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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirement for the degree of Doctor of Philosophy 

 

FLUID-STRUCTURE INTERACTION OF COMPUTATIONAL 

AERODYNAMICS ANALYSIS IN PARAVALVULAR LEAKAGE OF 

TRANSCATHETER AORTIC VALVE IMPLANTATION PATIENT 

 

By 

 

ADI AZRIFF BIN BASRI 

 

November 2017 

 

Chairperson: Kamarul Arifin bin Ahmad, PhD  

Faculty:   Engineering 

 

Fluid Structure Interaction (FSI) is widely known as superior simulation technique that 

provide significant outcomes through the interaction between fluid dynamic and structure 

mechanics. In this research, the computational aerodynamic analysis of FSI is carried out 

to investigate of behavior of human blood flow and aortic wall response associated to 

heart valve replacement known as Transcatheter Aortic Valve Implantation (TAVI). 

Even though TAVI has huge potential in providing better solution, yet a lot of 

complications has occurred such as the effect of hemodynamic forces on the TAVI, the 

problem of migration associated with the implanted valve and  paravalvular leakage 

(PVL) have to be addressed. Up-to-date, none of the researcher investigated the flow 

pattern of PVL after implantation of TAVI valve using FSI. The proposed research 

consists of MRI-Cardiac work, computational and numerical work, as well as 

experimental. This study has been approved by Institut Jantung Negara (IJN) and have 

received preliminary CT-scan data, thus the patient case data can be obtained. PVL is 

highlighted as one of the major complications for the post-TAVI due to possibility of 

calcification development. Hence, the computational of FSI is carried out, by which the 

simulation is based on the opening of TAVI valve represented as calcification. In 

addition, further study is conducted by determining the severity of PVL due to the 

undersizing of TAVI valve. The experimental study is carried out to validate the 

simulation model and result analysis representing the real world perspective.  The results 

proven that the presence of PVL disturb the norm of blood flow distribution and aorta 
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structure behaviour. In fact, the opening of 20% GOA (geometric orifice area) of TAVI 

26 on human aorta proven the significant impact with highest value of velocity 2.74 times 

higher and displacement of 1.19 times higher than 100% GOA, thus graded as severe 

PVL. In addition, the undersizing TAVI valve showed that TAVI 23 has higher 

possibility of valve migration with 55.01% leakage compared to TAVI 26. Hence, this 

research provides a noteworthy benchmark with the aid of FSI to predict significant 

impact of PVL complication for TAVI patient. The outcomes of this study also can be 

practiced to help the medical practitioner to reducing the risk of re-operation, hence lead 

to the time saving of the standardization of the computational analysis. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

INTERAKSI BENDALIR-STRUKTUR BAGI ANALISIS BERKOMPUTER 

AERODINAMIK KE ATAS KEBOCORAN PERSEKITARAN INJAP OLEH 

PESAKIT IMPLANTASI TRANSKATETER INJAP AORTIC 

 

Oleh 

 

ADI AZRIFF BIN BASRI 

 

November 2017 

 

Pengerusi:  Kamarul Arifin bin Ahmad, PhD 

Fakulti:  Kejuruteraan 

 

Interaksi Bendalir-Struktur (FSI) dikenali dengan meluas sebagai satu teknik yang 

unggul yang memberikan hasil yang lebih realistik secara fisiologi dan bermakna melalui 

interaksi antara dinamik bendalir dan mekanik struktur, terutamanya dalam 

menyelesaikan masalah yang sebenar. Pelbagai kajian berkaitan FSI seperti getaran 

pesawat, pembengkokan bilah turbin angina, kepakan sayap, denyutan jantung, 

pembukaan dan penutupan injap jantung dan sebagainya. Dalam kajian ini, analisis 

berkiraan aerodinamik iaitu FSI telah dijalankan untuk mengkaji perilaku aliran darah 

dan respon dinding aorta manusia berkaitrapat dengan gantian injap jantung dikenali 

sebagai Implantasi Transkateter Injap Aortic (TAVI). Walaupun TAVI mempunyai 

potensi besar dalam memberikan penyelesaian yang baik, namun banyak komplikasi 

telah berlaku seperti kesan daya tindakan pada hemodinamik ke atas injap TAVI, 

masalah migrasi berkaitan injap yang diimplankan dan kebocoran persekitaran injap 

