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Since the advent of pulse laser, the duration of shortest pulse has rapidly changed 

from the nanosecond (10-9 s) to the femtosecond (10-12 s) regime. Ultrashort light 

pulses can be generated using mode-locking techniques which contain either an 

active element or a nonlinear passive element in a laser resonator. The current 

commercialized ultrashort laser technologies are typically based on semiconductor 

saturable absorber mirror (SESAM) which requires complex fabrication method and 

fine tuning between the fiber pigtail and SESAM to generate mode-locking. A 

number of fiber-based saturable absorber papers have been reported to overcome 

this problem. In line with this advancement, this research work focuses on 

microfiber-based saturable absorber incorporating graphene composite as a 

nonlinear component in different operating wavelength regions of laser cavity.  

The first process in the experimental work is to fabricate a saturable absorber that is 

able to generate femtosecond pulse in a ring cavity. The graphene nanoparticles are 

prepared through liquid phase exfoliation method. Then, the nanoparticles are 

synthesized with PDMS to produce a graphene composite. Finally, the graphene 

composite is coated on a prepared microfiber through dip coating method. The 

prepared microfiber has waist diameter of 10 μm, waist length of 0.5 mm, and total 

length of 60.5 mm. The quality of coating on the microfiber is characterized through 

Raman spectroscopy, field effect scanning electron microscope and energy 

dispersive X-ray spectroscopy. The fabricated saturable absorber has transmission 

loss of less than 4.6 dB and modulation depth of 9.6%.  
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In this research, a ring-configuration erbium-doped fiber laser (EDFL) setup is 

employed to generate optical pulses with the assistance of the fabricated inline 

graphene composite saturable absorber. This saturable absorber initiates ultrashort 

pulse signal with observation of multiple Kelly’s sidebands, output pulse train with 

constant round trip time and pulse width within femtosecond range. The generation 

of optical pulses is performed in two wavelength ranges; C-band and L-band. For 

each band, the dispersion is optimized to ensure that the fiber laser produces soliton 

pulses. The soliton pulse is observed with the presence of Kelly’s sidebands at the 

laser output. For C-band, the fabricated saturable absorber is placed in a ring cavity 

with the employment of 5 m HP980 erbium-doped fiber (EDF). The mode-locked 

operation is observed at 33.54 mW pump power. The output pulse has a central 

wavelength of 1557.05 nm with 3 dB spectral width of 5.92 nm. The generated 

soliton pulse has pulse duration of 631 fs, repetition rate of 9.65 MHz and time 

bandwidth product of 0.46. For L-band fiber laser, the same saturable absorber is 

utilized with 17 m long LIEKKI EDF. The mode-locked threshold pump power is 

obtained at 39.6 mW. The output laser is generated at 1599.56 nm with 3 dB spectral 

width of 5.773 nm. Stable mode-locked pulse with pulse duration of 568 fs, 

repetition rate of 5.76 MHz, and time bandwidth product of 0.38.  

In conclusion, the fabricated graphene composite microfiber has been proven to 

function capably as saturable absorber in C-band and L-band. This shows that it can 

operate in wide operating wavelength range. The quality of optical pulse in the range 

of femtosecond indicates its ability to generate ultrashort pulses with strong 

saturation absorption. The time bandwidth product above 0.315 denotes the 

operation is close to ideal Fourier transform limited pulse. Overall, the results 

validate the reliability of the proposed method to produce microfiber-based saturable 

absorber. 
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NANOKOMPOSIT POLIMER GRAPHENE UNTUK PENGHASILAN 

GENERASI DENYUTAN FEMTOSAAT 

By 

NG ENG KHOON 

November 2017 

Pengerusi : Mohd. Adzir b. Mahdi, PhD 

Fakulti : Kejuruteraan 

Sejak separuh abad lalu, laser telah dicipta untuk menjana tempoh denyut nadi 

terpantas berubah dengan pesat dari rejim nanosaat (10-9 s) ke femtosaat (10-12 s). 

Aplikasi ini mengamalkan penggunaan penyerap boleh tepu (SA) di dalam kaviti 

laser. Denyutan cahaya ultrapendek boleh dijana menggunakan teknik selakan mod 

yang mengandungi unsur aktif atau elemen pasif tidak linear dalam resonator laser. 

Teknologi laser ultrapendek belakangan ini menggunakan kanca penyerap boleh 

tepu semikonduktor (SESAM). Alat ini memerlukan cara fabrikasi yang rumit untuk 

menjana rejim selakan mod. Pelbagai kerja penyelidikan telah dipapar untuk 

mengatasi masalah ini. Selanjutnya, kerja penyelidikan ini memberi tumpuan kepada 

mikrofiber beasaskan penyerap boleh tepu yang menggabungkan komposit graphene 

sebagai komponen tidak linear dalam kawasan kaviti laser yang beroperasi dalam 

jarak gelombang yang berlainan.  

