PILOT SCALE ANAEROBIC DIGESTION OF FOOD WASTE

Lim Wei Jie

FK 2017 130
PILOT SCALE ANAEROBIC DIGESTION OF FOOD WASTE

By

LIM WEI JIE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

June 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PILOT SCALE ANAEROBIC DIGESTION OF FOOD WASTE

By

LIM WEI JIE

June 2017

Chairman: Chin Nyuk Ling, PhD
Faculty: Engineering

Anaerobic digestion is a green and cost effective in handling a high volume of food waste in Malaysia. The main goal of this study is to assess the effect of substrate compositions on compost quality and profiling pattern of anaerobic digester. This study of food waste digestion using pilot scale Cowtech anaerobic digester was to optimize the proportion of food waste, dry leaf and cow manure as the substrates. The feeding of substrate and discharging of food waste compost were at rate of 40 kg/day at 40% capacity of the pilot scale anaerobic digester. The simplex centroid mixture design was applied to obtain optimum mixture proportion with three responses, including C/N ratio, pH and electrical conductivity.

The optimization experiments were studied with the goal settings of compost qualities including C/N ratio was 21, pH at 8 and electrical conductivity at 1 dS/m for a single digestion of pure food waste and co-digestions of food waste with dry leaf or cow manure. Based on goal settings above, the optimum pure food waste proportion of 51.3% of vegetable waste, 30.3% of fruit waste and 18.4% of meat waste for pure food waste study. When dry leaf was included in the mixture proportion optimization, the optimum mixture was 1.2% of vegetable waste, 4.9% of fruit waste, 7.1% of meat waste and 86.8% of dry leaf. When cow manure was included in the mixture proportion optimization, the optimum mixture was 23.2% of vegetable waste, 34.3% of fruit waste, 36.5% of meat waste and 6% of cow manure.

The nutrient content from pure food waste compost was compared with those with co-digested of dry leaf or cow manure. The nutrient content of pure food waste was 0.067% in nitrogen content, 0.07% in potassium content and 0.04% in phosphorus content. The mixture of the food waste with dry leaf had the nutrient of 0.061% in nitrogen content, 0.09% in potassium content and 0.08% in phosphorus content. The mixture of the food waste with cow manure compost had nutrient content of 0.063% in nitrogen content, 0.1% in potassium content and 0.08% in phosphorus content.
The addition of dry leaf in food waste mixture has significantly improved potassium content by 27.4% and phosphorus content by 86%, while for the addition of cow manure in food waste mixture has significantly improved potassium content by 41.1% and phosphorus content by 100%. Using dry leaf and cow manure in Cowtech anaerobic digestion is recommend in improving nutrient content of food waste compost.

Profiling pattern in pilot scale anaerobic digester was determined by feeding of pure food waste and mixture of the food waste with cow manure in a steady-state input-output manner. The retention time of anaerobic food waste digestion of 30 days for complete digestion was observed based on measured physic-chemical properties of total carbon content, total nitrogen content and total volatile solid. The 30 days anaerobic digestion period take place efficiently is more than sufficient for a complete anaerobic digestion process.
Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENCERNAAN ANAEROBIK UNTUK SISA MAKANAN YANG BERSKALA PILOT

Oleh

LIM WEI JIE

Jun 2017

Pengerusi: Chin Nyuk Ling, PhD
Fakulti: Kejuruteraan

Pencernaan anaerobik merupakan kaedah yang bersifat mesra alam dan efektif kos untuk mnguruskan jumlah sisa makanan yang tinggi di Malaysia. Objektif utama dalam kajian ini adalah untuk menilai kesan daripada substrat terhadap kualiti kompos dan corak profil daripada pencerna anaerobik. Pencerna anaerobik yang berjenama Cowtech telah digunakan dalam kajian pengoptimunnun kompos sisa makanan yang bersifat rintis dengan menggunakan sisa makanan, daun kering and tahi lembu. Kadar untuk input substrat and output kompos adalah 40 kg/hari dan kapasiti penggunaan pencerna anaerobic adalah 40 % sahaja. Simplex centroid mixture digunakan untuk memperoleh perkadaran campuran optimum dengan menggunakan tiga respons iaitu nisbah C/N ratio, pH dan kekonduksian elektrik.

