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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy 

DEVELOPMENT OF PRINTER NOZZLE FOR EXTRUDING SYNTHETIC 
BIOMATERIALS USING FUSED DEPOSITION MODELING PROCESS 

By 

NOR AIMAN BIN SUKINDAR 

January 2018 

Chairman : Mohd Khairol Anuar B. Mohd Ariffin, PhD 

Faculty  : Engineering 

This research focuses on the development of nozzle specifically for open-
source 3D printing for extrusion of synthetic biomaterials.  The factors that 
affect the stability, consistency and accuracy of the extrusion process were 
investigated by using finite element analysis (FEA) including nozzle die angle, 
nozzle diameter and liquefier design.  From the simulations, it is seen that the 
die angle and nozzle diameter affect the pressure drop along the liquefier.  The 
pressure drop variation has affected the road width of the printed parts, thus 
affecting the quality of the finished product.  Based on the simulations, the 
convergent angle for extruding polylactic acid (PLA) and 
polymethylmethacrylate (PMMA) materials was found in this research at 130o 
which provides stability and consistency of the extrusion process. For efficient 
printing process, nozzle diameter of 0.3 mm was found to be the optimum with 
respect to pressure drop and printing time.  The liquefier design plays an 
important role in maintaining the liquefier chamber’s temperature as constant 
as possible.  The temperature variation has caused the changes in viscosity of 
the material, thus affecting the quality of the finished parts.  Liquefier in 
cylindrical shape has been identified as the solution in minimizing the problems 
as it has been proven from the simulations that portray improved temperature 
distribution.  The newly developed nozzle was compared with the original 
nozzle with respect to dimensional accuracy and mechanical properties and 
shows that the newly developed nozzle had a better performance in both 
criteria. By solving the issues related stability, consistency and accuracy of the 
extrusion process, the scaffold structure was successfully fabricated with 
compressive strength between 6 MPa to 7 MPa and porosities between 50% 
and 70% which is the range for trabecular bone.  Furthermore, humerus bones 
was successfully fabricated with controlled porosity. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah 

PEMBANGUNAN NOZEL PENCETAK 3D DENGAN MENGGUNAKAN 
FABRIKASI FILAMEN BAGI EXTRUSI BAHAN BIO SINTETIK 

Oleh 

NOR AIMAN BIN SUKINDAR 

Januari 2018

Pengerusi :      Mohd Khairol Anuar B. Mohd Ariffin, PhD 

Fakulti :      Kejuruteraan 

Kajian ini memberi tumpuan kepada pembangunan nozel khusus untuk 
perisian terbuka pencetak 3D bagi extrusi bahan biosintetik. Faktor yang 
memberi kesan kepada kesetabilan, ketekalan dan ketepatan proses extrusi 
telah dikaji dengan menggunakan analisis unsur terhingga (FEA) seperti sudut 
nozel, diameter nozel dan reka bentuk pencair. Dari simulasi, ia menunjukkan 
bahawa sudut nozel dan diameter nozel mempengaruhi tekanan sepanjang 
ruang pencair. Keperluan mengkaji tekanan dengan teliti adalah penting 
kerana apabila tekanan berubah-rubah, lapisan-lapisan yang dicetak juga 
berbeza-beza dan dengan itu menjejaskan kualiti produk. Berdasarkan 
simulasi, sudut penumpuan yang sesuai untuk extrusi bahan polylactic acid 
(PLA)  dan polymethylmethacrylate (PMMA) dalam kajian ini adalah 130o 
darjah. Untuk proses pencetakan yang lebih efisyen, 0.3 mm diameter nozel 
didapati adalah yang paling optimum dari segi tekanan dan masa pencetakan. 
Reka bentuk pencair memainkan peranan penting dalam menjaga suhu di 
dalam ruang pencair. Kelikatan bahan akan berubah apabila suhu berubah. 
Keadaan ini akan memberi kesan kepada kualiti produk yang dihasilkan. 
Dengan menggunakan bentuk pencair silinder, masalah ini boleh dikurangkan 
dan hasil dari simulasi, taburan suhu adalah lebih baik. Nozel baru telah 
dibandingkan dengan nozel asal dan keputusan menunjukkan bahawa nozel 
baru memberikan ketepatan dimensi dan sifat-sifat mekanikal yang lebih baik 
kepada produk yang dihasilkan. Dengan menyelesaikan isu-isu yang berkaitan 
kesetabilan, ketekalan dan ketepatan dalam proses extrusi, struktur perancah 
berjaya difabrikasikan dengan tekanan mampatan antara 6 MPa hingga 7 MPa 
dan  keliangan antara 50% sehingga 70%. Selain itu juga, tulang humerus 
telah berjaya difabrikasi dengan keliangan yang terkawal. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1 Background of Study 
 
