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By 

 

 

NG JING LIN 

 

 

October 2017 
 
 

Chairman :   Associate Professor Samsuzana Abd Aziz, PhD  

Faculty :   Engineering  

 

Stochastic simulation of rainfall is challenging due to incomplete rainfall series and 

high variability of rainfall. Furthermore, the quantification of uncertainty is often 

ignored in the current practice of hydrological modelling and lead to inappropriate 

decisions. Accordingly, this research intends to develop a stochastic rainfall generator, 

consisting of rainfall occurrence models and rainfall amount models and perform its 

uncertainty quantification for the Kelantan River Basin, Malaysia. Seventeen rainfall 

stations with rainfall series within the period from 1954 to 2013 were selected.  

 

The first until fifth order Markov chains were utilized to simulate the rainfall 

occurrences. The results showed that the first until fourth order Markov chains gave 

similarly good performances in simulating the mean, frequency distribution, standard 

deviation and extreme values of wet spells, dry spells, wet day frequency and dry day 

frequency, while the fifth order Markov chain gave poor results. The first until fourth 

order Markov chains passed most of the Wilcoxon rank sum (82.4 – 100% passing 

rate), Kolmogorov-Smirnov (K-S) (70.6 – 100% passing rate) and squared ranks tests 

(70.6 – 100% passing rate). They reproduced lower values of mean absolute 

percentage error (MAPE) for the mean (0.4 – 5.2%), standard deviation (1.4 – 7.5%) 

and extreme values (2.3 – 16.4%). However, the results of the Akaike information 

criterion (AIC) and the Bayesian information criterion (BIC) suggested that the 

monthly, seasonal and yearly rainfall occurrences were simulated fairly using the 

second (35.3 – 82.4% selection rate), fourth (58.8 – 100% selection rate) and third 

(100% selection rate) order Markov chains. 

 

The exponential, gamma, log-normal, skew normal, mixed exponential and 

generalized Pareto distributions were used to simulate the rainfall amounts. It was 

found that all the distributions were capable of simulating the mean, frequency 
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distribution and standard deviation of the rainfall amounts by reproducing high passing 

rates of the Wilcoxon rank sum (100%), K-S (86.8 – 100%) and squared ranks tests 

(88.2 – 100%). They obtained relatively low values of MAPE for the mean (2.5 – 

4.7%), standard deviation (2.8 – 10.4%) of rainfall amounts and low values of variance 

overdispersion (-7.9 – -1.7%). For the extreme rainfall amounts, the exponential, 

gamma, log-normal and mixed exponential distributions were consistently better than 

the skew normal and generalized Pareto distributions. The log-normal distribution 

(41.2 – 100% selection rate) was chosen as the best fitting distribution based on the 

results of AIC and BIC. 

 

The uncertainty quantification was performed on the synthetic rainfall series simulated 

from the best formulations for the monthly, seasonal and yearly rainfall series. The 

uncertainty of the rainfall depth duration frequency (DDF) curves was quantified using 

the 95% confidence interval. The results showed that there was uncertainty ranged 

from -10.0% to 12.4% for return periods up to 100 years in the DDF curves. The 

uncertainty increases with the return period. 

 

Overall, the stochastic rainfall generator is considered a convenient tool to simulate 

the rainfall characteristics over the Kelantan River Basin and the uncertainty 

quantification framework is straightforward and useful. The outcomes of this study 

can be used for flood control, climate change assessment, hydrological modelling and 

decision making. 
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Oleh 

 

 

NG JING LIN 

 

 

Oktober 2017 
 
 

Pengerusi :   Profesor Madya Samsuzana Abd Aziz, PhD  

Fakulti :   Kejuruteraan 

 

Simulasi stokastik hujan adalah mencabar disebabkan oleh siri hujan yang tidak 

lengkap dan kebolehubahan hujan yang tinggi. Tambahan pula, kuantifikasi 

ketidaktentuan sering diabaikan dalam amalan semasa pemodelan hidrologi dan 

menghasilkan keputusan yang tidak sesuai. Oleh demikian, kajian ini bertujuan untuk 

membangunkan penjana hujan stokastik yang terdiri daripada model kejadian hujan 

dan model jumlah hujan dan melaksanakan kuantifikasi ketidaktentuan untuk 

Lembangan Sungai Kelantan di Malaysia. Tujuh belas stesen hujan dengan siri hujan 

dari tempoh 1954 - 2013 telah dipilih dalam kajian ini. 

