UNIVERSITI PUTRA MALAYSIA

RHEOLOGICAL BEHAVIOUR AND PROPERTIES OF INJECTION MOULDED OIL PALM (ELAEIS GUNINEENSIS JACQ.) EMPTY FRUIT BUNCH FIBRES/POLYPROPYLENE COMPOSITES)

KHALINA BINTI ABDAN.

ITMA 2005 2
RHEOLOGICAL BEHAVIOUR AND PROPERTIES OF INJECTION MOULDED OIL PALM (Elaeis Guineensis Jacq.) EMPTY FRUIT BUNCH FIBRES/POLYPROPYLENE COMPOSITES

By

KHALINA BINTI ABDAN

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

November 2005
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

RHEOLOGICAL BEHAVIOUR AND PROPERTIES OF INJECTION MOULDED OIL PALM (*Elaeis Guineensis* Jacq.) EMPTY FRUIT BUNCH FIBRES/POLYPROPYLENE COMPOSITES

By

KHALINA ABDAN

July 2005

Chairman: Jalaludin bin Harun, PhD

Institute: Advanced Technology

The feasibility of processing composite prepared from oil palm empty fruit bunch (EFB) /polypropylene (PP) using injection moulding was investigated.

The physical, chemical, and thermal characteristics of EFB fibre were studied.

The effects of fibre size, fibre content, levels of melt flow rate and various concentration of maleated polypropylene (MAPP) on the mechanical, physical, rheological and thermal properties of EFB/PP composites were studied. The effects of types and concentrations of reactive additives (RA) on the irradiated EFB/PP composites were also investigated especially to the rheological behaviour and dynamic mechanical thermal characteristics.

The EFB/PP composites were prepared from thermomechanically pulped EFB fibre and PP resin. The internal mixer was used to mix and the injection moulding machine was employed to form the specimen accordance to the
ASTM standards. Electron beam was used to irradiate the EFB/PP composite in order to investigate the effect on dynamic mechanical thermal properties and rheological behaviour. The rheological behaviour was studied using the rheostress viscometer and the results were compared to the melt flow index. Dynamic mechanical thermal properties were measured using a Triton model dynamic mechanical analyser.

The EFB fibre size and fibre content significantly affected the mechanical and physical properties of EFB/PP composites. However the effect of type and concentration of MAPP only affected the tensile and shrinkage properties of the moulded composites.

The rheology of PP showed pseudoplastic behaviour and the viscosity was constant at low shear rate. The changes in fibre size marked different viscosity condition with fine fibre showed viscosity curve away from the matrix curve particularly at very low shear rate. However the 0.1-0.2 mm fibre size revealed the viscosity trend close to the matrix. When MAPP additives were added in the EFB/PP composites the viscosity curve was changed depending on type and concentration level. 2 % of both types of MAPP produced slightly increase in viscosity but 6% of MAPP dropped down the viscosity. The irradiated EFB/PP significantly decrease the viscosity however the composites treated by trimethylol propane triacrylate (TMPTA) showed increase in viscosity but decrease when hexanediol diacrylate or 1,6-hexadiol diacrylate (HDDA) was used.
The dynamic mechanical thermal properties of EFB/PP composites showed that the storage modulus (E') decreases with increase in temperature. The E' also increases with increase in the fibre loading in the composite. However the E' was not affected by the fibre size. The EFB/PP composite showed the glass transition temperature (T_g) of the composite was shifted to lower temperatures than the T_g of the pure PP.

The MAPP treatment resulted in a remarkable increase in E' and loss modulus (E''). However the damping property (tan δ) is less affected. Type of MAPP showed significant different with MAPP 'A' gives a better performance of E' compare than MAPP 'B'.

The E' and E'' increased with the addition of reactive additives compared to those without RA and the T_g reduces to low temperature as compared to the irradiated EFB/PP without RA. The tan δ for the irradiated EFB/PP with RAs also changed with the percentage of RA concentrations.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KELAKUAN REOLOGI DAN SIFAT KOMPOSIT SUNTIKAN TERACU GENTIAN TANDAN KELAPA SAWIT (Elaeis Guineensis Jacq.)/POLIPROPILENA

OLEH

KHALINA BINTI ABDAN

Julai 2005

Pengerusi: Jalaludin bin Harun, PhD

Institut: Teknologi Maju

Kajian terhadap kebolehlaksanaan memproses komposit dari gentian tandan buah kosong kelapa sawit (EFB)/polipropilena (PP) menggunakan suntikan acuan telah dilakukan. Ciri-ciri fizikal, kimia and terma EFB turut dikaji.

