun, Dr. Khairul Zaman bin Mohd Dahlan, Dr. Rimfiel bin Janius and Dr. Martin Philip Ansell who assisted her during the conduct of the study.

Special thanks to Dr. Khairul Zaman Mohd Dahlan, Director of Radiation Processing Technology Division, Malaysian Institute of Nuclear Technology Research (MINT), for allowing and providing the facilities to be used to success the research study. Sincere thanks to Dr. Martin Philip Ansell, Senior Lecturer, Department of Mechanical Engineering, University of Bath, United Kingdom, for inviting her as Visiting Researcher and assisted her during experimental works at the University.

Special gratitude to MINT laboratory technicians, Wan Ali and Zahid, who helped her in many ways; to her close friends Dr. Chantara, Syarifah Hanisah, Nor Azowa, and Jamaliah who always motivated her to accomplish the research; to her friends Johan, Kamaruzaman, Zairul, Mohamad, Hisyam, and Mariman for giving their technical support; to department friends Mohamad Azwan and Ahmad, who facilitated her during thesis writing and Assoc. Prof. Muhammad Sallih for editing her thesis.

Utmost thanks to her beloved husband, Nor Jamal who always passion, sacrifices and strive for their family. And above all, to Allah *s.w.t.* for making her desire achieved. *Alhamdullilah*.

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	V
ACKNOWLEDGEMENTS	viii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xvii
LIST OF FIGURES	xix
LIST OF ABBREVIATIONS	xxvii

CHAPTER

1.	INTR	ODUCI	ΓΙΟΝ	1
	1.1	Backg	round of the Study	1
	1.2	Aims	and objectives of the Study	5
2.	LITE	RATUR	E REVIEW	6
	2.1	Natura	al Fibre	6
		2.1.1	Introduction; Utilization of Natural Fibre in Automotive Industry	6
		2.1.2	Lignocellulose Based Natural Fibre	9
			2.1.2.1 Chemical Compositions	9
			2.1.2.2 Morphological Properties	12
			2.1.2.3 Mechanical and Physical Strength	13
			Properties	
			Processing of Natural Fibre	16
	2.2		noplastic Matrix	18
		2.2.1	Introduction	18
			Polypropylene Structure	19
			Mechanical and Physical Strength Properties	21
			Rheological Behaviour of Polypropylene	22
	2.3		noplastic Processing Technology	23
			Introduction	23
		2.3.2	Extrusion and Injection Moulding	25
		2.3.3	Rheology Principles in Thermoplastic	30
			Processing	
	2.4		erties of Natural Fibre Thermoplastic Composite	33
			Introduction	33
		2.4.2	2 I	37
		2.4.3	Dynamic Mechanical Thermal Properties NFRT	39
		2.4.4	Enhancing the Strength Properties of NFRT	39

	2.5	Flow Conditions during Mould Filling and Effect on Orientation	43
		2.5.1 Introduction	43
			43 43
	2.6	2.5.2 Flows through Cavity and Fibre Orientations Elastic Properties of Fibre Composite	43 47
	2.0	2.6.1 Introduction	47 47
			47
		2.6.2 Rule of Mixture,Cox Lag Model and Krenchel Factor	47
	2.7	Rheology Principles and the Viscosity	50
		2.7.1 Introduction	50
		2.7.2 Viscosity	51
		2.7.3 Rheological Behaviour of NFRT	55
		2.7.4 Effect of Fibre Loading on Viscosity	55
		2.7.5 Effect of Chemical Treatment on Viscosity	56
		2.7.6 Effect of Radiation Processing	58
3.	EFB F	BRE CHARACTERIZATIONS	62
	3.1	Experimental Methods	62
		3.1.1 EFB Size Categories and Aspect Ratio	62
		3.1.2 The Apparent Density	63
		3.1.3 Moisture Content Determination	64
		3.1.4 Thermal Property Investigation	64
		3.1.5 Chemical Components	64
		3.1.6 Morphological Properties	65
	3.2	Results and Discussions	65
		3.2.1 Fibre Size Fraction and Aspect Ratio	65
		3.2.2 Apparent Density	68
		3.2.3 Moisture Content	69
		3.2.4 Thermal Properties	70
		3.2.5 Chemical Components	73
		3.2.6 Morphological Properties	74
	3.3	Summary of the EFB Fibre Characterizations	77
4.	EXPE	RIMENTAL METHODS OF MANUFACTURING	78
	EFB/F	PP COMPOSITE	
	4.1	Introduction	78
	4.2	Raw Materials	78
	4.3	Composite Manufacturing Methods	80
		4.3.1 Blending Technique	80
		4.3.2 Basic Blend Compositions	81
		4.3.3 Granulating the EFB/PP Composites	82
		4.3.4 Injection Moulding	83
		4.3.5 Moulded Composite Specimens	85
		4.3.6 Additional Chemical Additives	86
		4.3.6.1 MAPP Concentration	87
		4.3.7 Radiation Processing Effect Study	88
		3 3 3	