 
Technology advancement has brought great implications to human beings in 
various ways.  Rapid prototyping (RP) is one of the technologies that brings all 
the possibilities in fabricating 3D models especially in the biomedical field.  It is 
synonym with solid freeform fabrication (SFF) which can create solid structure 
in layer by layer fashion upon creating design prototype by employing computer 
aided design (CAD) model data, computer tomography (CT) and magnetic 
resonance imaging (MRI) scans data,  which then can be converted into 
standard triangular language (STL) format (Wohlers, 1998).  Different forms of 
solid modeling can be fabricated from various materials making RP as one of 
the superior technologies in fabricating models within a short period of time. 
 
 
The development of RP technology in the medical field brings major 
contribution in terms of product performance and cycle time reduction 
(Varatharaj et al., 2014).  Nowadays the production of bone graft using RP 
technology has been widely applied.  The production of scaffolds structure 
which requires high accuracy can simply be made by importing the required 
data from the computer (Zein et al., 2002). 
 
 
The most commonly used RP technology in the field of manufacturing bone 
structure is fused deposition modeling (FDM) (Zein et al., 2002, Espalin et al., 
2010).  The flexibility of this technology in manufacturing scaffold design in 
which its parameters such as layer thickness and air gap can be manipulated, 
has been the reason for employing FDM technology in producing porous bone 
structure.  Although the RP technology can easily create 3D model, it is very 
expensive with costs ranging from $100,000 to $500,000 (Turner et al., 2014).  
Since the expiration of FDM patent a few years ago (Crump, 1992), the 
technology of open-source 3D Printer has emerged with an affordable price 
(Jones et al., 2011).  However, the accuracy of modeling parts requires further 
improvement.  So far, limited research has been done pertaining to the open-
source 3D Printer.  Melenka et al. (2015) conducted a research using MakerBot 
Replicator 2 Desktop 3D Printer and the results demonstrates that printed parts 
show significant deviation from the nominal value (Melenka et al., 2015). The 
research suggested that careful selection of printing parameters can minimize 
these problems. 
 
 
In order for the open-source 3D printer to have wide variety of applications in 
fabricating 3D model, particularly in medical field, the technology requires 
further analysis and development to fulfill the requirement in terms of accuracy, 
consistency and stability of the extruded parts.  Recent researches only focus 
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on the process parameters to improve the finish parts (Melenka et al., 2015, 
Galantucci et al., 2015).  However, the hardware system is also an important 
element that contributes to the better extrusion process, hence providing good 
products.  Thus, this brings in an opportunity to further improve on this 
technology.  One of the most important parts is the 3D printer head, which 
comprises of nozzle, liquefier and heating element.  It is the heart of the 
machine as the quality and compatibility of the material being extruded 
depends on the 3D printer head.  In addition, the properties of material need to 
be investigated to allow smooth extrusion, consistent, accurate and not to clog 
the printer head during the extrusion process.   
 
 
Hence, this study, intends to analyze and develop open-source 3D printer 
nozzle components.  The reason for selecting the open-source 3D printer in 
this study is because of the cost of the technology which is affordable as well 
as the flexibility and accessibility of this technology.  In this study, focuses is 
placed on several aspects such as nozzle die angle, nozzle diameter, and 
liquefier design which have significant impact on the extrusion process.  The 
new open-source 3D printer nozzle will be used to fabricate porous bone 
structure using synthetic biomaterials.  
 