Kesan saiz gentian, kandungan gentian, aras indeks aliran leburan dan kandungan kepekatan meleat-polipropilena (MAPP) terhadap sifat-sifat mekanikal, fizikal, reologi dan terma komposit EFB/PP juga telah diteliti. Kesan jenis dan kepekatan bahan tambah bertindak balas (RA) ke atas EFB/PP yang telah disinarkan juga turut dikaji terutamanya terhadap kelakuan reologi dan cirri-ciri mekanikal dinamik terma.

Komposit EFB/PP telah dihasilkan daripada gentian EFB pulpa mekanikalkerja dan damar PP. Mesin pencampur dalaman digunakan untuk mencampur bahan tersebut dan mesin suntikan acuan telah digunakan untuk membentuk spesimen menurut piawai ASTM. Alur elektron digunakan...
untuk menyinarkan komposit EFB/PP bagi mengkaji sifat mekanikal dinamik terma dan kelakuan reologi. Kelakuan reologi telah dikaji menggunakan meter likat *rheostress* dan keputusannya telah dibandingkan dengan indeks aliran leburan komposit.

Saiz dan kandungan gentian telah memberi kesan yang nyata sekali kepada sifat mekanikal dan fizikal komposit EFB/PP. Walau bagaimanapun jenis dan kandungan kepekatan MAPP hanya berkesan kepada sifat tegangan dan pengecutan komposit teracu.

Reologi PP telah menunjukkan kelakuan pseudoplastik dan kelikatannya adalah malar pada kadar ricih yang rendah. Perubahan pada saiz gentian telah memberi kesan yang berbeza pada keadaan kelikatan dengan gentian halus menunjukkan lengkung kelikatan berjauhan dari lengkuk matriks terutamanya pada kadar ricih yang sangat rendah. Namun begitu gentian bersaiz 0.1-0.2 mm memperlihatkan arah lengkung kelikatan yang menghampiri matriks. Apabila bahan tambah MAPP dicampurkan ke dalam komposit EFB/PP lengkung kelikatan telah berubah bergantung kepada jenis dan kandungan kepekatan bahan tambah tersebut. Didapati bahawa untuk kedua-dua jenis MAPP dengan kandungan sebanyak 2%, telah meningkatkan sedikit kelikatan tetapi kepekatan 6% telah mengurangkan kelikatan dengan nyata.
Komposit EFB/PP yang telah disinar menampakkan pengurangan yang nyata terhadap kelikatan namun dengan rawatan dari trimetilol propana triakrilat (TMPTA) kelikatan telah menunjukkan kenaikan tetapi berkurangan jika dirawat dengan heksadiol diakrilat (HDDA).

Sifat mekanikal dinamik terma komposit EFB/PP menunjukkan bahawa modulus penyimpanan (E’) berkurang dengan pertambahan suhu. E’ juga meningkat dengan peningkatan kandungan gentian di dalam komposit. Namun saiz gentian tidak memberi kesan kepada E’. Komposit EFB/PP telah menunjukkan suhu peralihan kaca (T_g) teranjak ke suhu yang lebih rendah berbanding T_g untuk PP yang asli.

Rawatan MAPP telah meningkatkan E’ dan modulus pelepasan (E”). Namun begitu (tan δ) kurang berkesan dengan penambahan MAPP. Jenis MAPP menunjukkan perbezaan yang kerata kepada E’, dengan MAPP ‘A’ memberikan kesan yang lebih baik berbanding MAPP ‘B’.

E’ dan E” telah meningkat dengan mencampurkan bahan tambah reaktif berbanding tanpa RA dan nilai T_g juga telah berkurang ke suhu rendah berbanding komposit EFB/PP yang telah disinar tanpa RA. Tan δ untuk EFB/PP yang telah disinar dengan RA juga telah berubah dengan perbezaan peratusan kepekatan RA.
ACKNOWLEDGEMENTS

The author wishes to express her thank to her supervisors: Dr. Jalaludin bin Harun, Dr. Khairul Zaman bin Mohd Dahlan, Dr. Rimfieil bin Janius and Dr. Martin Philip Ansell who assisted her during the conduct of the study.