Matlamat kualiti kompos yang ditetapkan untuk eksperimen pengoptimunnun sisa makanan dan campuran sisa makanan dengan daun kering atau tahi lembu termasuk nisbah C/N iaitu 21, pH iaitu 8 and kekonduksian elektrik iaitu 1 dS/m. Berdasarkan matlamat kualiti kompos tersebut, perkadaran sisa makanan optimum terdiri daripada 51.3% sisa sayur-sayuran, 30.3% sisa buah-buahan dan 18.4% sisa daging. Apabila daun kering digunakan dalam eksperimen pengoptimunnun campuran sisa makanan dengan daun kering, perkadaran campuran optimum adalah 1.2% sisa sayur-sayuran, 4.9% sisa buah-buahan, 7.1% sisa daging dan 86.8% daun kering. Apabila tahi lembu terlibat dalam eksperimen pengoptimunnun perkadaran campuran, campuran optimum adalah 23.2% sisa sayur-sayuran, 34.3% sisa buah-buahan, 36.5% sisa daging dan 6% tahi lembu.

Pembandingan kandungan nutrien antara kompos sisa makanan dengan kompos campuran sisa makanan dengan daun kering dan tahi lembu telah dihasilkan. Kompos sisa makanan tulen mengandungi 0.067% kandungan nitrogen, 0.07% kandungan kalium dan 0.04% kandungan fosforus. Campuran kompos sisa makanan...
dengan daun kering mengandungi 0.061% kandungan nitrogen, 0.09% kandungan kalium dan 0.08% kandungan fosforus. Campuran kompos sisa makanan dengan tahi lembu mengandungi 0.063% kandungan nitrogen, 0.1% kandungan kalium dan 0.08% kandungan fosforus. Pertambahan daun kering dalam campuran sisa makanan telah meningkat kandungan kalium sebanyak 27.4% dan kandungan fosforus sebanyak 86%, manakala bagi pertambahan tahi lembu dalam campuran sisa makanan telah meningkat kandungan kalium sebanyak 41.1% dan kandungan fosforus sebanyak 100%.

Corak profil dalam pencerna anaerobik ditentukan dengan input sisa makanan dan campuran sisa makanan dengan tahi lembu dengan input-output yang bersifat mantap. Tempoh retensi untuk kompos sisa makanan anaerobik adalah selama 30 hari untuk satu proses yang lengkap dengan diperhatikan berdasarkan sifat fizik-kimia yang terdiri daripada jumlah kandungan karbon, jumlah kandungan nitrogen dan jumlah pepejal merup. Tempoh 30 hari untuk proses kompos anaerobik adalah sangat lengkap.
ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisor Prof., Dr., Ir. Chin Nyuk Ling for the continuous support throughout my research project in Master’s degree, for her patience, motivation and encouragement. I could not imagine having a better guider for my research project.

Besides my supervisor, my deepest appreciation goes to Assoc. Prof., Dr. Yus Aniza and Dr. Tee Tuan Poy for their support, insightful comments, hard questions assistance and guidance along the way of doing research.

I also would like to thank lab technicians for offering me helps when using equipment and guiding me using equipment with patient and enthusiasm. I would like thank my friends for their inspiration and friendship throughout the years.

Last but not least, I would like thank my parent who always supporting me.
I certify that a Thesis Examination Committee has met on 2 June 2017 to conduct the final examination of Lim Wei Jie on his thesis entitled "Pilot Scale Anaerobic Digestion of Food Waste" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mohd Nazli Naim, PhD
Senior Lecturer
Fakulti Kejuruteraan
Universiti Putra Malaysia
(Chairman)

Azhari bin Samsu Baharuddin, PhD
Senior Lecturer
Fakulti Kejuruteraan
Universiti Putra Malaysia
(Internal Examiner)

Ling Tau Chuan, PhD
Professor
University of Malaya
Malaysia
(External Examiner)

[Signature]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 8 July 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Chin Nyuk Ling, PhD
Professor, Ir
Faculty Engineering
Universiti Putra Malaysia
(Chairman)

Yus Aniza Yusof, PhD
Associate Professor
Faculty Engineering
Universiti Putra Malaysia
(Member)

Tee Tuan Poy, PhD
Senior Lecturer
Faculty Agriculture
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ______________________ Date: ______________

Name and Matric No.: Lim Wei Jie, GS 40666
Declaration by Members of Supervisory Committee

This is to confirm that
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___________________________ Signature: ___________________________
Name of Chairman of Name of Member of
Supervisory Supervisory
Committee: ___________________________ Committee: ___________________________

Signature: ___________________________
Name of Member of
Supervisory Committee: ___________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background of study | 1 |
1.2 Problem statement | 2 |
1.3 Objective | 2 |
1.4 Scope of thesis | 3 |

