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In this study, the failure of cascade dams in a tropical region is simulated using 

mathematical models. The simulation is considering the climate change impact.  Three 

cascade dams for hydropower generation on the Perak River were taken as case 

studies. The three dams are of different designs, ages and heights which make a unique 

complex dam system. The proposed models were categorized as dam breach 

parameters model, hydrological model and hydrodynamic models. The dam breach 

parameters model is based on generalized regression neural network, GRNN while the 

hydrological model and hydrodynamic models are Mike 11 (NAM sub-model), 1-D 

Mike 11 and 2-D Mike 21.    

The GRNN was used to estimate the dam breach parameters. Dam breach parameters 

such as breach width, breach height and breach formation time are the key variables 

to estimate the peak discharge during dam break. Because of the high nonlinear 

relationships in dam breach parameters and their variation with time, the estimation 

of these parameters is considered very complex. The training and testing of GRNN 

models were conducted using records of more than 140 failed dams around the world 

in order to estimate dam breach parameters. The results obtained from GRNN models 

for dam breach parameters were compared with the results obtained from the existing 

methods. The computed value of Mean Relative Error, MRE for GRNN models were 

found to be ranged from 0.11 to 0.17 while values of MRE for the existing methods 

were founded to be ranged from 0.15 to 0.33 for dam breach width estimation. For 

dam failure time estimation, the values of MRE were found to be ranged from 0.08 to 

0.16 for GRNN model results and from 0.34 to 0.57 for the existing methods’ results. 
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In this study, the hydrological model was developed using Mike 11 (NAM sub-

model). The Mike 11 (NAM sub-model) is a lumped conceptual model which forms 

part of the rainfall-runoff (RR) module of the MIKE 11 river modeling system. Time 

series of rainfall, evaporation and streamflow data for the Temenggor catchment were 

used to calibrate and validate the hydrological model for the Temenggor dam (the 

largest dam in the studied dam system). The developed model was applied to predict 

the probable maximum flood, PMF. Also, the impact of climate change on value of 

PMF was considered by estimation the PMF value for two future period which include 

future 1 period (2031 – 2045) and future 2 period (2061 – 2075). The values of PMF 

were found to be 2887.53 m3/s, 4299.43 m3/s and 6427.89 m3/s for periods (2001 – 

2015), (2031 – 2045) and (2061 – 2075) respectively.    

The 1-D Mike 11 hydrodynamic model was calibrated and validated using recorded 

water levels and streamflow for Perak river. Then the model was applied to determine 

simulated maximum peak outflow from Temenggor, Bersia and Kenering dams for 

four scenarios. By using the PMF for the period from 2061 to 2075, the maximum 

peak outflow for the above dams was found to be 272602.59 m3/s, 217984.96 m3/s 

and 184922.01 m3/s respectively. Also, flood routing for Perak river, flood hydrograph 

and water level hydrograph at different sections were simulated.  

The 2 – D Mike 21 hydrodynamic model was used to routing the flood that will result 

from the simulated maximum peak outflow from Temenggor, Bersia and Kenering 

dam failures for four scenarios. Flood arrival time, maximum water depth and time to 

maximum water depth were estimated for different selected villages downstream of 

the three dams above. Additional, the flood inundation maps were found for different 

scenarios.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

PEMODELAN BANJIR DISEBABKAN EMPANGAN PECAH DENGAN 

MENGAMBIL KIRA IMPAK PERUBAHAN IKLIM 

Oleh 

SAAD AHAUKET SAMMEN 

Disember 2017 

Pengerusi 

Fakulti 

:   Profesor Thamer Ahamed Mohammed Ali, PhD 
:   Kejuruteraan 

Dalam kajian ini, kegagalan empangan lata di sebuah kawasan tropika disimulasi 

menggunakan model matematik. Simulasi tersebut mempertimbangkan impak 

perubahan iklim. Tiga empangan lata untuk penjanaan kuasa hidro di Sungai Perak 

telah diambil sebagai kajian kes. Ketiga-tiga empangan tersebut yang berbeza reka 

bentuk, umur dan ketinggian menjadikan ini suatu sistem  empangan kompleks yang 

unik. Model yang dicadangkan dikategorikan sebagai model parameter empangan 

pecah, model hidrologi dan model hidrodinamik. Model parameter empangan pecah 

adalah berdasarkan kepada rangkaian neural regresi umum, GRNN manakala model 

hidrologi dan model hidrodinamik ialah Mike 11 (sub-model NAM ), 1-D Mike 11 

dan 2-D Mike 21. 