 

Rantaian Markov dari perintah pertama sehingga kelima telah digunakan untuk 

mensimulasikan kejadian hujan. Hasil kajian menunjukkan bahawa perintah rantaian 

Markov pertama sehingga keempat memberikan keputusan yang sama baik dalam 

mensimulasikan min, taburan kekerapan, sisihan piawai dan nilai ekstrem rentetan hari 

basah, rentetan hari kering, kekerapan hari basah dan kekerapan hari kering, manakala 

perintah kelima rantaian Markov memberikan keputusan yang tidak memuaskan. 

Perintah rantaian Markov pertama sehingga keempat lulus sebahagian besar daripada 

uji jumlah peringkat Wilcoxon (kadar kelulusan 82.4 – 100%), Kolmogorov-Smirnov 

(K-S) (kadar kelulusan 70.6 – 100%) dan ujian pangkat dua (kadar kelulusan 70.6 – 

100%). Mereka menghasilkan semula nilai-nilai peratusan ralat min mutlak yang lebih 

rendah (MAPE) untuk min (0.4 – 5.2%), sisihan piawai (1.4 – 7.5%) dan nilai-nilai 

ekstrem (2.3 – 16.4%). Walau bagaimanapun, keputusan daripada kriteria maklumat 

Akaike (AIC) dan kriteria maklumat Bayesian (BIC) mencadangkan bahawa kejadian 

hujan bulanan, bermusim dan tahunan telah disimulasikan agak memuaskan dengan 

menggunakan perintah rantaian Markov kedua (kadar pemilihan 35.3 – 82.4%), 

keempat (kadar pemilihan 58.8 – 100 %) dan ketiga (kadar pemilihan 100%). 
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Taburan eksponen, gamma, log-normal, kemiringan kurva normal, eksponen 

bercampur dan Pareto umum telah digunakan untuk mensimulasikan jumlah hujan. 

Kajian menunjukkan bahawa semua taburan mampu mensimulasikan min, taburan 

kekerapan dan sisihan piawai jumlah hujan dengan menghasilkan semula kadar 

kelulusan uji jumlah peringkat Wilcoxon yang tinggi (100%), K-S (86.8 – 100%) dan 

ujian pangkat dua (88.2 – 100%). Mereka menghasilkan nilai MAPE yang agak rendah 

untuk min (2.5 – 4.7%), sisihan piawai (2.8 – 10.4%) daripada jumlah hujan dan 

varians overdispersion (-7.9 – -1.7%). Untuk jumlah hujan yang ekstrem, taburan 

eksponen, gamma, log-normal dan eksponen bercampur adalah lebih baik daripada 

taburan kemiringan kurva normal dan Pareto umum. Taburan log-normal (kadar 

pemilihan 41.2 – 100%) telah dipilih sebagai taburan penyesuaian yang terbaik 

berdasarkan keputusan AIC dan BIC. 

 

Kuantifikasi ketidaktentuan telah dilakukan pada siri hujan sintetik yang disimulasikan 

daripada formula yang terbaik untuk siri hujan bulanan, bermusim dan tahunan. 

Ketidaktentuan daripada lengkung kekerapan tempoh kedalaman hujan (DDF) telah 

dikuantifikasikan dengan menggunakan 95% selang keyakinan. Hasil kajian 

menunjukkan bahawa ketidaktentuan adalah dari antara -10.0% dengan 12.4% untuk 

tempoh pulangan sehingga 100 tahun dalam lengkung DDF. Ini menunjukkan bahawa 

ketidaktentuan meningkat dengan tempoh pulangan. 

 

Secara keseluruhan, penjana hujan stokastik dianggap sebagai satu alat yang mudah 

untuk mensimulasikan ciri-ciri hujan di Lembangan Sungai Kelantan dan rangka kerja 

kuantifikasi ketidaktentuan adalah jelas dan berguna. Hasil kajian ini boleh digunakan 

untuk kawalan banjir, penilaian perubahan iklim, pemodelan hidrologi dan membuat 

keputusan. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Research background 

 

Rainfall is a highly significant piece of hydrological data that initiates the whole chain 

of hydrological events occurring in river basins and watersheds. The rainfall 

occurrence and rainfall amounts have great influences on the hydrological cycle and 

environment. The prolong periods of intense rainfall occurrence can cause flooding 

that can lead to destruction of properties and loss of lives. On the other hand, the 

continuous dry weather condition with no rain can cause the rivers and dams to dry up, 

affecting the welfare and the livelihoods of people. Therefore, the probability of 

rainfall occurrence and the distribution of rainfall events are important for analyzing 

and understanding the hydrological responses in the system. 