 
1.2 Problem Statement 
 
 
The demand in fabricating 3D model has increased over the years thus making 
the RP technology as one of the most chosen technologies.  The industry has 
grown since 2010 with estimated around $1.325 billion for products and 
services and this number will increase by the year 2020 with estimated around 
$5 billion (Turner et al., 2014).  Despite being the chosen technology in 
fabricating 3D models especially FDM, the price is still so much expensive and 
can hardly penetrate all levels of industry. It is started with Stratasys which was 
developed in the early of 90’s and introduced a starting price ranging from with 
the price starts from above 15,000 euros and above (Minetola et al., 2016). 
They has developed a brand named Fortus of their FDM line which cost from 
$100,000-500,000 per unit (Turner et al., 2014). However, since the expiration 
of FDM pattern a few years ago, a low-cost 3D printing technology has been 
developed and introduced by Jones et al. in 2011 at an affordable price. A lot of 
manufacturers produced a low-cost 3D printer ranging from $1,500-5,000 
(Turner et al., 2014). The main issue in term of cost can be seen as the major 
factor in choosing the technology. The comparison for both expensive and low-
cost technology can be referred in the Appendices of A and B. If both 
technology has been compared in terms of overall manufacturing cost, the 
difference is very significant. 
 
 
The comparison between the RepRap technology (open-source) which 
introduced by Jones (Jones et al., 2011) and Fortus 400mc from Stratasys 
shows the difference in term of price for more than $100,000. Basically, the 
main components for a low-cost 3D printer consists of controller, stepper 
motors, extruder, heated bead, and other parts that are available at any online 
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stores with a low price. In addition, the particular software is available online 
and can be downloaded for free. The current product which will be used in this 
research cost approximately $625 (RM2500) (Appendix B) which is far cheaper 
compare to the expensive one available in the market.  
 
 
The ability of FDM system in producing complex structure has been widely 
used in fabricating 3D model in medical field. Finding the best method in 
fabricating the numerous products such as tissue would be very crucial. It has 
been an alternative material for orthopedic surgeries such biodegradable 
material which matching with the new tissue (Park et al., 2007). Biodegradable 
material synonyms with synthetic biomaterial and possess some unique 
characteristics such as degrade over the period of time and possess adequate 
mechanical properties to sustain load during healing process (Park et al., 
2007). Polylactic acid (PLA) and polymethylmethacrylate (PMMA) are the 
popular material used in biomedical fields. The challenge in extruding these 
materials using 3D printer is to understand the properties and the flow behavior 
along the liquefier. Since PLA and PMMA material possess quite low melting 
temperature, the temperature inside the liquefier must be kept as low as 
possible because if the material exposes to high temperature it will burn and 
contaminate the remaining material (Gibson et al., 2015). Furthermore, to 
maintain the properties of synthetic biomaterials being extrude, the temperature 
need to be carefully monitored and provide stable temperature within the 
system could be the key to have successful fabrication process. However, 
there are some issues related to the low-cost 3D printer. Research has been 
done to evaluate the dimensional accuracy using MarketBot 3D Printer where 
results demonstrated significant deviation from the nominal dimension 
(Melenka et al., 2015, Roberson et al., 2013). Other study has also measured 
the accuracy of 3D printer where differences of approximately 20% were 
observed between final product and CAD drawings (Roberson et al., 2013). 
Another research also shows that the low-cost 3D printer of 3D TouchTM shows 
significant different in dimensional accuracy compare to the expensive of 
Dimension EliteTM  (Minetola et al., 2016). 
 
 
The current issue with the open-source 3D printer is its performance to satisfy 
the industry’s requirement. These problems form a great opportunity to 
improvise the technology in various aspects particularly with low-cost 3D printer 
that can to penetrate the industry in high demand such as in the biomedical 
field for fabrication of human bone (Gibson et al., 2015). It is advantageous to 
have a low-cost machine that features similar quality as obtained from the high-
end technology, which can fabricate complex parts such as porous human 
bone structure using synthetic biomaterials which is compatible to the human 
body.  By improving the open-source 3D printer nozzle which comprises of 
nozzle parts, liquefier and insulator, the finish parts of the extruded materials 
can be improved and fabrication of complex structure such as porous structure 
can be achieved. 
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1.3 Research Objectives 
 