(PVL) perlu ditangani. Sehingga kini, tiada kajian mengenai corak aliran PVL selepas 

pengimplanan injap TAVI menggunakan FSI. Penyelidikan yang dicadangkan terdiri 

daripada kerja-kerja MRI-jantung, berkiraan daan berangka serta eksperimen. Kajian ini 

telah diluluskan oleh Institut Jantung Negara (IJN) dan menerima data awal CT scan, 

maka data bagi kes pesakit boleh diperolehi. PVL telah diserlahkan sebagai salah satu 

komplikasi yang major untuk selepas-TAVI disebabkan kemungkinan pembentukan 

kalsifikasi. Dengan itu, perkiraan FSI telah dijalankan, di mana simulasi ini berdasarkan 
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kepada pembukaan injap TAVI yang diwakili sebagai kalsifikasi. Tambahan pula, kajian 

selanjutnya telah dijalankan untuk mengetahui tahap keseriusan PVL disebabkan 

pengurangan injap TAVI. Kajian eksperimen dilakukan bagi mengesahkan model 

simulasi dan hasil analisis menggambarkan perspektif yang sebenar. Hasil kajian 

membuktikan bahawa kehadiran PVL mengganggu norma peredaran aliran darah dan 

perilaku struktur aorta. Sebenarnya, pembukaan 20% GOA (kawasan orifis geometri) 

bagi TAVI 26 ke atas aorta manusia telah membuktikan impak yang bermakna dengan 

nilai yang terbesar pada halaju sebanyak 2.74 kali ganda dan anjakan sebanyak 1.19 kali 

ganda daripada 100% GOA, justeru digredkan sebagai PVL yang serius. Tambahan pula, 

pengurangan injap TAVI menunjukkan TAVI 23 mempunyai kebarangkalian yang tinggi 

bagi pergerakan injap dengan kebocoran sebanyak 55.01% berbanding dengan TAVI 26. 

Justeru itu, kajian ini menyediakan satu tanda aras yang bermakna dengan bantuan FSI 

untuk meramal impak komplikasi PVL yang signifkan bagi pesakit TAVI. Hasil kajian 

ini juga boleh dipraktikkan bagi membantu pengamal perubatan dalam mengurangkan 

risiko pembedahan semula, justeru membawa kepada penjimatan masa dalam 

pemiawaian analisis perkiraan. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

 

The first chapter is structured into five sections as to provide the general idea of this 

research has been conducted. First, the theoretical foundations of this research are 

presented in research background and further elaborated in second section discussing on 

transcatheter aortic valve implantation (TAVI). Then, in the problem statement section, 

the current situation in TAVI is discussed. Discussion research objective is included in 

the fourth section. The overview of thesis structure is prepared in the final section. 

 

1.2 Research Background 

 

Cardiovascular disease (CVD) is generally known as the major cause of deaths in many 

countries around the world (Jamuna and Abnurajan, 2011). The American Heart 

Association (AHA) reported that more than five millions Americans are diagnosed with 

heart valve disease each year (Nkomo et al., 2006). It is a common condition of CVD, 

which affects hundreds of thousands of individuals, particularly the heart valve disease. 

This type of disease occurs due to the disorder function of heart valve; either a single 

valve or a combination of four valves, which mostly are the diseases of aortic and mitral 

valves. Hence, these cause the disruption of normal blood flow through the heart.  

 

Fundamentally, the anatomy of the normal heart consists of four valves, where the 

tricuspid and pulmonary valves are located on the right side of the heart while the mitral 

and aortic valves are on the left side. Blood is pumped out from the left heart ventricle 

into the aorta, passes through the aortic valve to the rest of the human body. The heart 

valves are made up of tissues that form the leaflets of three half-moon-shaped pocket-

like flaps (Maleki, 2010). These leaflets located at the lower part of the aorta are able to 

move in the valves, whereas the sinuses at the upper part attached to aorta are the cavities. 

The anatomy of the heart valve is depicted in Figure 1.1. 
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Figure 1.1. Heart valve from front view and above view  
(Sources: Maleki, 2010) 

 

The physiology of the aortic valve mainly serves to provide a pathway for blood leaving 

the heart and it is also hampers backflow for blood from re-entering the heart. However, 

the performance of the aortic valve can be affected as subjected to the calcium deposition 

that develops on the aortic valve leaflets (Maleki, 2010). This deposition causes the valve 

structure to gradually harden where the valves have an opening problem, leading to less 

volume of blood forcing out from the left ventricle. Thus, heart performance is decreased.  

Heart valve disease can be caused by two basic kinds of problems or defects, which are 

stenosis and regurgitation (Leon et al., 1998). One of the most common heart valve 

diseases that occur to elderly heart disease patients, is aortic stenosis (AS). The 

prevalence in populations older than 75 years is up to 5% and 25% has been found with 

aortic sclerosis, which is the precursor of AS (Lindroos et al., 1993; Yoganathan et al., 

2004; Nkomo et al., 2006). It occurs due to the narrowing of the aortic valve during the 

systole by which it increases the resistance of blood flow from left ventricular to the 

ascending aorta due to the calcium deposition on the aortic leaflets or congenital 

abnormality of the valve. Hence, it will generate a larger pressure drop across the valve. 