 

Stochastic rainfall generators are stochastic simulation tools used to simulate synthetic 

rainfall series at a particular location that are statistically consistent with the observed 

rainfall series (Lee, 2016; Chen et al., 2015; Kenabatho et al., 2012). They are not 

weather forecasting models that rely on initial conditions and numerically integrate the 

partial differential equation. Specifically, the stochastic rainfall outputs are not 

associated with the duplications of weather at a specific real dates either for the past 

or future. Rather, they are statistical and random representations of the observed 

rainfall series and it is expected that they can closely mimic the statistical properties 

of the present day condition. The stochastic modelling of rainfall series is based on a 

stochastic process where the sequences of random numbers simulated from computer 

algorithms are transformed into sequences of synthetic data series. One of the main 

advantages of the stochastic rainfall generator is that the long and complete sequences 

of rainfall series can be generated under limited availability of rainfall series. 

Therefore, the stochastic rainfall generators are used frequently in a wide range of 

fields, such as water resources management, climate change assessment, flood control, 

drought forecasting and hydrological modelling. 

 

The modelling procedures of any hydrological models are exposed to uncertainty. The 

uncertainty of the models is inherent due to possible errors and imperfections that arise 

beyond human control. Uncertainty refers to a state of imperfect knowledge where it 

is difficult to represent the process and outcome of a particular system. In general, the 

measurements or the estimates of any model will not be perfectly accurate. Errors in 

the measurement process, inappropriate parameter estimation method and errors in the 

data used for modelling procedures are the main sources of uncertainty (Zahmatkesh 

et al., 2015; Chandra et al., 2015; Gronewold et al., 2013). Therefore, the uncertainty 

quantification is performed to examine the potential source of errors in a process and 

to identify the uncertainty bounds of the relevant variables.  
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It is now being broadly recognized that the stochastic simulation of rainfall series and 

the proper investigation of uncertainty are important for the purpose of research works 

and operational planning. The tremendous advance of computational power and the 

rapid growth of the hydrological field have improved the understanding of the 

hydrologic phenomena and permit more advanced models to be developed. As with 

any model, it is essential to examine the model structure depending on the 

understanding of the hydrologic phenomena and the computational ability. This helps 

to increase the accuracy and reliability of simulation procedures. 

 

1.2 Problem statement 

 

The availability of long and complete rainfall series is essential in hydrological 

modelling. It is noted that rainfall series of a minimum 20–25 years are desirable for 

rainfall modelling to allow a good representation of the rainfall characteristics (Jones 

et al., 2016; Fodor et al., 2013).  However, in many regions, the rainfall series are often 

too short, possess considerable amounts of missing or simply unavailable values 

(Bárdossy & Pegram, 2014;  Lo Presti et al., 2010; McKague et al., 2005). In Malaysia, 

rainfall stations with particularly long observed rainfall series are very scarce. The 

current available observed weather series are usually inconsistent and incomplete due 

to some systematic and random errors or missing values. The reliability and accuracy 

of the results of the hydrological modelling could be affected by inputting the short 

and incomplete rainfall series to the hydrological models. This creates difficulty for 

the hydrologists and engineers to carry out their research and operational analysis. 

Therefore, it is very useful to employ a stochastic rainfall generator to simulate long 

and complete synthetic rainfall series based on the statistical characteristics of the 

observed rainfall series. 

 

Although Malaysia is known to be one of the countries with low risk of natural 

disasters, uncontrolled urban developments, poor drainage, intense monsoon rain 

storms and heavy convection rainfall have caused floods to become a significant 

natural hazard in Malaysia (Hai et al., 2017; Perera & Lahat, 2015; Ariff et al., 2012). 

Flooding in Malaysia usually occurs during the monsoon season and can last for a 

month. This issue has raised considerable concern to analyze the characteristics of 

rainfall occurrence and rainfall amount to understand the responses of hydrological 

cycle and cope with the flood hazards and other natural disasters. The wet day rainfall 

amount is simulated based on the rainfall occurrence. The rainfall occurrence and 

rainfall amount are the crucial factors of the flood events as they affect the infiltration, 

flow accumulation and rate of runoff directly. Therefore, the formulation of the rainfall 

occurrence models and rainfall amount models is crucial to study the rainfall behavior 

and consequently aid in flood mitigation and hydrological modelling.  