	4.4	Viewir	ng under Sca	anning Electror	n Micrograph	89	
	4.5		uring Melt Fl	ow Index		90	
	4.6	Matric				90	
				and Loading Ef	fect Study	91	
			MAPP Effe	•		91	
		4.6.3	Irradiation of	of EFB/PP Effe	ct Study		
5.		HANIC/ PP COI	AL AND MPOSITES	PHYSICAL	PROPERTIES	OF 92	
	5.1	Introd	uction			92	
	5.2	Exper	imental Meth	nods- Mechani	cal Tests	92	
		5.2.1	Tensile Stre	ength		93	
		5.2.2	Flexural Str	rength		93	
			Izod Impac			93	
		5.2.4	Rockwell H	ardness Streng	gth	94	
	5.3	Resul	ts and Discu	issions – Mech	anical Properties	94	
				ibre Size and I	-	94	
		5.3.2			d Type of MAPP or	n 11	0
				Properties			
	5.4	•		nods- Physical	Tests	11	
			Linear Shri	•		11	
			Thickness			12	
			Water Abso	•		12	
				sity Determinat		12	
	5.5			issions - Physic		12	
				ibre Size and I	-	12	
		5.5.2	Effects Cor Physical Pr		d Type of MAPP or	n 13	6
					ations and Type of	13	8
			MAPP on S				
	5.6		nary of the N B/PP Compo		Physical Propertie	s 14	0
6.	RHE	DLOGI	CAL PROPE	RTIES OF EF	B/PP COMPOSITE	ES 14	2
	6.1		uction			-0 14	
	6.2		imental Met	hods		14	
		6.2.1			, K and n Values	14	
				ion of Melt Flow		14	
					d PP and EFB/PP	14	
			Composite	Viscosities			
	6.3	Resul	ts and Discu	issions		14	4
			•••••	ene Melts Beha		14	
		6.3.2		FB Fibre on V	-	14	8
					ifferent Loadings	14	
				ffect of EFB D		15	
					and Loading on MI		
		6.3.4	Effect Cond Viscosity	centrations and	Type of MAPP on	16	1

		6.3.5	Effect of Concentrations and Types of MAPP on MFI	164
		6.3.6	Effect of Radiation Processing of PP and	167
			EFB/PP Composite on Viscosity and MFI	407
			6.3.6.1 Viscosity of Irradiated PP	167
			6.3.6.2 Viscosity of Irradiated EFB/PP	168
			Composites	171
			6.3.6.3 Effect of Irradiated EFB/PP	171
			Composites with Reactive Additives on Viscosity	
			6.3.6.4 Effect of Irradiated EFB/PP	173
			Composites with Reactive Additives	175
			on MFI	
			6.3.6.5 The Power Law Index, n and the	174
			consistency, K	
	6.4	Sumr	nary of Rheological Properties of EFB/PP	176
			posites	
7.	ΠΥΝΔ		IECHANICAL THERMAL ANALYSIS	178
			S OF EFB/PP COMPOSITES	170
	7.1	Introd		178
	7.2		imental Methods	178
	7.3	•	ts and Discussions	179
		7.3.1		179
			DMTA Properties	
		7.3.2	Effects of Concentration and Type of MAPP on	192
			DMTA Properties	
		7.3.3	Effects of Irradiated EFB/PP Composites on	200
			DMTA Properties	
		7.3.4	Effect of Irradiated EFB/PP Composites with	201
		•	Reactive Additives on DMTA Properties	
	7.4	Summ	nary of DMTA Properties of EFB/PP Composites	204
8.	FIBRE		NTATION AND SKIN CORE MORPHOLOGY	206
	OF EF	B FIB	RE IN THE PP MATRIX	
	8.1	Introd		206
	8.2		imental Methods	206
	8.3		ts and Discussions	208
		8.3.1	Fibre orientation observation	208
			8.3.1.1 Effect of Cross Section Position	208
			8.3.1.2 Effect of Fibre Loadings	210
			8.3.1.3 Effects of MAPP Concentration on Fibre Orientations	217
			8.3.1.4 Effects of Radiation and Reactive	219
			Additives on Fibre Orientations	
		8.3.2	Skin Core Morphology of EFB/PP	221
			Composites	. .