Penemuan pertama dalam kerja penyelidikan ini adalah untuk mencipta penyerap 

boleh tepu yang dapat menghasilkan denyutan femtosaat dalam kaviti laser 

berpusingan. Nanozarah Graphene disediakan dengan campuran antara polimer dan 

graphene melalui kaedah fasa pengelupasan cecair. Kemudian, graphene polimer 

dihasilkan melalui gabungan nanozarah graphene dan polimer (PDMS). Akhirnya, 

graphene polimer disalut pada mikrofiber dengan menggunakan teknik rendaman. 

Mikrofiber yang digunakan menunjukkan ukur lilit sebanyak 10 μm, panjang ukur 

lilit sebanyak 0.5 mm dan jumlah panjang ialah 60.5 mm. Kualiti salutan di 

mikrofiber diuji dengan FESEM, Spektroskopi Raman dan Spektroskopi X-ray. 

Hasil salutan penyerap boleh tepu mempunyai kehilangan penghantaran kurang 

daripada 4.6 dB dan kedalaman modulasi sebanyak 9.6 peratus.  
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Dalam penyelidikan ini, konfigurasi kaviti membulat laser gentian terdop erbium 

(EDFL) yang dipraktikkan dengan penyerap boleh tepu berunsur graphene 

menghasilkan selakan mod. Permulaan isyarat denyutan ultrapendek disaksikan 

dengan pemerhatian beberapa jalur-sisi Kelly, penghasilan denyut-pawai dengan 

pemalar masa pusingan dan lebar denyut dalam julat femtosaat. Generasi denyutan 

optik dijalankan dalam dua julat panjang gelombang iaitu Jalur-C dan Jalur-L. 

Penyerakan kaviti laser dioptimumkan untuk menjamin penghasilan denyutan 

soliton untuk setiap jalur. Denyutan soliton dicerap dengan kehadiran jalur sisi Kelly 

di pusat penghasilan gentian laser. Untuk Jalur-C, penyerap boleh tepu diletakan 

dalam kaviti membulat dengan penggunaan 5 m HP980 gentian terdop erbium (EDF). 

Operasi selakan mod didapati pada 33.54 mW kuasa pam. Laser ini menghasilkan 

panjang gelombang pada 1557.05 nm dan lebar jalur spectrum 3-dB sebanyak 5.92 

nm. Rentetan itu, lebar optiks denyutan, kadar pengulangan dan produk masa lebar 

jalur dicapai pada 631 fs, 9.65 MHz dan 0.46 masing-masing. Pada kontrasnya, 

penyerap tepu yang sama digunakan untuk menjana selakan mod dengan 

mempraktikkan 17 m LIEKKI gentian terdop erbium. Operasi selakan mod 

diperhatikan pada 39.6 mW. Penghasilan laser didapati oleh panjang gelombang 

pada 1599.56 nm dengan lebar jalur spektrum 3-dB sebanyak 5.773 nm. Denyutan 

selakan mod yang stabil telah dibuktikan dengan lebar optiks denyutan sebanyak 

568 fs, pencapaian kadar pengulangan pada 5.76 MHz dan produk lebar jalur dengan 

keputusan 0.38.  

Natijahnya, penghasilan mikrofiber komposit graphene telah terbukti untuk 

berfungsi sebagai penyerap boleh tepu di Jalur-C dan Jalur-L. Pencapaian ini 

membuktikan potensi penyerap tepu ini untuk beroperasi dalam panjang gelombang 

yang lebar. Kualiti denyutan optiks dalam julat femtosaat menunjukkan 

keupayaannya untuk menghasilkan denyutan ultrapendek yang mempunyai serapan 

tepu yang kuat. Masa produk jalur lebar yang lebih dari 0.315 menunjukkan operasi 

ini hampir sama dengan denyutan terhad transformasi Fourier yang unggul. 

Ringkasannya, keputusan kerja penyelidikan ini menunjukkan kestabilan kaedah 

menghasilkan penyerap tepu menggunakan mikrofiber. 
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CHAPTER 1 

INTRODUCTION  

1.1 Overview 

Fiber lasers consist of optical fibers as gain medium in which their core is doped 

with rare earth elements such as erbium, ytterbium and thulium. In those early years, 

ultrashort fiber lasers have been in the spotlight owing to their potential applications 

in manufacturing, micromachining, biomedical imaging, supercontinuum generation 

and optical metrology. Generally, ultrashort pulses are light pulses with pulse 

duration of picoseconds or femtoseconds. The generation of ultrashort pulses via 

active and passive mode locking technique has fascinated researchers to explore this 

field due to their various potentials as described earlier. 

In pulsed fiber lasers, there are many methods to generate ultrashort pulses at a 

different wavelength with difference pulse energies and durations. One of the well-

known methods is to fabricate an optical saturable absorber (SA) as one of the 

elements in a laser cavity [1]. The function of SA is to allow extreme light intensity 

to propagate at reduced light absorption. In addition, ultrashort pulses can also be 

generated by using nonlinear polarization rotation technique (NPR) [2]. When a high 

intensity light propagates inside the non-polarization maintaining fiber, the 

nonlinearity takes place which causes self-phase modulation and birefringent effect. 