GRNN telah digunakan untuk menganggarkan parameter pecahan empangan. 

Parameter pecahan empangan seperti lebar pecahan, ketinggian pecahan dan masa 

pembentukan pecahan adalah pembolehubah utama untuk menganggarkan pelepasan 

puncak semasa pecahan empangan. Kerana hubungan tak lurus yang tinggi bagi 

parameter pecahan empangan dan variasinya dengan masa, anggaran parameter-

parameter ini dianggap sebagai sangat rumit. Latihan dan ujian model GRNN 

telah dijalankan menggunakan rekod lebih daripada 140 empangan yang gagal di 

seluruh dunia untuk menganggarkan parameter pecahan  empangan. Keputusan yang 

diperolehi daripada model GRNN untuk parameter pecahan empangan dibandingkan 

dengan keputusan yang diperolehi daripada kaedah-kaedah sedia ada. Nilai dikira 

Ralat Relatif Mean, MRE untuk model GRNN telah didapati berjulat antara 0.11-0.17 

manakala nilai MRE untuk kaedah-kaedah yang sedia ada didapati berjulat antara 

0.15-0.33 untuk anggaran lebar pecahan empangan. Untuk anggaran masa kegagalan 

empangan, nilai MRE telah didapati antara 0.08-0.16 untuk keputusan model-model 

GRNN dan 0.34-0.57 untuk keputusan kaedah sedia ada . 
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Dalam kajian ini, model hidrologi dibangunkan menggunakan Mike 11 (sub-model 

NAM ). Mike 11 (sub-model NAM) ialah model konseptual tergumpal yang 

merupakan sebahagian daripada modul larian air hujan (RR) daripada sistem 

pemodelan sungai MIKE 11. Siri masa hujan, penyejatan dan data aliran sungai 

untuk kawasan tadahan Temenggor digunakan untuk menentukur dan mengesahkan 

model hidrologi untuk empangan Temenggor (empangan terbesar di sistem empangan 

yang dikaji). Model yang dibangunkan telah digunakan untuk meramalkan banjir 

maksimum yang mungkin, PMF untuk senario yang berbeza termasuk impak 

perubahan iklim. Nilai-nilai PMF didapati 2887.53 m3/s, 4299.43 m3/s dan 6427.89 

m3/s untuk tempoh (2001 - 2015), (2031 - 2045) dan (2061 - 2075) masing-masing. 

Model hidrodinamik 1-D Mike 11 telah ditentukur dan disahkan menggunakan 

paras air dan aliran sungai yang direkodkan untuk sungai Perak. Kemudian model 

tersebut telah digunakan untuk menentukan aliran keluar puncak maksimum  yang 

disimulasi dari empangan Temenggor, Bersia dan Keering untuk empat senario. 

Dengan menggunakan PMF bagi tempoh 2061 ke 2075, aliran keluar puncak 

maksimum bagi empangan-empangan di atas didapati ialah 272602.59 m3/s,  

217984.96 m3/s dan  184922,01 m3/s  masing-masing. Juga, penghalaan banjir sungai 

Perak, hidrograf banjir dan hidrograf  paras air di bahagian-bahagian yang 

berbeza telah disimulasi. 

