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Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy 

SIMULATION OF MOSUL DAM BREAKS USING BASEMENT MODEL 

By

TALAL AHMED BASHEERAL 

2018

Chairman :   Aimrun Wayayok, PhD 
Faculty :   Engineering 

Dams have been constructed for many purposes such as water supply, flood control, 
irrigation, and hydropower generation. They provide numerous benefits to 
civilization; however, floods resulting from a dam break could lead to tremendous loss 
of lives and properties. Mosul Dam, the largest dam in Iraq, is located in the north-
western part of the country. The problem of Mosul Dam is the continuous corrosion 
in the dam foundations that contain gypsum and anhydrite formations, which dissolve 
under the effect of storing water in the reservoir.  According to the US Army Corps of 
Engineers 2006 report “in terms of internal erosion potential of the foundation, Mosul 
Dam is the most dangerous dam in the world”. The main objectives of this research 
were to predict the flood occurrence after the probable Mosul Dam break and develop 
maps of the downstream flooded areas to identify the zones under potential risk in 
Mosul city. Dam break studies depend on three primary tasks mainly; predicting the 
breach parameters, estimating the breach flood hydrograph and routing this 
hydrograph downstream of the dam site. In this study, five breach prediction 
approaches were implemented to predict the breach geometry and the required time 
for breach formation. In addition to that, overtopping and piping failure modes were 
considered. For each approach, eight reservoir water levels, ranging from minimum 
operation level to maximum storage level with 5 m intervals, were studied. Sensitivity 
analysis was carried out to evaluate the effect of breach parameters on the resulting 
flood hydrographs. The topography of the study area was demonstrated using a 30 m 
× 30 m Digital Elevation Model (DEM). In this study, the downstream flood 
propagation of the Mosul Dam break was simulated using the two-dimensional 
BASEMENT version 2.5.3 numerical model. The numerical model was utilized to the 
Tigris River between Mosul Dam and south of Mosul city along 87.8 km. The breach 
flood hydrographs for each scenario were analyzed and discussed. The results show 
that the overtopping failure mode tends to give higher peak discharge values than the 
piping failure mode by 1.8 to 19.6% in case of 330 and 300 m reservoir water levels, 
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respectively. In addition, results indicate that the most suitable method for estimating 
breach parameters for large dams was the Froehlich (2008) approach. 

Furthermore, for large dams, such as Mosul dam, the sensitivity analysis shows that 
the breach side slope does not affect the peak discharge time and has a minor influence 
on peak outflow values. Meanwhile, the required time for the breach to develop was 
highly sensitive to both peak discharge and peak discharge time. For instance, 
increasing breach formation time by 50% led to decreasing peak discharge by 19.19% 
and shifted the peak discharge time from 6 hours to 9.5 hours.  Based on the simulation 
results, indicative inundation maps for multiple scenarios have been presented in this 
study. The time lag between the start of the failure of Mosul dam and arrival of the 
peak flow to Mosul city for all cases were stated. In addition to that, the flood peak 
discharge, peak water level, and lag time of peak discharge along the Tigris River 
reach for various values of reservoir water level were specified and analyzed. A new 
empirical model relates the maximum wave depth along the main stream with the 
initial condition of the reservoir and the breach dimension has been developed. This 
new empirical model is highly significant in estimating the maximum flood depth as 
compared to the simulation results using BASEMENT model. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