 

Many of the stochastic rainfall generators that had been developed are site-specific 

where the formulation of the rainfall occurrence model and rainfall amount model is 

carried out based on the condition of that particular region. The existing stochastic 

weather generators WGEN (Richardson 1981) and WeaGETS (Chen et al., 2012) were 

developed and applied in diverse climate regions, United States and Canada, 
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respectively. Unlike other countries that experience spring, summer, autumn and 

winter, the study area of this research, Kelantan River Basin is located near to the 

equator which receives abundant rainfall throughout the year. Therefore, there is a 

need to formulate and develop a stochastic rainfall generator based on the rainfall 

characteristics of this specific study area. The presence of different climatic conditions 

and geographical factors in each study area also further adds to the interesting variety 

of findings and results. Therefore, a thorough model evaluation procedure should be 

performed to examine the capability of the rainfall occurrence model and the 

accompanying rainfall amount model in reproducing the characteristics of rainfall. 

 

Malaysia has a tropical climate and experiences seasonal variations which are 

dominated by monsoon seasons. The definition of seasonal in some of the studies 

refers to spring, summer, autumn and winter, which are different from the monsoon 

seasons in a tropical area like Malaysia. The monsoon seasons of Malaysia consist of 

the southwest monsoon (SWM), the northeast monsoon (NEM), and the two inter-

monsoon seasons (ITM). The rainfall characteristics for different monsoon seasons are 

different. For example, SWM implies drier and warmer climate conditions. The NEM 

is the major rainy season in Malaysia that brings heavy rains and strong winds. 

Although a considerable amount of literature has been published on stochastic rainfall 

studies in tropical region (Jones & Thornton, 2013; Cowden et al., 2008; Tingem et al., 

2007; Jones & Thornton, 2000; Jones & Thornton, 1993), those studies were carried 

out based on the overall basis where the monsoon seasonal components are not 

included in the formulation and validation process. Specifically, most of the stochastic 

rainfall studies in Malaysia are conducted on daily, monthly and yearly basis (Dlamini 

et al., 2015; Hassan & Harun, 2013; Shui & Haque, 2004). It would be interesting to 

carry out the model evaluation procedure and the selection of the best rainfall model 

by considering the monsoon seasons in Malaysia. 

 

In general, there is no single model being deemed as ideal or perfect for use. By 

definition, the stochastic rainfall generator simulates synthetic rainfall series (output) 

based on parameters generated from the observed rainfall series (input). No matter 

how well the model is formulated, there is always an inconsistency between the model 

output and the corresponding model input. Uncertainty is equally as vital as the 

estimates themselves in any hydrological simulations. However, current stochastic 

rainfall studies are putting more emphasis on assessing the model performance where 

the quantification of uncertainty is rarely presented (Lee, 2016; Li et al., 2014; Abas 

et al., 2014; Kenabatho et al., 2012). Lacking of the uncertainty information may lead 

to inappropriate predictions in the hydrological models and consequently pose much 

higher risk of failures in project design and implementation. This highlighted an urgent 

need to include the quantification of uncertainty as part of any hydrological simulation 

procedures. Accordingly, this study attempts to address the aforementioned gaps by 

developing a stochastic rainfall generator incorporating the quantification of 

uncertainty. 
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1.3 Objectives 

 

The aim of this study is to develop a stochastic rainfall generator, which consists of 

rainfall occurrence models and rainfall amount models with its uncertainty 

quantification for Kelantan River Basin. The specific objectives are as follow: 

 

1. To formulate the rainfall occurrence models using Markov chains of different orders; 

2. To evaluate the performances of the rainfall occurrence models through monthly, 

seasonal and yearly rainfall series; 

3. To formulate the rainfall amount models based on the selected rainfall occurrence 

models using different probability distributions; 

4. To determine the best rainfall amount models for the monthly, seasonal and yearly 

rainfall series; 

5. To quantify the uncertainty in rainfall depth duration frequency (DDF) curves 

associated with the synthetic extreme rainfall series. 