Model hidrodinamik 2 - D Mike 21 digunakan untuk penghalaan banjir yang akan 

terhasil daripada aliran keluar puncak maksimum yang disimulasi dari kegagalan 

empangan Temenggor, Bersia dan Kenering untuk empat senario. Masa Banjir tiba, 

kedalaman air maksimum dan masa untuk kedalaman air maksimum dianggarkan 

untuk kampung terpilih yang berbeza di hiliran daripada tiga empangan di atas.  Selain 

itu, peta banjir telah didapatkan untuk senario yang berbeza.   
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CHAPTER 1 

1 INTRODUCTION 

1.1 History of Dams Failure 

Water is the vital liquid to support all forms of life on the earth. It is an essential 

element of the environment. Although 70% of the Earth is covered with water, a 

significant portion of the world population suffers water shortage. This is because 

96.5% of the water resources are salt water found in oceans (Gleick, 1993). On the 

other hand, 98.8% of the earth’s freshwater is in the forms of ice and groundwater and 

only a small portion is in rivers and lakes. As a result of the expanding world 

population and economic growth, the demand for water has increased the importance 

of freshwater resources. Therefore, it is essential to collect and store the available 

freshwater water resources on the earth. Dams are built for storing freshwater in large 

quantities to overcome the water shortage. 

As can be witnessed in the historical record, dam building is as old as man’s 

civilization. Elsewhere, India, Mesopotamia and Egypt are old civilization were dams 

existed. On record, the old dam in the world is Egyptian Saddle-Kafara dam which 

was built around 2600 BC as a diversion dam for flood control, but it was destroyed 

by heavy rain during construction or shortly afterward (Kok, 1987).  

Dams can usually be classified into two different groups: concrete and earthen/rock. 

Concrete dams can usually be classified into gravity, arch, or buttress. Almost 80% of 

the world’s major dams are constructed from natural erodible earthen materials (US 

Committee on Large Dams, 1975). In the United States, about 11,000 dams were 

constructed in the mid-twentieth century (Caldwell, 2009). Given the cheaper cost 

often associated with earth dam construction in developing countries, this percentage 

is likely higher on a global scale.  

Despite the efforts to promote dam safety, but the huge water volume that is retained 

in the reservoir can produce a serious flood and threat the properties and population in 

the downstream if a sudden released of the stored water may occur (Razad et al., 2013). 

There are many factors that may increase the potential of dam failure by overtopping 

and piping such as changes in the patterns of global climatic, the insufficient discharge 

capacity of the spillway and lack of maintenance of the embankment dams. Therefore, 

the study of dam break is considered significantly necessary in order to determine the 

peak outflow to assess economic, social and environmental impacts downstream and 

to prepare the emergency response plan. Over the past years, the need to predict, model 

and understand the characteristics of dam break has become an important subject. 

Therefore, many physically and numerically techniques have been developed for dam 

break analysis. 
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In the latter half of the twentieth century, several major embankment dams failed. In 

the Netherlands, in February 1953, a high–tide storm caused the highest water levels 

observed up to date and breached the dikes in more than 450 places, causing the death 

of nearly 1,900 people as well as enormous economic damage (Gerritsen, 2005). The 

Baldwin Hills Reservoir near Los Angeles failed in 1964, destroying 277 homes and 

killing 5 people after discharging 1 million m3 of water from the reservoir and causing 

an additional 73 million CAD (12M USD in 1971) in property damage (Hamilton and 

Meehan, 1971). The Teton Dam in Idaho failed in 1976 and is considered one of the 

most well-known dam failures in the world; 14 people were killed and over $1 billion 

in damages were caused (Solava and Delatte, 2003). But the world’s worst dam 

disaster occurred in Henan province in China, in August 1975, when the Banqiao Dam 

and the Shimantan Dam failed catastrophically due to the overtopping caused by 

torrential rains. Approximately 85,000 people died from flooding and much more died 

during subsequent epidemics and starvation; millions of residents lost their homes 

(Qing, 1997). This catastrophic event is comparable to what Cherno and Bhopa 

represent for the nuclear and chemical industries (McCully, 1996). Additionally, 

between 1985 and 1994, there have been more than 400 dam failures in the United 

States alone. The amount of life loss will depend on a number of different factors 

including: the water depth, geographical distribution of the population, warning time 

to reach the population, and how easy it is to warn them. Therefore, if advanced 

warning messages are delivered to the population, lives can be saved.  

Dam failures do not always result in loss of life, however, as many have been 

constructed far away from populated centers. Massive ecological damage is also 

possible. When the Aznalcollar tailings pond dam in Spain failed in 1998, a great 

quantity of toxic material spilled out into the river system, causing devastating 

ecological damage which threatened a nearby national park (Coleman et al., 2002). 