SIMULASI PEMECAHAN EMPANGAN MOSUL MENGGUNAKAN 
MODEL BASEMENT  

Oleh 

TALAL AHMED BASHEER 

2018

Pengerusi :   Aimrun Wayayok, PhD
Fakulti :   Kejuruteraan 

Empangan telah dibina untuk pelbagai tujuan seperti bekalan air, kawalan banjir, 
pengairan dan penjanaan kuasa hidro. Ia memberi banyak faedah kepada 
ketamadunan; walau bagaimanapun, banjir akibat pecahan empangan boleh 
mengakibatkan kehilangan nyawa dan harta benda yang besar. Empangan Mosul 
adalah empangan terbesar di Iraq, terletak di bahagian barat laut negara ini. Masalah 
Empangan Mosul adalah kakisan berterusan di asas empangan yang mengandungi 
gipsum dan anhidrit, yang melarut di bawah kesan penyimpanan air di dalam takungan 
tersebut.  Menurut laporan 2006 Army Corps of Engineers AS “dari segi potensi 
hakisan asas dalaman yayasan, Empangan Mosul adalah empangan yang paling 
merbahaya di dunia”. Objektif-objektif utama kajian ini adalah untuk meramal 
kejadian banjir selepas kemungkinan berlaku pecahan Empangan Mosul dan 
membangunkan peta banjir kawasan hilir untuk mengenal pasti zon di bawah potensi 
berrisiko di bandar Mosul. Kajian pecahan empangan bergantung kepada tiga tugas 
utama, iaitu; meramal parameter pecahan, menganggar hidrograf banjir pecahan dan 
mengesan perjalanan hidrograf ini di hilir tapak empangan.  Di dalam kajian ini, lima 
pendekatan ramalan pecahan telah dilaksanakan untuk meramalkan geometri pecahan 
dan masa yang diperlukan untuk pembentukan pecahan. Di samping itu, mod 
kegagalan limpahan dan paip dipertimbangkan. Bagi setiap pendekatan, lapan paras 
air takungan, dari peringkat operasi minimum ke tahap penyimpanan maksimum 
dengan selang 5 m, telah dikaji. Analisis kepekaan dijalankan untuk menilai kesan 
parameter pecahan ke atas hidrograf banjir yang terhasil. Topografi kawasan kajian 
ditunjukkan dengan menggunakan Model Ketinggian Digital (DEM) 30 m × 30 m. Di 
dalam kajian ini, penyebaran banjir hiliran pecahan Empangan Mosul telah 
disimulasikan menggunakan model berangka dua-dimensi dikenali sebagai 
BASEMENT versi 2.5.3. Model berangka digunakan untuk Sungai Tigris antara 
Empangan Mosul dan selatan bandaraya Mosul sepanjang 87.8 km.  Hidrograf banjir 
pecahan untuk setiap senario dianalisis dan dibincangkan. Keputusan menunjukkan 
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bahawa mod kegagalan limpahan cenderung memberi nilai pelepasan puncak yang 
lebih tinggi daripada mod kegagalan paip sebanyak 1.8 hingga 19.6% dalam kes paras 
air takungan 330 dan 300 m masing-masing. Di samping itu, dapatan menunjukkan 
bahawa kaedah yang paling sesuai untuk menganggar parameter pecahan untuk 
empangan besar ialah pendekatan Froehlich (2008). 

Tambahan pula, untuk empangan besar, seperti empangan Mosul, analisis kepekaan 
menunjukkan bahawa cerun di tepi pecahan tidak menjejaskan masa pelepasan puncak 
dan mempunyai pengaruh kecil terhadap nilai aliran keluar puncak. Sementara itu, 
masa yang diperlukan untuk pecahan membangun sangat sensitif terhadap kedua-
duanya pelepasan puncak dan masa pelepasan puncak. Sebagai contoh, meningkatkan 
masa pembentukan pecahan sebanyak 50% membawa kepada pegurangan pelepasan 
puncak sebanyak 19.19% dan menganjakkan masa pelepasan puncak dari 6 jam 
kepada 9.5 jam.  Berdasarkan keputusan simulasi, peta pembanjiran indikatif untuk 
pelbagai senario telah dikemukakan di dalam kajian ini. Ekoran masa antara 
permulaan kegagalan empangan Mosul dan ketibaan aliran puncak ke bandaraya 
Mosul untuk semua kes dinyatakan. Di samping itu, pelepasan puncak banjir, paras 
air puncak, dan masa ekoran pelepasan puncak di kawasan jangkauan Sungai Tigris 
bagi pelbagai nilai paras takungan air ditentukan dan dianalisis. Model empirikal baru 
berkenaan dengan kedalaman gelombang maksimum di sepanjang aliran utama 
dengan keadaan awal takungan dan dimensi pemecahan telah dibangunkan. Model 
empirikal baru ini mempunyai ketepatan yang ketara untuk menganggar kedalaman 
banjir maksimum berbanding kepntusan simulasi mengguna BASEMENT. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 General 