 
The objectives of the research are as follows: 
 
 

i. To analyze the factors affecting the accuracy, consistency and stability 
of extrusion process of synthetic biomaterials including, nozzle die 
angle, nozzle diameter and liquefier design. 

ii. To develop the new nozzle based on the nozzle die angle, nozzle 
diameter and liquefier design. 

iii. To compare the dimensional accuracy and mechanical properties of 
finish parts using the newly developed 3D printer nozzle to the original 
3D printer nozzle. 

iv. To fabricate the porous bone structure using the newly 3D printer 
nozzle of open-source 3D printer and synthetic biomaterials as the 
filament material. 

 
 
1.4 Significance of Research 
 
 
The significance of this study is the development of a new nozzle of open-
source 3D printer for fabrication of porous bone structure. The rapid prototyping 
(RP) technology becomes rapidly developed over the years because of the 
ability to create a 3D model within short period of time.  It saves millions of 
dollars on the production making this technology widely used in fabrication 
technology especially in the medical area. One of major concern here is the 
high cost of RP technology. 
  
 
In order to make this technology economically feasible, the introduction of new 
technology of open-source 3D printer in the year of 2011 after the expiration of 
FDM patent brings a new era of fabricating 3D model in such affordable price.  
However, this open-source 3D printer has several drawbacks where the 
performance is still not proven.  This research will focus on analyzing and 
developing the nozzle which concerns several aspects to improve the 
performance of open-source 3D printer in fabricating more complex models 
especially porous bone structure.  Moreover, this research will bring a new idea 
and dimension on fabricating complex shape in medical area at an affordable 
price.   
 
 
1.5 Scope of the Research 
 
 
The scope of this research covers an analysis and development of open-
source 3D printer nozzle which consists of liquefier, nozzle die angle and 
diameter, and insulator.  The area of improvements is made on the 3D printer 
nozzle to achieve accuracy, stability and consistency in fabricating complex 
parts such as porous bone structure using synthetic biomaterials (PLA).  The 
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new nozzle was developed based on the analyzed factor. This research 
presents simulation and experimental studies to investigate the factor affecting 
accuracy, consistency and stability of the extrusion process.  Secondly, the 
study compares the newly developed printer nozzle with the original ones, in 
terms of dimensional accuracy and mechanical properties.  The mechanical 
properties include tensile test which follows Standard Test Method for Tensile 
Properties of Plastics ASTM D638-10 standard and compressive test which is 
done according to the Standard Test Method for Compressive Properties of 
Rigid Plastics ASTM D695 standard.  Lastly, the newly developed 3D printer 
nozzle is used to fabricate scaffold design and porous bone structure by using 
synthetic biomaterials that is polylactic acid (PLA) and polymethylmethacrylate 
(PMMA) by following Standard Guide for Assessing Microstructure of Polymeric 
Scaffolds for Use in Tissue Engineered Medical Products ASTM F2450-04. 
 
 
1.6 Organisation of the Thesis 
 
 
The research consists of five chapters that covered all the project and the 
details of the thesis structure are presented as follows: 
 
 
Chapter 1 – The problems of this research that contribute to the objectives as 
well as significance of this research. The scope is also presented in this 
chapter. 
 
 
Chapter 2 – Comprehensive literature review related to this research and 
previous study that provides basic understanding throughout the research is 
presented in this chapter. 
 
 
Chapter 3 – The methodology of the study is represented in this chapter.  The 
analysis and development of the nozzle design are highlighted. The 
parameters setting also were investigated to find the best setting for the 
printing process. Later, the simulation until the design selection and the 
standard method to measure the dimensional accuracy, as well as mechanical 
properties are further elaborated.  The scaffold design also is discussed in this 
chapter. 
 
 
Chapter 4 – Chapter 4 concerns with the discussion on the results obtained 
from the simulation process and the final design. The fabrication of the new 
nozzle and together with the comparison results between the newly developed 
nozzle and the original nozzle in terms of dimensional accuracy and 
mechanical properties also are discussed. The fabrication of the scaffold 
structure is also presented. 
 
 
Chapter 5 – The conclusions and the suggestion for the future research were 
presented in this section. 
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