Similarly, when the Opuha Dam in New Zealand failed in 1997 while it was under 

construction, it caused significant economic and environmental damage (Coleman et 

al., 2002).  

1.2 Problem Statement  

Malaysia has not experienced any dam break incident. As the dams in Malaysia get 

older, the scenario of dam break should be considered in order to take relevant safety 

measures. Flooding due to dam break leads to greater peak discharge magnitudes 

compared to any flood that resulting from rainfall. Moreover, it will often have 

catastrophic consequences if there are human developments found downstream of the 

dam. To evaluate the flood damage resulting from a dam break, one has to predict not 

only the mode and possibility of a dam break but also the flood waves’ propagation 

and the volume of floodwater that the dam breach will release.  

The most important factors in the dam break analysis are hydrological parameters 

(peak outflow and time failure) and dam breach geometry (breach width and breach 

height). Therefore, the development of simple and precise approaches to deal with 
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estimation of these parameters has been the focus of many contributions published in 

the last decades (Wahl 2010; Bentaher 2013; Froehlich 1995; Xu and Zhang 2010). 

The statistical approaches that use regression analysis are considered as traditional 

approaches for predicting dam breach parameters.  In this approaches, reservoir 

characteristics such as depth and volume of water were taken as the dependent 

variables to obtain the best-fit equations for estimation of peak outflow and dam 

breach parameters (USBR 1988; Von Yhun and Gillette 1990; Froehlich 1995a, 2004, 

2008; Xu and Zhang 2010). More accurate equations can be obtained when the 

database of dam failure cases are well documented (Xu and Zhang 2010).  

Wahl (2004) and Pierce (2010) criticized the quality of the data for the case studies 

that were used in the formulation of regression analysis methods and the accuracy of 

predictions from these methods.  Black-box models is an alternative approach if the 

suitable database exists. In the black-box models, the inputs and targets are mapped 

directly inside the model without detailed consideration of the internal structure of the 

physical process (Hakimzadeh et al.,  2014). Artificial Neural Network (ANN) is 

considered as a black-box model which have usefulness exceed traditional statistical 

models such as free-pattern of forecasting model, toleration to data inaccuracy and 

their data-driven nature (Azmatullah et al., 2005). In addition to its simplicity, 

capability and accuracy. Artificial Neural Network (ANN) has been adopted and 

commonly used to model various problems in the field of water resources engineering. 

Forever, it has not been used specifically for estimating dam breach parameters. 

Climate change is an important issue that has gained increasing attention in recent 

years. Climate change may involve changes in the length and time of weather variation 

or changes in mean weather conditions (Carnesale & Chameides, 2011). Most of the 

dams in Malaysia are designed for estimated life more than 100 years. However, 

Malaysia is affected by climate change and the period included climate change studies, 

particularly for dam break analysis, should consider the dam life.     Despite the 

climatic changes that are expected in Malaysia, there have been no studies that carried 

out on the effect of climatic changes on dam break analysis. Therefore, analysis of 

flow depth, peak outflow and inundation maps that results from dam failure with 

different scenario under current and future climatic changes is considered very 

important and necessary for dam safety in Malaysia. 

Dam failure can lead to significant downstream disaster. This is especially true for a 

valley that has cascade reservoirs, which would intensify the extent of the disaster. 

Numerous experimental and computational studies concerning dam-break flows have 

been conducted over the past decades. However, the focus of majority of these 

research studies is on flood that results from the failure of a single dam due to 

overtopping failure mode only (Bellos et al. 1991; Gracia-Navarro, 1999; Zhou et al. 

2005; Al-Taiee and Rasheed, 2009; Dewals et al. 2010; Xiong, 2011; Cao et al., 2011; 

Mungkasi et al. 2013; Ehsan and Marx 2014; Sun et al. 2014; George and Nair, 2015; 

Wang et al., 2016; Andrew, 2016). There is scarce quantitative research about 

cascading dam-break flows despite the fact that cascading dam-break floods are 

significantly more disastrous since they can progressively destroy a series of dams. 
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The present study includes a more accurate technique for estimation of dam breach 

parameters. Also, the hydrological modeling for estimation of maximum probable 

flood considering climate change impact. While the hydrodynamic modeling for dam 

break modeling will consider different dam failure mode including overtopping and 

piping for a selected cascade dams in Malaysia.   

