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Abstract of thesis presented to the Senate of Universiti Putra Malaysia 
in fulfilment of the requirement for the degree of Master Science

INFLUENCE OF STIFFENER ON ALUMINIUM PERFORATED PLATES 
SUBJECTED TO IN-PLANE SHEAR LOADING 

By

MOHD NIZAM BIN HASSAN 

January 2018 

Chair : Noorfaizal bin Yidris, PhD 
Faculty : Engineering

Shear buckling is an important phenomenon as it enables the design becomes more 
efficient structures which would be possible if the critical buckling load is treated as 
the maximum allowable load. This is particularly significant in aerospace industry 
where lightweight, strength and reliability structures are known as the important factors 
need to be considered when designing and producing the aircraft. A literature review 
reveals that although there were many information available regarding to the buckling 
strength of elastic plates, but there is just few information available concerning the 
effect of shear buckling on the perforated plate. Therefore, the aim of this research was 
to study the effect of stiffener on aluminium perforated plates when subjected to shear 
loading. 

The research was conducted by using numerical method or known as finite element 
simulation software which was ABAQUS/CAE 6.10, since this tool were known as the 
most suitable technique for solving the problems. Aluminium 7075-T6 was the 
materials which have been selected and used throughout the study. Besides, the 
geometry of the model which was chosen for this study was square plate and 
rectangular plate. Before proceed to the main study, the mesh convergence analysis of 
non-perforated square plates and non-perforated rectangular plates were conducted to 
verify the method implemented in the research were correct and acceptable. The value 
of shear buckling coefficient then was validated by comparing the numerical data 
gained from the analysis with the theoretical data obtained from the literature study.
After that, the shear buckling behaviors of perforated plates were studied by varying 
the diameter of holes and the quantity of holes on the plate structures. Further study 
was conducted into the buckling performance of perforated plates with stiffener under 
shear load. 
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Based on the study, it was found that the design of perforation on the plate structures 
reduced the strength of that plate structures. However, when the stiffeners was added 
around the circular hole on the plates regions, it was noted that generally by the 
presence of the stiffeners improves the strength structure of the plates when compared 
with perforated plates. Finally, a full study of all design was finally undertaken which 
emphasizing the addition of stiffener have an effect on the buckling performance of the 
structure. The research was concludes with evaluations of the analysis and suggestions 
for future study direction. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
ebagai memenuhi keperluan untuk Ijazah Master Sains 

PENGARUH PENGUKUH KE ATAS PLAT ALUMINIUM YANG 
BERLUBANG DAN DIBEBANI DENGAN DAYA RICIH SESATAH

Oleh

MOHD NIZAM BIN HASSAN

Januari 2018

Pengerusi : Noorfaizal bin Yidris, PhD 
Fakulti : Kejuruteraan

Lengkokan ricih adalah satu fenomena yang penting kerana ia membolehkan reka 
bentuk menjadi struktur yang lebih efisien jika beban kritikal dirawat sebagai beban 
maksimum yang dibenarkan. Ini amat penting dalam industri aeroangkasa di mana 
struktur ringan, kekuatan dan kebolehpercayaan dikenali sebagai faktor penting yang 
perlu dipertimbangkan semasa mereka bentuk dan menghasilkan pesawat. Tinjauan 
kepustakaan mendedahkan bahawa walaupun terdapat banyak maklumat yang tersedia 
mengenai kekuatan lengkokan untuk plat elastis, tetapi hanya ada sedikit informasi 
yang tersedia mengenai pengaruh lengkokan ricih pada plat berlubang. Oleh itu, tujuan 
penyelidikan ini adalah untuk mengkaji kesan pengukuh pada plat berlubang 
aluminium apabila tertakluk kepada beban ricih.