2 LITERATURE REVIEW

2.1 Food waste | 4 |
2.2 Effort in managing food waste in Malaysia| 4 |
2.3 Composting process | 6 |
2.4 Stages of aerobic composting | 7 |
2.5 Method of food waste aerobic composting | 8 |
2.6 Anaerobic digestion of food waste | 10 |
2.7 Cowtech anaerobic digester in Malaysia | 10 |
2.8 Anaerobic digestion in Malaysia and other Asian countries | 11 |
2.9 Process of anaerobic digestion of food waste | 12 |
2.10 System of anaerobic digestion | 13 |
2.11 Operation mode of anaerobic digester | 13 |
2.12 Parameters for anaerobic digestion of food waste | 14 |
 2.12.1 Temperature | 14 |
 2.12.2 C/N ratio | 14 |
 2.12.3 pH and volatile fatty acid | 15 |
 2.12.4 Total solid content | 15 |
2.13 Compost quality | 16 |
2.14 Mixture experiment design | 16 |
2.15 Risk from inefficient composting | 17 |
2.16 Summary | 17 |

3 MATERIAL AND METHODOLOGY

3.1 Introduction | 19 |
3.2 Pilot scale anaerobic digester | 20 |
3.3 Optimization of proportional of substrates | 21 |
3.4 Determination of compost qualities | 24 |
 3.4.1 Determination of physic-chemical properties | 24 |
 3.4.2 Determination of nutrient content | 27 |
<table>
<thead>
<tr>
<th>3.5</th>
<th>Mixture experiment design</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.1</td>
<td>Optimization of proportional of pure food waste compost</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Effect of addition of dry leaf on food waste compost</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Effect of addition of cow manure on food waste compost</td>
</tr>
<tr>
<td>3.6</td>
<td>Profiling pattern in pilot scale anaerobic digester</td>
</tr>
<tr>
<td>3.7</td>
<td>Summary</td>
</tr>
</tbody>
</table>

4 FOOD WASTE SUBSTRATES PROPORTION OPTIMIZATION IN ANAEROBIC DIGESTION

4.1 Introduction

4.2 Characteristics of substrates

4.3 Optimization of pure food waste

4.3.1 Model fitting and regression analysis

4.3.2 Contour plot and 3D surface plot

4.3.3 Optimization plot of pure food waste

4.3.4 Model validation

4.4 Optimization of mixture of the food waste with dry leaf

4.4.1 Model fitting and regression analysis

4.4.2 Contour plot and 3D surface plot

4.4.3 Optimization plot of mixture of the food waste with dry leaf

4.4.4 Model validation

4.5 Optimization of mixture of the food waste with cow manure

4.5.1 Model fitting and regression analysis

4.5.2 Contour plot and 3D surface plot

4.5.3 Optimization plot of mixture of the food waste with cow manure

4.5.4 Model validation

4.6 Effect of addition of dry leaf and cow manure in food waste compost

4.7 Nutrient content for optimised food waste compost

4.8 Summary

5 DETERMINATION OF PROFILING PATTERN OF PILOT SCALE ANAEROBIC DIGESTER

5.1 Introduction

5.2 Profiling of total carbon, nitrogen and volatile solid contents

5.3 Profiling of pH and electrical conductivity

5.4 Summary

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

6.2 Recommendation for future studies
LIST OF TABLES

Table	Page
2.1 Summary of main six strategies in NSPFWMM | 5
2.2 Involvement of microbe population in each phase of aerobic composting | 8
2.3 Food waste aerobic composting methods | 9
2.4 Comparison between in-vessel and windrow method for aerobic composting | 9
3.1 Schedule for anaerobic digestion of pure food waste proportions of vegetable waste, fruit waste and meat waste at ratio of 1:40kg | 28
3.2 Schedule for anaerobic digestion of mixture of food waste with dry leaf proportion at ratio of 1:40kg | 30
3.3 Schedule for anaerobic digestion of mixture of the food waste with cow manure proportion at ratio of 1:40kg | 31
4.1 Physic-chemical properties of substrates | 34
4.2 Results of response values for pure food waste compost | 35
4.3 Model summary statistics for C/N ratio, pH and electrical conductivity of pure food waste compost | 35
4.4 Regression coefficient (b_{ij}) and R^2 for three response variables of pure food waste compost | 36
4.5 Results of response values for mixture of the food waste with dry leaf compost | 40
4.6 Model summary statistics for C/N ratio, pH and electrical conductivity mixture of the food waste with dry leaf compost | 40
4.7 Regression coefficient, R^2 for three response variables of mixture of the food waste with dry leaf compost | 41
4.8 Results of response values for mixture of the food waste with cow manure compost | 48
4.9 Model summary statistics for C/N ratio, pH and electrical conductivity for mixture of the food waste with cow manure compost | 48
4.10 Regression coefficient (b_{ij}) and R^2 for three response variables of mixture of the food waste with cow manure compost | 49
4.11 Nutrient content for optimised food waste composts | 59
5.1 Substrate input proportion in pilot scale anaerobic digestion | 60
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>19</td>
</tr>
<tr>
<td>3.2</td>
<td>20</td>
</tr>
<tr>
<td>3.3</td>
<td>21</td>
</tr>
<tr>
<td>3.4</td>
<td>22</td>
</tr>
<tr>
<td>3.5</td>
<td>23</td>
</tr>
<tr>
<td>3.6</td>
<td>24</td>
</tr>
<tr>
<td>3.7</td>
<td>25</td>
</tr>
<tr>
<td>3.8</td>
<td>25</td>
</tr>
<tr>
<td>3.9</td>
<td>26</td>
</tr>
<tr>
<td>3.10</td>
<td>26</td>
</tr>
<tr>
<td>3.11</td>
<td>28</td>
</tr>
<tr>
<td>3.12</td>
<td>29</td>
</tr>
<tr>
<td>3.13</td>
<td>31</td>
</tr>
<tr>
<td>3.14</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>38</td>
</tr>
</tbody>
</table>