1.3 Research Objectives 

The main objective of the present study is to model the dam break for a cascade dams 

which include (Temenggor, Bersia and Kenering) dams located in the state of Perak, 

Malaysia with consideration of climate change impact. The specific objectives of this 

study are:   

1. To propose the generalized regression neural network (GRNN) as a new 

method that can accurately estimate the dam breach parameters. 

2. To estimate the maximum probable inflow hydrograph into Temengor 

reservoir using MIKE 11 (NAM – Submodel) hydrological model with 

consideration of climate change impact. 

3. To investigate the possible scenarios of dam failure such as overtopping and 

piping for cascade dams using 1D and 2D hydrodynamic models. 

4. To produced predicated inundation maps at the Temenggor, Bersia, and 

Kenering catchment due to dam break with consideration of climate change 

impact.   

1.4 Significance of the Study 

This study is concerning the simulation of dam break for cascade dams (Temenggor, 

Bersia and Kenering) located at Perak state, Malaysia with consideration of climate 

change impact.  

Data related to failed dams around the world were used to build Generalized 

Regression Neural Network (GRNN) models for accurately estimating dam breach 

parameters (dam breach width and dam failure time). The available methods used for 

estimation of dam breach parameters are based on regression analysis and suffer from 

uncertainty in their predictions. 

In this study, the dam break modeling was conducted by considering the impact of 

climate change on the probable maximum flood (PMF). The impact of climate change 

was not considered before in dam break studies in Malaysia. Also, a different mode of 

failure including overtopping and piping were considered in this study. However, most 

of the dam break studies were considered the overtopping failure mode only.         
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The consideration of cascade dams in dam break modeling is one of the main 

significance of the present study. Perak dam system which consists of three dams 

(Temenggor dam, Bersia dam and Kenering dam) was taken as a case study.  Almost 

all the studies on dam break in Malaysia was focused on a single dam only.  

The inundation depth maps are the main output of the present study. These maps will 

help to prepare the emergency action plan for the affected areas in order to reduce 

human and economic losses.   

 Also, the flood due to single dam break has a catastrophic consequences if the human 

development was found downstream of the dam. But this consequence will be more 

sever when more than one dam founded on the same river (cascade dam). Therefore, 

this study was conducted in order to investigate the flood due to the failure of the series 

dam. While most of the previous dam break studies were focused on modeling of dam 

break due to the single dam.         

1.5 Scope and Limitations   

This study was conducted to model dam failure by taking (Temenggor, Bersia and 

Kenering) located at Perak State, Malaysia as a case study. The simulation includes 

estimation of dam breach parameters using Generalized Regression Neural Network 

technique and data of 140 failed dam around the world. Due to a limitation in data, 

85% of the data is used for training while the remaining 15% is used for testing. 

The study also includes the hydrological modeling to forecast the inflow hydrograph 

for the catchment of Temengor dam. Mike 11 (NAM – Submodel) is used for this 

purpose. The data was acquired from respective Government authorities in Malaysia. 

Data on streamflow is derived using water balance concept. Also, there is no 

meteorological station found in the catchment of the study area, so the evaporation is 

taken from the nearest station.       

The hydrodynamic modeling include the simulation of flood wave resulted from a dam 

break. Mike 11, Mike 21 are used to simulate flood wave at (Temenggor, Bersia and 

Kenering) catchment. Limited data is available to be used in the modeling process. 

The available data for streamflow and water level are from January 1980 to June 1983 

and these data were used for calibration and validation for Mike 11. For Mike 21 

model, existing values for the Manning coefficient of roughness for the floodplain are 

used in the model application. These values are ranging from 0.045 to 0.10 and taken 

from (TNB).    
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1.6 Thesis Layout 

This thesis is organized into five chapters. Chapter one focuses on the introduction 

while Chapter two summarizes the published literature. The methodology and 

description of the study area are presented in Chapter three. Chapter four present the 

results that obtained from the study and their discussion. Finally, Chapter five present 

the main conclusions and the recommendations for the future research.  
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