Penyelidikan ini dijalankan dengan menggunakan kaedah berangka atau dikenali 
sebagai perisian simulasi unsur terhingga iaitu ABAQUS/CAE 6.10, memandangkan
alat ini dikenali sebagai teknik yang paling sesuai untuk menyelesaikan masalah. 
Aluminium 7075-T6 adalah bahan yang telah dipilih dan digunakan sepanjang kajian. 
Selain itu, geometri model yang dipilih untuk kajian ini adalah plat segi empat sama 
dan plat segi empat tepat. Sebelum meneruskan ke kajian utama, analisis penumpuan
mesh pada plat segi empat sama yang tidak berlubang dan plat segi empat tepat yang 
tidak berlubang telah dijalankan untuk mengesahkan kaedah yang dilaksanakan dalam 
penyelidikan adalah betul dan boleh digunakan. Nilai pekali lengkokan ricih 
kemudiannya disahkan dengan membandingkan data yang diperolehi daripada analisis 
dengan data teori yang diperoleh daripada kajian kesusasteraan. Selepas itu, pergerakan 
lengkokan ricih untuk plat berlubang telah dikaji dengan mengubah diameter lubang 
dan kuantiti lubang pada struktur plat. Kajian lanjut dijalankan ke dalam prestasi 
lengkokan pada plat berlubang dengan pengukuh di bawah beban ricih.
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Berdasarkan kajian, didapati bahawa reka bentuk perforasi pada struktur plat 
mengurangkan kekuatan struktur plat itu. Walau bagaimanapun, apabila pengukuh
ditambahkan di sekitar lubang bulat di kawasan plat, ia diperhatikan bahawa secara 
umumnya kehadiran pengukuh tersebut meningkatkan struktur kekuatan plat apabila 
dibandingkan dengan plat berlubang. Akhir sekali, satu kajian penuh tentang semua 
reka bentuk akhirnya dilaksanakan dengan memberi penekanan bahawa penambahan 
pengukuh mempunyai kesan ke atas prestasi lengkokan sesebuah struktur. Kajian ini 
disimpulkan dengan penilaian analisis dan cadangan untuk hala tuju kajian pada masa 
depan.
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CHAPTER 1 

INTRODUCTION 

This chapter describes briefly on the research conducted which consist of the overview 
of the research, background of the research, problem statements, objectives of the 
research, scopes of the research, and layout of the thesis. 

1.1 Research Overview 

Nowadays, the structure of thin plates has been widely used in many industries such as 
in civil industry, automotive industry, marine industry and aerospace industry (Dinh-
Cong, et. al, 2017). The structure of these plates is commonly used as the basis 
construction of the buildings, ships, aircraft structures and etc. Figure 1.1 shows some 
of the examples of plate structure which have been used as the main structural element 
in the industry. These thin plate structures has been used widely in nowadays industry 
is due to the light-weight properties of the structures (Kubiak, et. al, 2016).  

Figure 1.1: Plate structure application in the industries  
(Source: (b) Zenith Aircraft Company, 2004; (c) Splash Maritime, 2008) 
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In the process of designing and constructing some structure element such as aircraft or 
buildings, the important factors that have to be considered are weight, strength and 
reliability. These factors need to be considered early because it will determine the 
requirements to be met by any material used in the built structure. On top of that, all the 
materials chosen to construct the structure of the element must be reliable to minimize 
the possibility of failures (Integrated Publishing, 2013). The wrong selection of the 
material for the constructions can cause structure failure and may leads to catastrophic 
effect. Typically, the type of material that are often used in the construction of aircraft 
is aluminium alloy due to is properties of high strength, high stiffness, light weight and 
high fatigue resistance (Ravikumar, et. al, 2017). Therefore, a good structure is known 
as the structure that provides properties of high strength, light weight and good rigidity. 