9.	CON FUR	224	
	9.1	Conclusions	224
	9.2	Recommendation for Further Studies	226
	ERENO	CES	229
	DATA (DF THE AUTHOR	238

LIST OF TABLES

Table		Page
2.1	Composition of Different Cellulose Based Natural Fibre	11
2.2	The Physical and Mechanical Properties of Several Natural Fibres	14
2.3	Mechanical and Physical Strength Properties of Polypropylene	22
3.1	Ratio (L/D) of the EFB Fibre Prepared From Different Sizes	68,106
3.2	Bulk Densities of EFB Fibres	69
3.3	Moisture Content of EFB Fibre Sizes through Various Temperatures	69
3.4	Cellulose Content of EFB Fibre	72
3.5	Chemical Compositions of EFB Fibres Prepared from Different Sizes	73
4.1	Basic Matrix of EFB/PP Composite with Different Fibre Loadings and Fibre Sizes	82
4.2	Two Types of MAPP with Three Level Concentrations	87
4.3	Two Types of Reactive Additives with Two Different Concentrations	88
5.1	Mechanical Properties Values of EFB/PP Composites Prepared From Different Fibre Sizes and Loadings	96
5.2	Summary of ANOVA of EFB/PP Mechanical Properties Affected by Fibre Size and Loading	97
5.3	Mechanical Properties of EFB/PP Composites Prepared From Different Concentrations and Varieties of MAPP	111
5.4	Summary of Anova of Effect MAPP Concentrations and Types of MFI on Mechanical Properties EFB/PP Composites	112
5.5	Physical Properties Values of EFB/PP Composites Prepared from Different Fibre Sizes and Loadings	124

- 5.6 Summary of ANOVA of EFB/PP Mechanical Properties 125 Affected by Fibre Size and Loading
- 5.7 Mechanical Properties of EFB/PP Composites Prepared 137 from Different Concentrations and Types of MAPP
- 5.8 Summary of Anova of Effect MAPP Concentrations and 138 type of MFI on Physical Properties EFB/PP Composites
- 6.1 Power Law Parameters for EFB/PP Composites 174 Prepared From Different Fibre Loadings, Sizes, MAPP and Radiation Treatments
- 7.1 Storage Modulus Values at -15°C of EFB/PP 194 Composites Treated with MAPP A and B

LIST OF FIGURES

Figur	e	Page
2.1	Flax/Polypropylene Inner Body Components Have Replaced Glass Fibre Reinforced Plastics Components in Vehicles Such as Mercedes Benz A-Class	8
2.2	Cross-Section of Some Plant-Based Fibres Showing the Tubular /Fibril Structure: (a) Sisal (b) Jute and (c) Kenaf	13
2.3	(a) Transportation of Oil Palm EFB by Conveying System Towards the Screw Pressing. (b): The Close up of Special Design Screw Pressing for Oil Palm EFB.	17
2.4	EFB Fibre Processing Technology in Industry	17
2.5	Basic Chemical Structure of Polypropylene	19
2.6	Levels of Microstructure of Polypropylene	20
2.7	Schematic Diagram of Extrusion	25
2.8	Schematic of Modern Thermoplastic Reciprocating Screw Injection Moulding Machine	27
2.9	Four Cavities Balance Runner System	28
2.10	Fibre Pull Out During Crack Growth	35
2.11	Reaction Mechanism of MAPP With the Cellulose Surface and to the PP Segments	40
2.12	Schematic Diagram of the Mould Filling Stage of the Injection Moulding Process	45
2.13	A Through Thickness Orientation Distribution Showing the Skin Core Structure in a Cross Section Cut Across the Flow Direction	46
2.14	Variation of the Tensile Stress, σ , in the Fibre and the Shear Stress, τ , at the Interface Along the Length of a Short Fibre Embedded in a Matrix	48
2.15	Values of the Krenchel Efficiency Factor for Various Fibre Groupings	49