Special thanks to Dr. Khairul Zaman Mohd Dahlan, Director of Radiation Processing Technology Division, Malaysian Institute of Nuclear Technology Research (MINT), for allowing and providing the facilities to be used to success the research study. Sincere thanks to Dr. Martin Philip Ansell, Senior Lecturer, Department of Mechanical Engineering, University of Bath, United Kingdom, for inviting her as Visiting Researcher and assisted her during experimental works at the University.

Special gratitude to MINT laboratory technicians, Wan Ali and Zahid, who helped her in many ways; to her close friends Dr. Chantara, Syarifah Hanisah, Nor Azowa, and Jamaliah who always motivated her to accomplish the research; to her friends Johan, Kamaruzaman, Zairul, Mohamad, Hisyam, and Mariman for giving their technical support; to department friends Mohamad Azwan and Ahmad, who facilitated her during thesis writing and Assoc. Prof. Muhammad Sallih for editing her thesis.

Utmost thanks to her beloved husband, Nor Jamal who always passion, sacrifices and strive for their family. And above all, to Allah s.w.t. for making her desire achieved. Alhamdullilah.
I certify that an Examination Committee met on 13th July 2005 to conduct the final examination of Khalina Abdan on her Doctor of Philosophy thesis entitled "Rheological Behaviour and Properties of Injection Moulded Oil Palm (Elaeis guineensis Jacq.) Empty Fruit Bunch Fibres/Polypropylene Composites" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

MOHD ZOBIR HUSSEIN, PhD
Professor
Institute of Advance Technology
Universiti Putra Malaysia
(Chairman)

WAN MD ZIN WAN YUNUS, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

MANSOR AHMAD, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

JOHN SUMMERSCALES, PhD
School of Engineering
Drake Circus Plymouth
Devon, United Kingdom
(External Examiner)

GULAM RUSUL RAHMAT ALI, PhD
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 25 OCT 2005
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

JALALUDIN HARUN, PhD
Lecturer
Institute of Advanced Technology
Universiti Putra Malaysia
(Chairman)

RIMFIEL JANIUS, PhD
Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

KHAIRUL ZAMAN MOHD DAHLAN, PhD
Radiation Processing Technology Division
Malaysian Institute of Nuclear Technology Research
(Member)

MARTIN PHILIP ANSELL, PhD
Senior Lecturer
Department of Mechanical Engineering
University of Bath
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 NOV 2005

x
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

KHALINA BINTI ABDAN

Date: 24 OCT 2005
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION
 1.1 Background of the Study 1
 1.2 Aims and objectives of the Study 5

2. LITERATURE REVIEW
 2.1 Natural Fibre
 2.1.1 Introduction; Utilization of Natural Fibre in Automotive Industry 6
 2.1.2 Lignocellulose Based Natural Fibre
 2.1.2.1 Chemical Compositions 9
 2.1.2.2 Morphological Properties 12
 2.1.2.3 Mechanical and Physical Strength Properties 13
 2.1.3 Processing of Natural Fibre 16
 2.2 Thermoplastic Matrix
 2.2.1 Introduction 18
 2.2.2 Polypropylene Structure 19
 2.2.3 Mechanical and Physical Strength Properties 21
 2.2.4 Rheological Behaviour of Polypropylene 22
 2.3 Thermoplastic Processing Technology 23
 2.3.1 Introduction 23
 2.3.2 Extrusion and Injection Moulding 25
 2.3.3 Rheology Principles in Thermoplastic Processing 30
 2.4 Properties of Natural Fibre Thermoplastic Composite
 2.4.1 Introduction 33
 2.4.2 Mechanical and Physical Properties 37
 2.4.3 Dynamic Mechanical Thermal Properties NFRT 39
 2.4.4 Enhancing the Strength Properties of NFRT 39
4.4 Viewing under Scanning Electron Micrograph
4.5 Measuring Melt Flow Index
4.6 Matrices
 4.6.1 Fibre Size and Loading Effect Study
 4.6.2 MAPP Effect Study
 4.6.3 Irradiation of EFB/PP Effect Study