On the other hand, aortic regurgitation (AR) occurs due to the failure of the valve leaflet 

to close firmly, which leads to backward blood leak, referred to as retrograde blood flow 

(regurgitation) when the valve is closed during diastolic phase (Yacoub and Takkenberg, 

2005). The problems of heart valve disease are depicted in Figure 1.2. 
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Figure 1.2. Heart valve disease of stenosis and regurgitation 

 

Nowadays, aortic valve damages can be treated. It is based on the grading of the aortic 

valve damage level depending on the hemodynamic parameters, whether mild, moderate 

or severe. For mild and moderate levels, the aortic valve can be treated by suitable 

interventions. However, repairing or replacing the diseased valve is required for severe 

AS. Generally, the diseased valve is replaced by prosthetic heart valves instead of 

repairing due to the severity of damage of the native valves. To date, over 290 000 heart 

valve procedures are performed annually worldwide and it is estimated to triple over to 

850 000 by 2050 (Yacoub and Takkenberg, 2005). Therefore, the demand for prosthetic 

heart valve is increasing at a rate of 10%–12% per year (Black and Drury, 1994; Pibarot 

and Dumesnil, 2009). Basically, prosthetic heart valves are divided in two major types, 

namely mechanical heart valves and bioprosthetic heart valves. The mechanical heart 

valves are made up of pyrolytic carbon, whereas the bioprosthetic heart valves known as 

tissue heart valves are made of human-derived or animal-derived tissue (Butany et al., 

2003; Dasi et al., 2009). 

 

Operative treatment of native heart valve that has remained fairly consistent for more 

than forty years is the Surgical Aortic Valve Replacement (SAVR). The aortic valve is 

removed through an open-heart procedure and a new valve (mechanical or bioprosthesis) 

is sewn to the annulus of the native valve (Carrel et al., 2013; Cho et al., 2013; 

Osnabrugge et al., 2013; Yankah and Hetzer, 2010). However, the indication for this type 

of procedure includes symptomatic severe aortic stenosis, severe aortic stenosis with 

ejection fraction less than 50%, and severe aortic stenosis that needs for any other heart 

surgery. Age, degree of valve disease, general health, specific medical condition, and 

heart function are the important factors that needs to be identified prior to performing 

SAVR associated to the increase risk of surgery (Carrel et al., 2013). Hence, 

Transcatheter Aortic Valve Implantation (TAVI) has been developed as a good 

alternative to surgical approach for elderly patients and patients with very high or 

prohibitive surgical risk (Wu et al., 2013). Even though this technique is still in its 
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commencement stage, its proliferating evidence has evolved through clinical trials and 

observational studies. 

 

1.3 Transcatheter Aortic Valve Implantation (TAVI) 

 

Implantation means the insertion or grafting of an organ or tissue of biological material 

into the body. In the treatment of native heart valve perspective, TAVI is the deployment 

of bioprosthetic valve via delivery of catheter and implanted within the diseased native 

aortic valve (Leon et al., 2010; Wu et al., 2013). The indication for TAVI includes 

symptomatic patients with severe aortic stenosis, patients with severe aortic stenosis 

undergoing other heart operations, and patients with severe aortic stenosis and left 

ventricular systolic dysfunction (Ye et al., 2012). The benefits of TAVI include a shorter 

procedure, less pain, and shorter stay in the hospital after the implantation for recovery. 

Due to its minimally invasive procedure, recovery time is significantly shorter than aortic 

valve replacement surgery, which takes only two to four weeks instead of six to eight 

weeks (Clavel et al., 2010; D’Errigo et al., 2013). 

 

TAVI has been increasingly performed in many countries with the evidence of over 9000 

procedures worldwide to date, due to its less invasive procedure, yet significant concerns 

are also increasing due some severe complications that could risk patients’ future (Loeser 

et al., 2013). There are several clinical trials and observational studies regarding potential 

complications after TAVI such as procedure-related incidence of paravalvular leakage 

(PVL). Vasa-Nicotera et al. (2012) studied the impact of PVL on the outcome in patients 

after undergoing TAVI. The authors proved the occurrence of PVL after TAVI through 

patient clinical studies according to its severity level. The authors also highlighted the 

occurrence of PVL that may be due to heavily calcified cups, annulus-prosthesis valve 

size mismatch, and the placement of prosthesis valve. The widespread and novel 

technology of TAVI raised significant concerns to perform TAVI on the elderly and 

inoperable patients in respect to the safety, durability, and effectiveness of the TAVI 

devices. 