2.16	Parallel Plate With Ideal Fluid in Between	51
2.17	Shear Stress-Rate Relationship for Bingham Bodies, Dilatant Fluids and Pseudoplastic Fluids Compared With Newtonian Material.	53
2.18	Schematic of Possible Molecules Entanglement With the Longer Chains of MAPP. Shorter Chains of MAPP Have Less Opportunity to Entangle With the PP Molecules	57
3.1	A Set-Up Instrument for Bulk Density Measurement	63
3.2	(a) Frequency of Length and (b) Frequency of Diameter Collected on 50 Mesh Grid Sieve	66
3.3	(a) Frequency of Length and (b) Frequency of Diameter Collected Under 100 Mesh Grid Sieve	67
3.4	(a) Frequency of Length and (b) Frequency of Diameter Collected Under 200 Mesh Grid Sieve	67
3.5	(a) TGA/DTA/DTG Curves for 0.1-0.2 mm EFB Fibre	70
3.5	(b) TGA/DTA/DTG Curves for 0.05-0.15 mm EFB Fibre	72
3.5	(c) TGA/DTA/DTG Curves for 0.015-0.025 mm EFB Fibre	73
3.6	Topography Images of EFB Fibres at Magnification 150x (a)0.1-0.2mm, (b) 0.05-0.15mm, (c) 0.015-0.025mm	75
3.7	Surface Structure of EFB Fibres at Magnification 1000x (a)0.1-0.2mm, (b) 0.05-0.15mm, (c) 0.015-0.025mm	75
4.1	EFB Fibres With Different Size Categories (a) 0.1-0.2 mm (b) 0.05-0.15 mm and (c) 0.015-0.025 mm	79
4.2	Polypropylene Pellet Resins	79
4.3	EFB/PP Resin Ready for Injection Moulding	82
4.4	Ray-ran Injection Moulding Apparatus Test Sample	84
4.5	Barrel Design of Ray-ran Injection Moulding Apparatus Showing Large Diameter Entrance and A Nozzle Profile at the End	85

4.6	EFB/PP Specimens for Tensile, Flexural, Impact and Hardness Tests	86
5.1	Tensile Strength of EFB/PP Prepared From Different Loadings and Sizes	98
5.2	Coated EFB Fibres by PP Matrix Particularly at the Pore Surface	99
5.3	SEM Cross Section Micrographs for (a) 0.015-0.025 mm (b) 0.05-0.15 mm and (c) 0.1-0.2 mm	100
5.4	Flexural Strength of EFB/PP Prepared From Different Loadings and Sizes	101
5.5	SEM Micrograph of Cross Section at the Middle Position at (a) 40% Loading for 0.015-0.025mm and (b) 50% for 0.1-0.2mm Composites	102
5.6	Tensile M odulus of EFB/PP Prepared From Different Loadings and Sizes	103
5.7	SEM Micrographs at the Middle Position of Cross Section With 50% Loading for 0.015-0.025 mm Composite	104
5.8	SEM Micrographs of 0.1-0.2 mm EFB Fibre in the PP Matrix (a) Magnifications 90x and (b) Magnifications 150x	104
5.9	Flexural Modulus of EFB/PP Prepared From Different Loadings and Sizes	105
5.10	Izod Impact Notched of EFB/PP Prepared From Different Loading and Size	107
5.11	Rockwell Hardness of EFB/PP Prepared From Different Loading and Size	108
5.12	Voids Occur on the Surface of EFB/PP Composites	109
5.13	Tensile Strength of EFB/PP With MAPP at Different Concentrations and Types.	113
5.14	(a) Embedded EFB Fibre in the PP Matrix with MAPP Type A at 2% (Magnifications: 200x) and (b) Embedded EFB Fibre in the PP Matrix with MAPP Type A at 6% (Magnification 200x)	114