 

1.4 Scope of study and thesis outline 

 

The scope of this research covers two model frameworks, and they are developing a 

parametric stochastic rainfall generator and quantifying its uncertainty specifically for 

the Kelantan River Basin, Malaysia. The former framework is directed towards 

formulating an efficient stochastic rainfall simulation procedure which is able to 

produce long synthetic rainfall series that have similar statistical characteristics as the 

observed rainfall series for any duration as required. The proposed stochastic rainfall 

generator consists of two main components, which are the rainfall occurrence models 

and rainfall amount models. The research works will be focused on simulating rainfall 

occurrences using five Markov chain models, simulating rainfall amounts using six 

rainfall amount models and correcting low-frequency variability using spectral 

correction method. Ultimately, the stochastic rainfall generator is evaluated for its 

ability to simulate the synthetic rainfall series. The latter framework simulates 

synthetic rainfall series using the best formulations from the former model framework 

and assesses the parameter uncertainty features of rainfall DDF curves. The objectives 

of this research have been listed with respect to the research problems and the thesis is 

organized as follows. 

 

Chapter 2 provides the introduction of rainfall modelling and gives a brief description 

of kinds of rainfall and types of rainfall modelling. An overview of stochastic rainfall 

generator is given. The important aspects of stochastic rainfall generator, such as 

principles, purposes, classification and challenges are explained. The types of 

stochastic rainfall generator are reviewed. Their strengths and limitations are discussed 

to allow an appropriate model for this research to be selected. The descriptions of the 

notion, classification and reduction of uncertainty are discussed in the context of 

hydrological modelling. It also discusses the evolution of the uncertainty 

quantification approaches and reviews the uncertainty quantification of rainfall DDF 

curves. 
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Chapter 3 gives a description of the study area, data sets used for simulation and the 

procedures of data quality control. The methodological framework of stochastic 

rainfall generator, which consists of rainfall occurrence simulation, rainfall amount 

simulation and correction of low-frequency variability is formulated, presented and 

explained. The evaluation of model performance by using various statistical tests and 

graphical analysis is discussed. This chapter also thoroughly explains the steps of 

stochastic replication of synthetic rainfall series using the best formulations and the 

uncertainty quantification of rainfall DDF curves. 

 

Chapter 4 begins with presenting the results of homogeneity tests. Then, it evaluates 

and discusses the performance of stochastic rainfall generator in simulating the 

statistical properties of rainfall occurrences and rainfall amounts. The best rainfall 

occurrence model and rainfall amount model are selected. The derivation of the rainfall 

DDF curves is discussed and the results of uncertainty quantification are presented. 

All the results are accompanied by in depth discussions and descriptions in accordance 

to the significance of findings.  

 

Chapter 5 presents the summary and main conclusions of the research. The 

contributions and significant findings of this research are also discussed. Finally, the 

recommendations for further work are presented. 

 

1.5 Significance of study 

 

The major contribution of this study is the development of a simple yet effective 

stochastic rainfall generator for the simulation of rainfall occurrences and rainfall 

amounts in a tropical area, specifically for the Kelantan River Basin, Malaysia. The 

stochastic rainfall generator is able to generate an infinite length of synthetic rainfall 

series for different research works and operations. The stochastic generation of rainfall 

series can be used to complement the inadequate length of rainfall records. This is 

especially advantageous for Malaysia as the rainfall stations with available complete 

rainfall series for a long duration are limited. The stochastic rainfall generator has been 

validated thoroughly, thus the research outcomes can be used as the foundation bases 

to improve the conceptualization and specifications of the stochastic rainfall studies. 

Also, through the simulation results, the developed stochastic rainfall generator 

presented its significant contribution in providing important information about the 

statistics and characteristics of monthly, seasonal and yearly rainfall series derived 

from the aggregation of synthetic daily time series. The major concern of Kelantan 

River Basin is monsoon flood, which is characterized by heavy and long duration 

rainfall. For the flood control, long and complete monthly, seasonal and rainfall series 

are required to calibrate the flood forecasting model and the flood control system. They 

are used as important inputs to simulate the hydrographs and predict runoff for the 

flood events. Besides, the time series of the monthly, seasonal and yearly rainfall series 

are necessary for the climate change assessment and optimum planning, designing and 

management of water resources engineering, such as the irrigation systems, reservoir 

operation and urban water supply.  
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In addition, the significance of this study is the quantification of the uncertainty of 

rainfall DDF curves based on the replications of 104 synthetic rainfall series generated 

solely from the stochastic rainfall generator so as to become the novelty of this study. 

A comprehensive uncertainty assessment has been performed to obtain the uncertainty 

bounds of extreme rainfall series, which is often neglected or overlooked during 

practice. The results of this study can contribute to a better understanding of the impact 

of uncertainty in hydrological process. Also, the quantification of uncertainty can 

benefit the decision makers to react wisely to the uncertainty arise from the model 

output and make a reliable decision. 
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