In most of the plate structures, although it has a good strength-to-weight structure, it 
still tends to experience the buckling phenomenon. These buckling phenomenon are 
caused by some forces acting on the structure. There are five major types of forces 
which can act on any surface of the plate structures, which are tension, compression, 
torsion, shear, and bending as shown in Figure 1.2. These forces are commonly can be 
found in the structural elements of aerospace structures (Federal Aviation Authority, 
2002). Wings, fuselage and landing gear are some examples of aircraft parts which are 
subjected to these forces. The failure of the structural element to withstand these forces 
may lead to catastrophic structural failure. Because of this, it is important to identify 
the buckling capacities for each structural element in order to prevent the premature 
failure of the structure.  

Figure 1.2: Types of forces (Source: Federal Aviation Authority, 2002) 
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Since there are many application of thin plate structures in the industry, therefore this 
research are specifically choose to focus the study on the aircraft wing structure in 
flight condition. This is because the wing structure of the aircraft is often subjected to 
heavy aerodynamics loads and leads to a shear flow over the wing ribs that support it. 
In addition, most structure of the aircraft nowadays has been widely using the cut-out 
design as the basic design construction. For example, beam of the fuselage, window of 
the aircraft fuselage and the wing part, i.e. wing rib. Some of the purposes of applying 
the cut-out design on the structure are for simplifying the inspection services and to 
reduce the weight of the structure (Scheperboer, et.al, 2016).  

In contrast, the application of the cut-out design in the aircraft structure especially the 
wing structures are commonly effect the dynamic and mechanical behavior of the 
plates, as they redistribute the forces (Sivakumar, et. al, 2012). Therefore, it is 
important to study the effect of shear force and the buckling behavior of cut-out plates 
to prevent mechanical failure of the structure. 

1.2 Research Background 

In recent time, steel plates are generally being used as the main components of steel 
structures, especially in aerospace industry. However, the steel plate structures are 
commonly subjected to many stresses such as tension, shear and compression loads 
which will give impact to the instability and buckling behavior of the structure. 
Buckling is considered by a sudden failure of a structural member when the structure is 
subjected to high loads, where the actual loads at the point of failure is less than the 
ultimate loads that the material is capable to withstand (Vanquez, 2013). Therefore, the 
critical buckling loads of steel plate structures are known as one of the most important 
design criteria in structural element.

Besides that, the materials that are mostly being used as the main structural element in 
many industries especially in aerospace industry is aluminium. The application of 
aluminium are frequently have high demand in the industries due to its valuable 
characteristics such as low weight, good resistance to corrosion, and high electrical 
conductivity (Estrada-Ruiz, et. al, 2016).  On top of that, aluminium plate are often 
used in aerospace application in a large quantity, which ranging in complexity and 
performance requirements from the simple component through to main loads bearing 
structures in aircraft such as the Boeing 737 and Airbus A340 (Morris, 2001). The 
components and parts of aircraft that use aluminium as one of the construction 
materials are shown in Figure 1.3 (Skymaster, 2016). 

In aerospace industry, the selection of the materials is very important steps before 
designing and constructing the aircraft. The characteristics of the materials that are 
typically selected are based on light-weight properties, high strength, and resistance to 
fatigue and corrosion. The main purpose of selecting these characteristics is to improve 
the performance of the aircraft and making the next aircraft generation more efficient. 
In accordance to the materials that have high strength-to-weight ratio and resist to 
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corrosion, aluminium is known as one of the best materials which possess all of these 
properties when compared with other materials (Ozer & Karaaslan, 2017).   

Figure 1.3: Aluminium used in the aircraft structure (Source: Skymaster, 2016) 

Besides that, there are many possible points can be defined on aircraft to measure the 
stress. For analyze the internal stresses in structural element especially in aircraft, the 
amount of shear plane subjected on the structure is very useful information for 
engineers. This is because it is significant to analyze the shear stress to prevent the 
structure from mechanical failure. The structure will buckle and literally slip with each 
other when the structure cannot cater the high amount of shear stress applied on the 
structure. Screws, rivets and bolts are known as some parts of the aircraft that are often 
exposed to shear force (Federal Aviation Authority, 2002). The example of buckling 
analysis on aircraft panel can be seen as illustrated in the following Figure 1.4. Based 
on the figure, the analysis shows that the panels still can continue to carry more loads 
even after reach the buckling point in a stable manner. 