 

As a matter of fact, Singhal et al., (2013) highlighted on the possibility of calcification 

development related to PVL after undergone TAVI. This may lead to serious 

complications for post-implantation due to biomaterial components of the tissue valve. 

Therefore, it is a must to have a simulation analysis to assess the interaction between the 

fluid-flow pattern of blood and biomechanical structure stresses of aortic wall due to 

PVL.  
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1.4 Problem Statement 

 

The PVL occurrence is a serious complication. The risk of PVL following TAVI may 

increase due to the irregular and heavily calcified leaflet of the native aortic valve, 

thereby preventing the sealing between the prosthesis and the annulus (Neragi-Miandoab 

and Michler, 2013; Panayiotides and Nikolaides, 2014). Tamburino et al. (2010) reported 

that there is mild insufficiency of the prosthetic valves found in about 70% of patients 

after undergoing TAVI. Hence, this serious complication will lead to implication issues 

related to PVL following TAVI. 

 

From the clinical impacts of the occurrence of PVL post-TAVI, several drawbacks can 

be highlighted, which are: 

i. The problem of valve sizing will definitely exist due to different valve size of 

Asian and European patients, hence lead to the consequences of undersizing or 

oversizing of TAVI valve. 

ii. The complication after performing TAVI on the patients is clinically limited. 

The follow-up period by patients, more studies with a longer follow-up are 

required to further understand and investigate the time-course of changes and 

the effects of TAVI. 

iii. Less clinical practice of TAVI and small number of patients in Malaysia 

restricted the clinical trials to assess the durability of results after performing 

TAVI. 

 

Therefore, the current and develop FSI technique provide superior performance of TAVI 

under various cases. In addition, the drawbacks of clinical trials can be technically solve 

without the need to access the patient. On top of that, FSI can provides PVL behaviour 

in technical perspectives such as patient specific assessment flow patterns and related 

biomechanical stresses in order to observe the complications of post-TAVI, which 

overcome the shortcoming of clinical trials. 

 

The simulation based on the opening of TAVI valve represented as calcification may 

provide better understanding on the after-effects of post-implantation of TAVI, thus 

better decision making can help to reduce the risk of complications on the patients. 

Literally, the novelty of the current research work is the application of fluid-structure 

interaction (FSI) on critical study of leaflet calcification of TAVI valve in terms of fluid 

flow behaviour and structure deformation. On top of that, the highlighted complication 

of post-TAVI is important as the subject of simulation which contribute to critical 

findings in terms of engineering perspectives. 
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1.5 Research Objective 

 

The main objective of this research is to investigate the pattern of blood flow and 

biomechanical stresses on the aortic wall due to the TAVI implant using the applications 

of Fluid-Structure Interaction (FSI). Specifically, the objectives of this research are to: 

1. Conduct two validations of numerical computational fluid dynamics with 

in vitro experiment and FSI with other research papers for the adequacy of 

further FSI studies based on the developed realistic human aorta  from 

computed tomography (CT) images into the 3D model using Materialise 

Interactive Medical Image Control Systems (MIMICs) software 

2. Perform 3D numerical studies of FSI to investigate the effect of 

paravalvular after TAVI implantation on two conditions of aorta; aorta 

without valve (AWoV) and aorta with TAVI (AWT) prior to be validated 

with the experiment using particle image velocimetry (PIV).  

3. Carry out further FSI numerical simulations to investigate the impact of 

different valve openings and undersizing TAVI valve represented the 

severity of PVL 

 

1.6 Scope of thesis 

 

The thesis contains eight chapters.  

 Chapter 1 provides the overview of aortic stenosis, transcatheter aortic valve 

implantation (TAVI), and objectives of the research.  

 Chapter 2 is exclusively dedicated to previous works describing problems with 

TAVI. Additional information on statistical data of Malaysian TAVI implants 

is also provided in this chapter.  

 Chapter 3 discusses the methodology adopted in this work. The conversion of 

raw CT data from the patient to 3D model is described. The governing equations 

for solving the 3D numerical model and the fluid-structure interaction (FSI) are 

explained in detail. Besides that, this chapter also explains the experimental 

setup development and PIV study procedure.  

 Chapter 4 discusses the validation of aorta arch using computational fluid 

dynamic with the experimental study are explained. The validation of FSI 

simulation with existing research paper is also included in this chapter.  

 Chapter 5 describes the details on paravalvular effects of TAVI using FSI for 

two conditions; aorta without valve (AWoV) and aorta with TAVI (AWT).  

 Chapter 6 presents the parametric studies on the effects of calcification in PVL 

and undersized towards PVL.  

 Chapter 7 presents the experimental works of PIV on two aorta conditions of 

AWoV and AWT.  

 Chapter 8 represents the discussion and conclusions as well as the 

recommendations for future works. 
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