Dams are hydraulic structures built to store waters flowing in rivers, and provide many 
benefits including daily water use, irrigation, hydropower generation, and many other 
purposes. In early times, dams were constructed for water supply or irrigation. With 
time development, multipurpose dams were built for flood control, energy, sediment 
control, navigation, industrial uses, water supply, and irrigation as well. Dams provide 
numerous benefits to civilization; however, floods resulting from a dam break could 
lead to tremendous loss of lives and properties. 

In spite of the efforts that are taken to ensure dam safety, dam failure may occur. 
Depending on the dam type, dam failure can take the form of collapse of the structure, 
or breach in the structure. Dam failures can occur as a result of one or a combination 
of the following reasons: 

i. Runoff resulting from intense rainfall storms,
ii. Insufficient spillway capacity, which result an embankment overtopping,

iii. Seepage or piping through the embankment or foundation (Internal erosion),
iv. Inadequate dam maintenance,
v. Poor design or use of unsuitable construction materials,

vi. Failure of upstream dams, which may cause a sequent dam failure,
vii. Foundation structural defects,

viii. Landslides into dam’s reservoirs, which may cause surges in the stored water
that lead to overtopping,

ix. Significant wave action due to high winds, which can result in considerable
erosion in the upstream face of the dam, and

x. Earthquakes, which may cause a liquefaction of earthen dams, or form cracks
in the dam body.

Dam breaks result in an uncontrolled release of a mixture of water and sediment from 
the reservoir that lead to an unexpected and destructive flood wave spreading 
downstream dam site. The catastrophic event of dam break may cause tremendous loss 
of life, environmental and property damages. A damaging effect on power generation 
and water supply would be anticipated as well. Regardless of the reason, nearly all 
dam’s failure initiate with formation of a breach (Xiong, 2011).  

According to the failure consequences, dams can be classified into low, significant, 
and high hazard (FEMA, 2013; Singh, 1996; USBR, 1988). The hazard potential 
classification depends on the probable loss of human lives and the economic losses in 
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the potential inundation area as consequences of a dam break. The economic losses 
would comprise damage to inhabit residences, agricultural lands, livestock, factories,
commercial buildings, roads, highways, and state utilities. 

The devastating consequences of dam failure necessitate the study of dam break flood 
propagation in urban areas, in order to provide the data for risk assessment and to 
develop a realistic emergency plan. 

Essentially, the flow resulting from the dam break can be studied analytically, 
experimentally, and numerically. The analytical studies emphases on resolving the 
governing equations using the principle of mathematics. Solving the nonlinear flow 
equations require a number of assumptions in order to simplify the equations which 
narrow the applicability to a limited dam break cases (Singh et al., 2011; Zhang &
Wu, 2011). Dam break experimental studies use physical models that built in 
laboratories and tested using advanced tools for measuring and recording the 
complicated dam break flow. The experimental studies investigate the dam break 
problems and provide reliable data for numerical model validation as well (Carrivick 
et al., 2011; Oertel & Bung, (2012). The dam breaks numerical studies overcomes the 
analytical and experimental methods limitation. With advanced computers and high 
processing capacity, simulations of dam break become more efficient and effective
(Zhang et al., 2014).

1.2 Mosul Dam Condition 

Mosul Dam (Figure 1.1) is the largest dam in Iraq and the fourth largest dam in the 
Middle East with reservoir capacity of 11110 Mm3 at the maximum operating level 
(El. 330 m). The dam located on the Tigris River in the governorate of Ninawah about 
60 km to the northwest of Mosul city. The dam is a multi-purpose earth-fill dam 
constructed for water supply, irrigation, flood control and hydropower generation, and 
was put into operation in 1986. 
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Figure 1.1 : Aerial View of Mosul Dam, Mosul, Iraq

The main problem of Mosul dam is the corrosion in the foundation due to the dissolve 
of its materials under seepage effect. The dam had been built on a weak foundation, 
which comprises a sequenced rock layers of marls, anhydrite, gypsum, and fractured 
limestone. These layers are subjected to dissolution forming fractures and leading to 
karst development under the dam body which appears as sinkholes at the surface (Al-
Taiee & Rasheed, 2009; Kelley et al., 2007; SIGIR, 2007).  