5.15	Tensile Modulus of EFB/PP with MAPP at Different Concentrations and Types	115
5.16	(a) EFB fibres Distribution in The PP Matrix without MAPP	116
	(b) EFB Fibres Distribution in the PP Matrix with 2% MAPP A	
5.17	Flexural Strength of EFB/PP with MAPP at Different Concentrations and Types	118
5.18	Shrinkage in Length of EFB/PP Prepared from Different Fibre Loadings and Sizes	125
5.19	Shrinkage in Width of EFB/PP Prepared From Different Fibre Loadings and Sizes	129
5.20	Density of EFB/PP Prepared From Different Fibre Loading and Size	130
5.21	SEM Micrograph of EFB/P Prepared From (a) 0.015- 0.025mm (Magnification 60x) and (b) 0.1-0.2mm (Magnification 30x)	131
5.22	Thickness Swelling of EFB/PP Prepared From Different Fibre Loading and Size	132
5.23	SEM Micrographs of (a) 0.015-0.025mm EFB (Magnification 150x) and (b) 0.1-0.2mm EFB (Magnification 150x)	133
5.24	Water Absorption of EFB/PP Prepared From Different Fibre Loading and Size	133
5.25	SEM Micrograph of EFB/PP Prepared by 0.015- 0.025mm at Various Fibre Contents (a) 20% Loading (b) 30% Loading (c) 40% Loading and (d) 50% Loading	135
5.26	Effect Concentrations and Type of MAPP on the Shrinkage in Length and Width	138
6.1	(a) Rheometer RS 150 Model With Parallel Plate Sensor Attached. (b) Three Main Components of RS 150 model	143
6.2	Close Up Parallel Sensor System Grade PP 20 (Magnification 2x)	143

6.3	Effects of Shear Rate and Shear Stress on Viscosity of Polypropylene	145
6.4	Effect of Shear Rate on Viscosity of EFB/PP Composites Prepared From 0.015-0.025 mm Fibre at Various Loadings	149
6.5	Effect of Shear Rate on Viscosity of EFB/PP Composites Prepared from 0.05-0.15mm Fibre at Various Loadings	151
6.6	Effect of Shear Rate on Viscosity of EFB/PP Composites Prepared From 0.1-0.2 mm Fibre at Various Loadings	152
6.7	Effect of Shear Rate on Viscosity of EFB/PP Composites Prepared from Various Fibre Sizes at (a) 20% Loading (b) 30% Loading	155
6.8	Effect of Shear Rate on Viscosity of EFB/PP Composites Prepared from Various Fibre Sizes at (c) 40% Loading (d) 50% Loading	156
6.9	Melt Flow Rate of EFB/PP Composites with Different Loadings and Sizes	158
6.10	Viscosity of EFB/PP Composites with Different Loadings and Sizes at 0.1s ⁻¹ Shear Rate	160
6.11	Effect of Shear Rate on Viscosity of EFB/PP Composites Prepared From Different MAPP (a) MAPP Type A (b) MAPP Type B	162
6.12	Reaction Mechanism of MAPP with the Cellulose Surface and to the PP Segments	163
6.13	MFI of EFB/PP Composites Prepared From Different Type of MAPP at Various Concentrations	164
6.14	Viscosity of EFB/PP with Additional MAPP at Various Concentrations and Different MFI at Shear Rate (a) 0.01s ⁻¹ and (b) 0.1s ⁻¹	165
6.15	Viscosity Curves of Unmodified PP and Irradiated PP as a Function of Shear Rate	167
6.16	Chain Scissioning Mechanism of Irradiated Polymer	168

6.17	Viscosity Curves of EFB/PP and Irradiated EFB/PP as a Function of Shear Rate	169
6.18	Mechanism of Free Radicals Produced When Cellulose Fibres Exposed to Electron Beam	170
6.19	Viscosity Curves of Irradiated EFB/PP with Presence of RAs with Function of Shear Rate	172
6.20	MFI of Irradiated EFB/PP Composites Prepared from Different Type of RAs at Two Level Concentrations	173
6.21	Effect of Loadings and Sizes of EFB/PP Composites on n Value	175
6.22	Effect of MAPP Treatments of EFB/PP Composites on n Value	176
6.23	Effect of Radiation Process of EFB/PP Composites on n Value	176
7.1	A Tritec 2000 Dynamic Mechanical Thermal Analyser	179
7.2	Variation of Storage Modulus of 0.015-0.025mm EFB Fibre Prepared at Different Loadings as a Function of Temperature	180
7.3	Variation of Storage Modulus of 0.05-0.15mm EFB Fibre Prepared at Different Loadings as a Function of Temperature.	182
7.3 7.4	Prepared at Different Loadings as a Function of	182 183
	Prepared at Different Loadings as a Function of Temperature. Variation of Storage Modulus of 0.1-0.2mm EFB Fibre Prepared at Different Loadings as a Function of	
7.4	 Prepared at Different Loadings as a Function of Temperature. Variation of Storage Modulus of 0.1-0.2mm EFB Fibre Prepared at Different Loadings as a Function of Temperature Variation of Loss Modulus of 0.015-0.025 mm EFB Fibre Prepared at Different Loadings as a Function of 	183