Figure 1.4: Buckling modes of the aircraft panel (Source: Vakulenko, 2014) 
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In addition, the structure of plates also can come in many forms such as square plate, 
rectangular plate and annular plate. Additionally, these plates’ structures also can come 
out with forms of whether with cut-out design or without cut-out design (Nemeth, 
1996). Generally, the plates with cut-out designs or known as perforations is typically 
required by practical and design consideration in many industry such as civil, marine 
and aerospace industry. The reasons of cut-out designs are primarily required and 
selected as structural elements because it can reduce the weight of the structure, and 
provide spaces for inspection and services (Azmi, et. al, 2017). 

In contrast, the presence of the cut-out design on thin plate structure also has its 
negative effect. Although the presence of this cut-out design on thin plate structure can 
reduce the weight of the structure, however it also can change the stress distribution 
and reducing the strength on that plate structure (Yinjiang, et. al, 2015). This 
phenomenon indirectly will cause the buckling strength of the structure become lower, 
in which the capacity of the structure to withstand a higher load is decreases. However, 
the strength for the plate with cut-out design is greatly influenced by the size, shape 
and location of the cut-out on that structure (Jana, 2016). 

Since there have many parts of the aircraft that are exposed to vary stresses due to 
many loads that may be subjected to the structure, thus this research determine to focus 
current study on the aircraft panel to investigate the effect of cut-out plates when 
subjected to shear loading. Therefore, the investigation and improvement on the 
strength of the structure which is subjected to shear load is important to prevent the 
mechanical failure of the structure. The failure of the structure can leads into the 
catastrophic effect. 

Since the aluminium plate structures on aircraft are often subjected to many stresses 
such as compression, torsion and etc., thus this research is focusing only on shear 
stress. Generally, shear stress is defined as force per unit area. Shear stress is 
commonly caused by the forces that have a tendency to cause one layer of a material to 
slip over an adjacent layer. A shear stress that is subjected on the aircraft is known as 
shear plane, where the direction of the shear stress is parallel to its stress plane.  

For current study, the basic geometries considered to conduct the study on the buckling 
behavior of the aircraft panel are square thin plate and rectangular thin plate as 
illustrated in Figure 1.5. The thickness of both square plate and rectangular plate are 
fixed at 1 mm throughout the study. In case for square plate, the geometry are then is 
modified into the perforated plate design by removing the center part of plates in a 
circular shape. Then, the size of the centrally circular cut-out on the square plate is 
changes according to the aspect ratios d/b of 0.1, 0.2, 0.3, 0.4 and 0.5.  

For rectangular plates, there are two basic geometries designs for buckling analysis 
were performed which are known as plate with single hole and plate with multiple 
holes. The purpose of this study is conducted to investigate the influence of hole 
quantity on the plate structure when subjected to shear load. Additionally, the types of 
holes or cut-out on the plate are designed as centrally circular shape to ensure that the 
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load distribution of shear load on the plate structure is uniform. The size of holes on the 
plates is varying based on the aspect ratios d/b of 0.1, 0.2, 0.3, 0.4 and 0.5. For plates 
with multiple holes, the quantity of the hole applied on the plates is based on the size of 
the plates with aspect ratios a/b of 2, 3 and 4. At the final stages, a stiffener is added on 
both geometries of square plate with cut-out and rectangular plate with cut-out.  

Figure 1.5: Three different basic geometries of perforated plates 
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The main purpose of the research is to investigate the influences of the stiffener on the 
cut-out plates when subjected to shear loading. Therefore, to obtain accurate results and 
to overcome the unrealistic problems during conducting the research, the current 
method was selected which is finite element software, ABAQUS/CAE 6.10. The 
method by using this finite element software is known as numerical method which will 
provide more accurate data and saving cost. However, the results obtain from the
numerical method will be validate and verify with the theoretical data obtained from 
previous study before proceed to details study. 