Therefore, readjustment of polarization rotation becomes essential and it is very hard 

to achieve experimentally. A more stable NPR-based fiber laser can be realized by 

using Faraday rotators with combination of polarization maintaining fiber in a laser 

cavity [3]. Optical modulators can also be utilized to generate ultrashort pulses by 

manipulating the propagation properties of oscillating light. The two common types 

of optical modulators are acousto-optic and electro-optic types. This type of active 

mode-locking can generate optical pulse of 533 ps with repetition rate of 80 MHz 

[4]. 

In this research work, we focus on studying the generation of ultrashort pulses using 

a passive SA in a laser cavity. There are various techniques to fabricate SA such as 

sandwich-type [5], microfiber [6], hollow-core photonic crystal fiber (PCF) [7], D-

shaped fiber [8], and semiconductor saturable absorber mirror (SESAM) [9]. These 

techniques incorporate nanomaterials that have required optical properties for mode-

locking such as two-dimensional materials (graphene) [10], carbon nanotube [6], 

topological insulators [11] and transition metal dichalcogenides [12]. Based on the 

reported techniques, graphene-polymer based-microfiber SA is chosen as our 

focused device due to its simple fabrication, low cost and wide broadband 

wavelength.  
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1.2 Problem Statement and Motivation 

Current state-of-the-art femtosecond fiber lasers are still based on SESAMs for 

achieving mode-locking [9, 13-14]. The fabrication of SESAMs involves complex 

techniques and sophisticated equipment that results in higher cost [15-16]. 

Furthermore, the high dispersion band of SESAM prevents the generation of shortest 

possible optical pulse length. In addition, fine alignment between the fiber pigtail 

and the SESAM is required for achieving successful mode-locking. A special mount 

is also required to hold the fiber and the SESAM together in place. Moreover, regular 

maintenances are required to optimize and realign the fiber and SESAM. Therefore, 

an alternative method is to employ a microfiber-based SA embedded with 

nanomaterials. This type of SA is based on the light interaction from the evanescent 

field. In this case, it does not need any complicated fabrication techniques and 

alignment to achieve mode locking. Therefore, it is possibly to become a mature SA 

device as an alternative replacement to SESAMs. 

1.3 Aim and Objective 

I. To design and fabricate a microfiber by incorporating graphene polymer 

composites.  

 

II. To study the characteristics of graphene polymer-based microfiber to 

function as SA. 

 

III. To investigate the pulsed laser performances of fabricated graphene polymer-

based microfiber SA in mode-locked erbium-doped fiber laser (EDFL). 

1.4 Scope of Work 

The scope of work in the research is summarized in Figure 1.1. Generally, this 

research looks into the design and development of a microfiber-based SA for 

generation of ultrashort pulses. The microfiber is picked due to the evanescent wave 

property especially for lights that travel at the waist diameter. In this work, graphene 

is chosen as the nonlinear material. In order to attach this graphene on optical fiber 

surface, a polymer matrix is required. In this research work, graphene is mixed with 

polydimethylsiloxane (PDMS) polymer. The PDMS is selected owing to its 

refractive index of ~1.4 which is suitable for light waveguide in optical fibers. The 

graphene polymer-based microfiber will be optimized first based on optical and 

material characterization results in order to achieve mode locking. Overall, the main 

focus of this work is to explore a new fabrication technique of graphene-polymer 

microfiber SA that is capable to produce ultrashort pulses. For generation of 

ultrashort pulses in laser cavities, erbium-doped fiber (EDF) has been chosen due to 

its maturity in fiber laser research domain. Two different wavelength regimes 
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namely as C-band and L-band are investigated in this research work. The 

performance of the mode locking will be discussed in terms of spectral bandwidth, 

center wavelength, repetition rate, radio frequency spectrum, pulse width, pulse 

energy and stability of the fiber laser system.   

 
Figure 1.1: Scope of Work. 

1.5 Organization of thesis  

The organization of this thesis is explained as below: 

Chapter 1 consists of the introduction and overview of mode-locked laser, especially 

fiber-based passive mode locker. The issues with passive mode locking fiber laser is 

highlighted as well as with the aim and objectives that are formed from those issues. 

The scope of work and thesis organization are also included in this chapter. 

Chapter 2 introduces the fiber laser techniques in producing femtosecond laser 

source. This includes thorough discussion on related innovative fabrication 

techniques in the generation of mode-locked fiber lasers. Moreover, principle of 

graphene absorption is included together with microfiber adiabatic criterion for 

better understanding of fabrication SA. 
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Chapter 3 contains the methodology used in this work and few characterization tests 

are presented as a supporting evidence of generation mode locking. This includes 

details of fabrication process in getting a graphene polymer-based microfiber.  

Chapter 4 provides the laser setups and investigation on mode locking performance. 

Two different wavelength regimes; C-band and L-band will be studied. All the 

findings are discussed and analyzed in this chapter. 

Lastly, in chapter 5, the conclusion of research work with all the important results 

are highlighted. Recommendations for future work are also suggested at the end of 

this chapter. 
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