5. MECHANICAL AND PHYSICAL PROPERTIES OF EFB/PP COMPOSITES
5.1 Introduction
5.2 Experimental Methods- Mechanical Tests
 5.2.1 Tensile Strength
 5.2.2 Flexural Strength
 5.2.3 Izod Impact Strength
 5.2.4 Rockwell Hardness Strength
5.3 Results and Discussions – Mechanical Properties
 5.3.1 Effects of Fibre Size and Fibre Loading
 5.3.2 Effects Concentrations and Type of MAPP on Mechanical Properties
5.4 Experimental Methods- Physical Tests
 5.4.1 Linear Shrinkage
 5.4.2 Thickness Swelling
 5.4.3 Water Absorption
 5.4.4 Board Density Determination
5.5 Results and Discussions - Physical Properties
 5.5.1 Effects of Fibre Size and Fibre Loading
 5.5.2 Effects Concentrations and Type of MAPP on Physical Properties
 5.5.2.1 Effects Concentrations and Type of MAPP on Shrinkage
5.6 Summary of the Mechanical and Physical Properties of EFB/PP Composites

6. RHEOLOGICAL PROPERTIES OF EFB/PP COMPOSITES
6.1 Introduction
6.2 Experimental Methods
 6.2.1 Determination of Viscosity, K and n Values
 6.2.2 Determination of Melt Flow Index
 6.2.3 Determination of Irradiated PP and EFB/PP Composite Viscosities
6.3 Results and Discussions
 6.3.1 Polypropylene Melts Behaviour
 6.3.2 Effects of EFB Fibre on Viscosity
 6.3.2.1 Effect of EFB Different Loadings
 6.3.2.2 Effect of EFB Different Sizes
 6.3.3 Effects of EFB Fibre Size and Loading on MFI
 6.3.4 Effect Concentrations and Type of MAPP on Viscosity
6.3.5 Effect of Concentrations and Types of MAPP on MFI 164
6.3.6 Effect of Radiation Processing of PP and EFB/PP Composite on Viscosity and MFI 167
 6.3.6.1 Viscosity of Irradiated PP 167
 6.3.6.2 Viscosity of Irradiated EFB/PP Composites 168
6.3.6.3 Effect of Irradiated EFB/PP Composites with Reactive Additives on Viscosity 171
6.3.6.4 Effect of Irradiated EFB/PP Composites with Reactive Additives on MFI 173
6.3.6.5 The Power Law Index, n and the consistency, K 174
6.4 Summary of Rheological Properties of EFB/PP Composites 176

7. DYNAMIC MECHANICAL THERMAL ANALYSIS PROPERTIES OF EFB/PP COMPOSITES 178
 7.1 Introduction 178
 7.2 Experimental Methods 178
 7.3 Results and Discussions 179
 7.3.1 Effects of EFB Fibre Loadings and Sizes on DMTA Properties 179
 7.3.2 Effects of Concentration and Type of MAPP on DMTA Properties 192
 7.3.3 Effects of Irradiated EFB/PP Composites on DMTA Properties 200
 7.3.4 Effect of Irradiated EFB/PP Composites with Reactive Additives on DMTA Properties 201
 7.4 Summary of DMTA Properties of EFB/PP Composites 204

8. FIBRE ORIENTATION AND SKIN CORE MORPHOLOGY OF EFB FIBRE IN THE PP MATRIX 206
 8.1 Introduction 206
 8.2 Experimental Methods 206
 8.3 Results and Discussions 208
 8.3.1 Fibre orientation observation 208
 8.3.1.1 Effect of Cross Section Position 208
 8.3.1.2 Effect of Fibre Loadings 210
 8.3.1.3 Effects of MAPP Concentration on Fibre Orientations 217
 8.3.1.4 Effects of Radiation and Reactive Additives on Fibre Orientations 219
 8.3.2 Skin Core Morphology of EFB/PP Composites 221
9. CONCLUSIONS AND RECOMMENDATIONS for FURTHER RESEARCH
 9.1 Conclusions 224
 9.2 Recommendation for Further Studies 226