Furthermore, other important elements need to be considered before conducting the 
research is the material used in the research. Since the research is focusing on the wing 
part of the aircraft, therefore Aluminium 7075-T6 is selected based on its typical 
application in recent aircraft structure. Besides that, the reason of Aluminium 7075-T6 
is selected due to its characteristics of high stiffness and high strength-to-weight ratio. 
The properties of Aluminium 7075-T6 such as the Young’s Modulus, Poisson Ratio 
and density are referred from ASM Material Data Sheet (2001), which has the value of 
71.7 GPa, 0.33, and 0.00281 g/mm3 respectively.  

1.3 Problem Statements of the Research 

In recent times, the application of thin plate structures is widely used in the industries 
especially in aerospace industry. The thin plate structures have become high demand in 
the industries due to its light weight structures. In aerospace industry, the thin plate 
structures often come with perforations or cut-out design to produce more lighter and 
efficient structure based on the practical requirements. The application of thin plate 
structures with cut-out are commonly can be found in the wing part of the aircraft such 
as wing spar and cover panels. Additionally, the cut-out on the plate structure are 
typically designs in the center of the plates to provide access and services (Azmi, et. al, 
2017). The structure of wing in the commercial aircraft and military aircraft are some 
example which required cut-out designs in its wing spars and ribs to provided access 
parts for mechanical and electrical systems, and for inspection of the damage. 

Besides that, the designs of cut-out plates are also commonly influence the 
performance of the plates by the type of load applied on the structure (Zhou, et. al, 
2017). Based on this matter, some study had been carried out by previous researcher to 
investigate and comparing the properties and the strength of thin plates structures with 
cut-out plates structure under some stresses such as compression and shear stress. The 
finding of the research found that even though the application of cut-out plate’s 
structures contributes many advantages in the industries, however the strength of the 
cut-out plate’s structures are reducing when compared to thin plate structures once its 
subjected to some stresses.  

In aerospace applications, the cut-out structures on the wing of the aircraft are usually 
will experiences compressive loads that are induced either mechanically or thermally 
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during flying condition, which can results in buckling of the panel (Sahu & Datta, 
2003).  According to the matters, it is significant to conduct the study on the buckling 
behavior of plate’s structures with cut-out designs. Therefore, this research is 
conducted to overcome the strength-to-weight ratio problems and buckling behavior of 
cut-out plate structures by adding stiffeners on the cut-out plate’s structures. In the 
meantime, this research determines to conduct the investigation on influences of the 
stiffener on the cut-out plate structures under shear loads.  

In addition, the study on the influence of the stiffener on cut-out plates under shear 
loads are chosen based on very few information are available in the literature 
concerning the effect of stiffener on cut-out plate especially under shear force. This 
shows that there is no much attention has been given on the shear buckling behavior of 
cut-out plate with stiffener.  

Furthermore, the difficulties in determining the shear buckling strength and behavior of 
such plates by using experimental method of analysis may be known as one of the 
reason for the problems. Therefore, a numerical method such as the finite element 
method would be the most suitable techniques for solving the problem based on the 
complication of the problems, such as caused by lack of symmetry in the plate 
thickness and the accuracy of cut-out location.  

1.4 Objectives of the Research 

The investigation is conducted by using numerical method which is known as finite 
element simulation software, i.e. ABAQUS/CAE 6.10. This software is chosen to be 
used in the present study due to its simple and consistent interface for creating, 
monitoring, and evaluating the results from the simulation. Besides that, this software 
is also known as one of the recommended FEA software to be used in conducting the 
structure analysis (Systemes, 2014). The main objective of this research is to 
investigate the effects of stiffeners on cut-out plate’s structure when subjected to shear 
loads. Other than the main objective, several specific objectives come together with 
main objectives of this research, i.e.: 
  

a) To develop finite element modeling and solution procedure for thin plate 
structure and perforated plate structure without stiffener and with stiffener 
under shear loading. 