To overcome this problem and in order to reinforce the dam foundations, a continuous 
treatment must be provided by grouting and cement injections at the foundations. For 
this purpose, the designer includes a grouting gallery through the dam body to continue 
the grouting process of the foundation after completing the dam and during its 
operation (SIGIR, 2007). Although the grouting process is never stopped, some 
evidences of seepage near the left abutment, developing sinkholes (Figure 1.2 and 
Figure 1.3) downstream dam site have been recorded for the period from filling the 
dam reservoir until 2007 (SIGIR, 2007; Sissakian et al., 2014).

According to United States Army Corps of Engineers (USACE) 2006 report; “in terms 
of internal erosion potential of the foundation, Mosul Dam is the most dangerous dam 
in the world”. Moreover, USACE stated that the probability of Mosul dam failure is 
considered to be very high (SIGIR, 2007). 
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Figure 1.2 : Sinkhole About 500 m Downstream from the Dam  
(SIGIR, 2007) 

Figure 1.3 : Sinkhole Below Concrete Paved Area  
(SIGIR, 2007) 
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1.3 Research Question 

High capacity dams are constructed to achieve the balance between the growth in 
population and the demands for water supply, flood control and the hydropower as 
well. The higher capacity creates a higher hazard if the dam fails. Dams breaks are 
relatively rare but can cause enormous lives and economic losses when they occur.  

Due to the defect in the Mosul dam foundation as described in Section 1.2, the dam is 
subject to probable failure. Therefore, there is a need to investigate the flood resulting 
from Mosul dam break and its consequences on downstream areas.  

Based on the literature, very little works have been done in Mosul dam break 
simulation and its limited to one-dimensional models. The one-dimensional numerical 
models have a deficiency in simulating the flood wave in lateral diffusion compared 
to the two-dimensional models. Therefore, the current study attempts to analyze Mosul 
dam break in details using a two-dimensional model. 

Different two-dimensional hydrodynamic models use different techniques to solve the 
Shallow Water Equation (SWE) numerically. This numerical solution is based on the 
Finite Difference Method (FDM), Finite Element Method (FEM), or Finite Volume 
Method (FVM). Furthermore, the computational mesh can be formed as structured or 
unstructured elements. 

In the current study, the hydrodynamic model BASEMENT is employed to simulate 
Mosul dam break. This model solves the shallow water equations using a finite volume 
method on an unstructured mesh. In addition to that, BASEMENT model can handle 
one-dimensional, two-dimensional hydrodynamic models, slope collapse, sediment 
transport, model coupling, and many other features. 

The advantages of using BASEMENT model are: Firstly, it uses unstructured mesh 
which has the ability to represent complex geometries accurately. Secondly, it 
provides a wide range of alternatives to control the simulation environment and the 
select the solver schemes. Moreover, it provides the ability to use the parallel 
calculation technique, which use the available processors on the multi-core computer. 
In addition to, the model has a unique ability to visualize and view the results during 
the simulation process. 
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1.4 Objectives of the Study 

The main objective of this study is to investigate the Mosul dam break and the possible 
effects to the areas located downstream dam site, which include Mosul city. The 
specific objectives of this study can be listed as follows: 

1. To employ different methods to predict the breach parameters and evaluate the 
resulting flood hydrograph 

2. To simulate the flood wave propagation numerically using the two-dimensional 
BASEMENT and HEC-RAS models for different dam break scenarios. 

3. To investigate the effect of Mosul dam break on Mosul city in order to identify the 
zones under potential risk by developing inundation maps and providing the 
features of the flood wave.  