REFERENCES 229
BIODATA OF THE AUTHOR 238
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Composition of Different Cellulose Based Natural Fibre</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>The Physical and Mechanical Properties of Several Natural Fibres</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Mechanical and Physical Strength Properties of Polypropylene</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Ratio (L/D) of the EFB Fibre Prepared From Different Sizes</td>
<td>68,106</td>
</tr>
<tr>
<td>3.2</td>
<td>Bulk Densities of EFB Fibres</td>
<td>69</td>
</tr>
<tr>
<td>3.3</td>
<td>Moisture Content of EFB Fibre Sizes through Various Temperatures</td>
<td>69</td>
</tr>
<tr>
<td>3.4</td>
<td>Cellulose Content of EFB Fibre</td>
<td>72</td>
</tr>
<tr>
<td>3.5</td>
<td>Chemical Compositions of EFB Fibres Prepared from Different Sizes</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Basic Matrix of EFB/PP Composite with Different Fibre Loadings and Fibre Sizes</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>Two Types of MAPP with Three Level Concentrations</td>
<td>87</td>
</tr>
<tr>
<td>4.3</td>
<td>Two Types of Reactive Additives with Two Different Concentrations</td>
<td>88</td>
</tr>
<tr>
<td>5.1</td>
<td>Mechanical Properties Values of EFB/PP Composites Prepared From Different Fibre Sizes and Loadings</td>
<td>96</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary of ANOVA of EFB/PP Mechanical Properties Affected by Fibre Size and Loading</td>
<td>97</td>
</tr>
<tr>
<td>5.3</td>
<td>Mechanical Properties of EFB/PP Composites Prepared From Different Concentrations and Varieties of MAPP</td>
<td>111</td>
</tr>
<tr>
<td>5.4</td>
<td>Summary of Anova of Effect MAPP Concentrations and Types of MFI on Mechanical Properties EFB/PP Composites</td>
<td>112</td>
</tr>
<tr>
<td>5.5</td>
<td>Physical Properties Values of EFB/PP Composites Prepared from Different Fibre Sizes and Loadings</td>
<td>124</td>
</tr>
</tbody>
</table>
5.6 Summary of ANOVA of EFB/PP Mechanical Properties Affected by Fibre Size and Loading

5.7 Mechanical Properties of EFB/PP Composites Prepared from Different Concentrations and Types of MAPP

5.8 Summary of Anova of Effect MAPP Concentrations and type of MFI on Physical Properties EFB/PP Composites

6.1 Power Law Parameters for EFB/PP Composites Prepared From Different Fibre Loadings, Sizes, MAPP and Radiation Treatments

7.1 Storage Modulus Values at -15°C of EFB/PP Composites Treated with MAPP A and B
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Flax/Polypropylene Inner Body Components Have Replaced Glass Fibre Reinforced Plastics Components in Vehicles Such as Mercedes Benz A-Class</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Cross-Section of Some Plant-Based Fibres Showing the Tubular /Fibril Structure: (a) Sisal (b) Jute and (c) Kenaf</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>(a) Transportation of Oil Palm EFB by Conveying System Towards the Screw Pressing. (b): The Close up of Special Design Screw Pressing for Oil Palm EFB.</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>EFB Fibre Processing Technology in Industry</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Basic Chemical Structure of Polypropylene</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Levels of Microstructure of Polypropylene</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic Diagram of Extrusion</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic of Modern Thermoplastic Reciprocating Screw Injection Moulding Machine</td>
<td>27</td>
</tr>
<tr>
<td>2.9</td>
<td>Four Cavities Balance Runner System</td>
<td>28</td>
</tr>
<tr>
<td>2.10</td>
<td>Fibre Pull Out During Crack Growth</td>
<td>35</td>
</tr>
<tr>
<td>2.11</td>
<td>Reaction Mechanism of MAPP With the Cellulose Surface and to the PP Segments</td>
<td>40</td>
</tr>
<tr>
<td>2.12</td>
<td>Schematic Diagram of the Mould Filling-Stage of the Injection Moulding Process</td>
<td>45</td>
</tr>
<tr>
<td>2.13</td>
<td>A Through Thickness Orientation Distribution Showing the Skin Core Structure in a Cross Section Cut Across the Flow Direction</td>
<td>46</td>
</tr>
<tr>
<td>2.14</td>
<td>Variation of the Tensile Stress, σ, in the Fibre and the Shear Stress, τ, at the Interface Along the Length of a Short Fibre Embedded in a Matrix</td>
<td>48</td>
</tr>
<tr>
<td>2.15</td>
<td>Values of the Krenchel Efficiency Factor for Various Fibre Groupings</td>
<td>49</td>
</tr>
</tbody>
</table>
2.16 Parallel Plate With Ideal Fluid in Between

2.17 Shear Stress-Rate Relationship for Bingham Bodies, Dilatant Fluids and Pseudoplastic Fluids Compared With Newtonian Material.