b) To verify and validate the shear buckling coefficient of thin plate structures 
obtained from numerical method with the existing theoretical value obtained 
from the literature studies. 

c) To investigate the buckling behaviors of perforated plate structure without 
stiffener and with stiffener when subjected under shear loading. 
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1.5 Scopes of the Research 

In order to achieve the objectives of the study, the understanding on basic buckling 
concept of thin plate is conducted especially when subjected to shear loads. In current 
study, the method to conduct the analysis is by using the numerical method only, i.e. 
finite element analysis (FEA) software. This method is considered to be used in present 
study because it can save time to gain the results and saving cost. Since current study 
use the finite element analysis (FEA) software, i.e. ABAQUS/CAE 6.10 to conduct the 
analysis, therefore the technique to use the software is learned.  

In determining the best material for the current study, an investigation on the materials 
that will be used throughout the study is conducted through the literature study. The 
selection of the material for the study is based on the properties of the materials and its 
application that are widely used in recent industries especially in aerospace industry. 
The properties of the materials that have the highest demand in current industries is the 
material that posess high strength and light weight. Thus, the best material that has 
been selected to be used in the current study is Aluminium 7075-T6 due to its material 
properties and its typical application in aerospace industry.  

Next, there are 2 types of basic model geometry considered for current study, which are 
non-perforated square plate and non-perforated rectangular plate. The size of the thin 
plate designed for current study is limit from plate ratio a/b of 1, 2, 3 and 4. The plate 
ratio a/b is limit into plate ratio a/b of 4 because based on Reddy (2007) statements, he 
found that the value of shear buckling coefficient for thin plate structure start to 
maintain at 5.70 after the plate ratio a/b of 4. The shear buckling analysis for both 
model geometries, i.e. square thin plate and rectangular thin plate structure are then 
analyzed by using finite element software, ABAQUS/CAE 6.10. The results predicted 
from the numerical analysis are verified and validated by referring to the existing 
theoretical data obtained from the literature study conducted. In order to ensure the 
results of the analysis is accurate and acceptable, thus the percentage error considered 
for current study shall be below than 5%.  

Meanwhile, the detail study on shear buckling behavior of the plates is continued by 
removing the center part of the model. In order to provide consistency in the analysis, 
the type of hole considered throughout the analysis is circular shape. There are 2 cases 
of perforated plate conducted for the analysis, i.e. plate with single hole and plate with 
multiple holes. There are 5 sizes of hole considered for current study, i.e. hole ratio d/b 
of 0.1, 0.2, 0.3, 0.4 and 0.5. After that, the perforated thin plate models are analyzed by 
adding the stiffener around the circular shape of the hole region. The height of the 
stiffener added around the hole region is based on 50% of hole mass reduction.  

Finally, the results for all investigation conducted for current study is analyzed and 
discussed to investigate the influence of the stiffener on the perforated plate structure 
when subjected to shear loads. In the meantime, the best thin plate designs that have 
high strength-to-weight ratio also are determined. Finally, the outcome for the study is 
concluded with some recommendation for future study. 
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1.6 Layout of the Thesis 

The overall layout of this thesis contains five (5) chapters, and the content of these 
chapters are organized as following: 

 Chapter 1: Introduction  
This chapter is generally summarized the overview of the research conducted 
on the influence of stiffener on perforated plates under shear loading. 

 Chapter 2: Literature Review  
This chapter is discussing the literature review based on the previous study 
conducted and published paper related with shear buckling of thin plates.  

 Chapter 3: Methodology  
This chapter highlights the method implemented in the research by using FEA 
software with the verification and validation of the numerical data obtained.  

 Chapter 4: Results and Discussions  
This chapter provides the results and some discussions of the research which 
relates to shear buckling behavior of the plates when subjected to shear loads.  

 Chapter 5: Conclusions and Recommendations  
This chapter presents a comprehensive conclusion based on the findings of the 
research conducted and some recommendation for future works.
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