1.5 Scope and Limitation 

The scope of this research is to investigate numerically the Mosul dam break using a 
two-dimensional model. In order to achieve the study objectives, the present 
investigation has been concerned with: 

i. Employing five common approaches to predict the breach geometry and time 
of breach development, considering the overtopping and piping failure modes.
In addition to evaluating the breach parameters (Bavg, z, and tf) by conducting a 
sensitivity analysis to check their effect on the resulting flood hydrographs, 

ii. Estimating the flood hydrographs that resulting from the breached dam using 
the HEC-RAS model for different initial reservoir water elevations. The 
considered initial water elevation are: the maximum storage level (EL 335 m), 
the maximum operation level (EL 330 m), and the minimum operation level 
(EL 300 m), in addition to extra water levels (EL 325, 320, 315, 310, 305 m), 

iii. Routing the flood hydrograph downstream dam site towards Mosul city, in Iraq 
using the two-dimensional hydrodynamic model BASEMENT. The numerical 
simulation considering the above breach methods with the initial reservoir 
water elevations. A total of fifty-six different cases simulated in the study, 

iv. Applying the HEC-RAS 2D model to simulate the flood wave propagation and 
comparing the result with BASEMENT model, and 

v. Employing the geographic information system software (QGIS) for preparing 
the required data for the simulation and for presenting the simulation results 
and the inundation maps. 
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Due to the wide variety that can be considered in dam break studies, the current 
investigation is limited to the above-mentioned scopes. The considered river length of 
the study is up to 87.8 km, i.e. to the south of Mosul city, as the afterward areas are 
mostly agricultural areas with scattered small villages. In addition to that, the study is 
limited to the following points: 

i. Since the study area is located far away from Tigris River estuary, there is no 
effect of the sea tide on the study, hence sea tide was not included in the 
simulation,

ii. The hypothesis Mosul dam break is considered to occur due to the foundation 
failure, i.e., a sunny day failure, 

iii. Failure due to overtopping was set to occur when the water level in the reservoir 
exceeds the dam crest by 0.5 m,

iv. For piping failure mode, the elevation of piping initiation was set at ½ hw,
v. The breach location was assumed to be at the dam centreline, and 

vi. The final breach bottom elevation was set at the riverbed (reservoir bed). 

1.6 Organization of the Thesis 

This thesis is composed of six chapters. Chapter One, as shown above, presents a 
general background about dam break problems, the problem of Mosul dam, and the 
objectives of the study, together with the scope and limitations of the current research. 

Chapter Two contains a review of the literature that related to the dam break, which 
cover the techniques and the components that used in dam break studies. This Chapter 
extensively reviews the causes and the modes of dam failures, the method that used in 
prediction of dam breach, dam break modelling types, such as physical and numerical 
which divided into one-dimensional and two-dimensional models. The Chapter also 
reviews the literature on sensitivity analysis of different dam break parameters. 
Finally, there is a summary of the literature review and the research gaps related to 
dam break studies. 

Chapter Three is devoted to the theoretical fundamental of the numerical simulation 
which include the basis of the one-dimensional and two-dimensional unsteady flow 
equations, with their assumptions. The factors that accompany the numerical 
modelling of dam break flows have been discussed. In addition, the methods that 
numerically solve the Shallow Water Equations have been presented in this chapter. 

The methodology to achieve the objective of the current study is described in Chapter 
Four. The information about the study area, Mosul dam, and Mosul reservoir are 
presented. For the development of the simulation model, the pre-processing 
preparation and the elements required for model building in BASEMENT have been 
described in details in this chapter. 
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Chapter Five introduces the results and discussion of the Mosul dam break for 
different failure scenarios. The results presented and discussed as graphs, tables and 
maps for different cases. The flood hydrographs resulting from the breached dam for 
different method and scenarios have been compared and discussed. Moreover, 
validation of BASEMENT model for the case study had been included in this chapter. 
The effect of the flood hydrograph on Mosul city had been analysed. Multi types of 
inundation maps for different dam break scenarios have been presented. 

Finally, Chapter Six presents a summary and conclusions of the study, as well as 
suggestions for some work in the future. 
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