2.18 Schematic of Possible Molecules Entanglement With the Longer Chains of MAPP. Shorter Chains of MAPP Have Less Opportunity to Entangle With the PP Molecules

3.1 A Set-Up Instrument for Bulk Density Measurement

3.2 (a) Frequency of Length and (b) Frequency of Diameter Collected on 50 Mesh Grid Sieve

3.3 (a) Frequency of Length and (b) Frequency of Diameter Collected Under 100 Mesh Grid Sieve

3.4 (a) Frequency of Length and (b) Frequency of Diameter Collected Under 200 Mesh Grid Sieve

3.5 (a) TGA/DTA/DTG Curves for 0.1-0.2 mm EFB Fibre

3.5 (b) TGA/DTA/DTG Curves for 0.05-0.15 mm EFB Fibre

3.5 (c) TGA/DTA/DTG Curves for 0.015-0.025 mm EFB Fibre

3.6 Topography Images of EFB Fibres at Magnification 150x (a)0.1-0.2mm, (b) 0.05-0.15mm, (c) 0.015-0.025mm

3.7 Surface Structure of EFB Fibres at Magnification 1000x (a)0.1-0.2mm, (b) 0.05-0.15mm, (c) 0.015-0.025mm

4.1 EFB Fibres With Different Size Categories (a) 0.1-0.2 mm (b) 0.05-0.15 mm and (c) 0.015-0.025 mm

4.2 Polypropylene Pellet Resins

4.3 EFB/PP Resin Ready for Injection Moulding

4.4 Ray-ran Injection Moulding Apparatus Test Sample

4.5 Barrel Design of Ray-ran Injection Moulding Apparatus Showing Large Diameter Entrance and A Nozzle Profile at the End
4.6 EFB/PP Specimens for Tensile, Flexural, Impact and Hardness Tests

5.1 Tensile Strength of EFB/PP Prepared From Different Loadings and Sizes

5.2 Coated EFB Fibres by PP Matrix Particularly at the Pore Surface

5.3 SEM Cross Section Micrographs for (a) 0.015-0.025 mm (b) 0.05-0.15 mm and (c) 0.1-0.2 mm

5.4 Flexural Strength of EFB/PP Prepared From Different Loadings and Sizes

5.5 SEM Micrograph of Cross Section at the Middle Position at (a) 40% Loading for 0.015-0.025 mm and (b) 50% for 0.1-0.2 mm Composites

5.6 Tensile Modulus of EFB/PP Prepared From Different Loadings and Sizes

5.7 SEM Micrographs at the Middle Position Of Cross Section With 50% Loading for 0.015-0.025 mm Composite

5.8 SEM Micrographs of 0.1-0.2 mm EFB Fibre in the PP Matrix (a) Magnifications 90x and (b) Magnifications 150x

5.9 Flexural Modulus of EFB/PP Prepared From Different Loadings and Sizes

5.10 Izod Impact Notched of EFB/PP Prepared From Different Loading and Size

5.11 Rockwell Hardness of EFB/PP Prepared From Different Loading and Size

5.12 Voids Occur on the Surface of EFB/PP Composites

5.13 Tensile Strength of EFB/PP With MAPP at Different Concentrations and Types.

5.14 (a) Embedded EFB Fibre in the PP Matrix with MAPP Type A at 2% (Magnifications: 200x) and (b) Embedded EFB Fibre in the PP Matrix with MAPP Type A at 6% (Magnification 200x)
5.15 Tensile Modulus of EFB/PP with MAPP at Different Concentrations and Types

5.16 (a) EFB fibres Distribution in The PP Matrix without MAPP
(b) EFB Fibres Distribution in the PP Matrix with 2% MAPP A

5.17 Flexural Strength of EFB/PP with MAPP at Different Concentrations and Types

5.18 Shrinkage in Length of EFB/PP Prepared from Different Fibre Loadings and Sizes

5.19 Shrinkage in Width of EFB/PP Prepared From Different Fibre Loadings and Sizes

5.20 Density of EFB/PP Prepared From Different Fibre Loading and Size

5.21 SEM Micrograph of EFB/P Prepared From (a) 0.015-0.025mm (Magnification 60x) and (b) 0.1-0.2mm (Magnification 30x)

5.22 Thickness Swelling of EFB/PP Prepared From Different Fibre Loading and Size

5.23 SEM Micrographs of (a) 0.015-0.025mm EFB (Magnification 150x) and (b) 0.1-0.2mm EFB (Magnification 150x)

5.24 Water Absorption of EFB/PP Prepared From Different Fibre Loading and Size

5.25 SEM Micrograph of EFB/PP Prepared by 0.015-0.025mm at Various Fibre Contents (a) 20% Loading (b) 30% Loading (c) 40% Loading and (d) 50% Loading

5.26 Effect Concentrations and Type of MAPP on the Shrinkage in Length and Width

6.1 (a) Rheometer RS 150 Model With Parallel Plate Sensor Attached. (b) Three Main Components of RS 150 model

6.2 Close Up Parallel Sensor System Grade PP 20 (Magnification 2x)
6.3 Effects of Shear Rate and Shear Stress on Viscosity of Polypropylene

6.4 Effect of Shear Rate on Viscosity of EFB/PP Composites Prepared From 0.015-0.025 mm Fibre at Various Loadings

6.5 Effect of Shear Rate on Viscosity of EFB/PP Composites Prepared from 0.05-0.15mm Fibre at Various Loadings

6.6 Effect of Shear Rate on Viscosity of EFB/PP Composites Prepared From 0.1-0.2 mm Fibre at Various Loadings

6.7 Effect of Shear Rate on Viscosity of EFB/PP Composites Prepared from Various Fibre Sizes at (a) 20% Loading (b) 30% Loading

6.8 Effect of Shear Rate on Viscosity of EFB/PP Composites Prepared from Various Fibre Sizes at (c) 40% Loading (d) 50% Loading

6.9 Melt Flow Rate of EFB/PP Composites with Different Loadings and Sizes

6.10 Viscosity of EFB/PP Composites with Different Loadings and Sizes at 0.1s⁻¹ Shear Rate

6.11 Effect of Shear Rate on Viscosity of EFB/PP Composites Prepared From Different MAPP (a) MAPP Type A (b) MAPP Type B

6.12 Reaction Mechanism of MAPP with the Cellulose Surface and to the PP Segments

6.13 MFI of EFB/PP Composites Prepared From Different Type of MAPP at Various Concentrations

6.14 Viscosity of EFB/PP with Additional MAPP at Various Concentrations and Different MFI at Shear Rate (a) 0.01s⁻¹ and (b) 0.1s⁻¹

6.15 Viscosity Curves of Unmodified PP and Irradiated PP as a Function of Shear Rate

6.16 Chain Scissioning Mechanism of Irradiated Polymer
6.17 Viscosity Curves of EFB/PP and Irradiated EFB/PP as a Function of Shear Rate

6.18 Mechanism of Free Radicals Produced When Cellulose Fibres Exposed to Electron Beam

6.19 Viscosity Curves of Irradiated EFB/PP with Presence of RAs with Function of Shear Rate

6.20 MFI of Irradiated EFB/PP Composites Prepared from Different Type of RAs at Two Level Concentrations

6.21 Effect of Loadings and Sizes of EFB/PP Composites on n Value

6.22 Effect of MAPP Treatments of EFB/PP Composites on n Value

6.23 Effect of Radiation Process of EFB/PP Composites on n Value

7.1 A Tritec 2000 Dynamic Mechanical Thermal Analyser

7.2 Variation of Storage Modulus of 0.015-0.025mm EFB Fibre Prepared at Different Loadings as a Function of Temperature

7.3 Variation of Storage Modulus of 0.05-0.15mm EFB Fibre Prepared at Different Loadings as a Function of Temperature

7.4 Variation of Storage Modulus of 0.1-0.2mm EFB Fibre Prepared at Different Loadings as a Function of Temperature

7.5 Variation of Loss Modulus of 0.015-0.025 mm EFB Fibre Prepared at Different Loadings as a Function of Temperature

7.6 Variation of Loss Modulus of 0.05-0.15mm EFB Fibre Prepared at Different Loadings as a Function of Temperature

7.7 Variation of Loss Modulus of 0.1-0.2 mm EFB Fibre Prepared at Different Loadings as a Function of Temperature