- Figure 2.1: Aerobic composting process
- Figure 2.2: Aerobic composting phases against temperature profile
- Figure 2.3: Food waste anaerobic digestion process
- Figure 3.1: Process flow of experiment design
- Figure 3.2: Pilot scale anaerobic digester
- Figure 3.3: Schematic diagram of the pilot scale anaerobic digester
- Figure 3.4: Food waste grinder
- Figure 3.5: Workflow of using anaerobic digester
- Figure 3.6: Muffle furnace
- Figure 3.7: Heating coil
- Figure 3.8: Distillation unit
- Figure 3.9: Water bath shaking machine
- Figure 3.10: Temperature, pH and electrical conductivity instrument
- Figure 3.11: Simple design plot of pure food waste
- Figure 3.12: Simple design plot of mixture of the food waste with dry leaf
- Figure 3.13: Simple design plot of mixture of the food waste with cow manure
- Figure 3.14: Timeframe of feeding of substrates and discharging of food waste compost
- Figure 4.1: Mixture contour plot (left) and surface plot (right) of C/N ratio of pure food waste compost
- Figure 4.2: Mixture contour plot (left) and surface plot (right) of pH of pure food waste compost
- Figure 4.3: Mixture contour plot (left) and surface plot (right) of C/N ratio of pure food waste compost
- Figure 4.4: Overlaid contour plot of C/N ratio, pH and electrical conductivity of pure food waste compost
4.5 Optimization plot for pure food waste compost

4.6 The contour plots for C/N ratio for food waste compost containing (a) fruit, vegetable and meat components, (b) fruit and vegetable components plus dry leaf, (c) fruit and meat components plus dry leaf, (d) vegetable and meat components plus dry leaf; surface plot for C/N ratio for food waste compost containing (e) fruit, vegetable and meat components, (f) fruit and vegetable components plus dry leaf, (g) fruit and meat components plus dry leaf, (h) vegetable and meat components plus dry leaf

4.7 The contour plots for pH for food waste compost containing (a) fruit, vegetable and meat components, (b) fruit and vegetable components plus dry leaf, (c) fruit and meat components plus dry leaf, (d) vegetable and meat components plus dry leaf; surface plot for pH for food waste compost containing (e) fruit, vegetable and meat components, (f) fruit and vegetable components plus dry leaf, (g) fruit and meat components plus dry leaf, (h) vegetable and meat components plus dry leaf

4.8 The contour plots for electrical conductivity for food waste compost containing (a) fruit, vegetable and meat components, (b) fruit and vegetable components plus dry leaf, (c) fruit and meat components plus dry leaf, (d) vegetable and meat components plus dry leaf; surface plot for electrical conductivity for food waste compost containing (e) fruit, vegetable and meat components, (f) fruit and vegetable components plus dry leaf, (g) fruit and meat components plus dry leaf, (h) vegetable and meat components plus dry leaf

4.9 Overlaid contour plot of C/N ratio, pH and electrical conductivity for food waste compost containing (a) fruit, vegetable and meat components, (b) fruit and vegetable components plus dry leaf, (c) fruit and meat components plus dry leaf, (d) vegetable and meat components plus dry leaf

4.10 Optimization plot for mixture of the food waste with dry leaf compost

4.11 The contour plots for C/N ratio for food waste compost containing (a) vegetable, fruit and meat components, (b) vegetable and fruit components plus cow manure, (c) vegetable and meat component plus cow manure, (d) fruit and meat component plus cow manure; surface plot for C/N ratio for food waste compost containing (e) vegetable, fruit and meat components, (f) vegetable and fruit components plus cow manure, (g) vegetable and meat component plus cow manure, (h) fruit and meat component plus cow manure

4.12 The contour plots for pH for food waste compost containing (a) vegetable, fruit and meat components, (b) vegetable and fruit components plus cow manure, (c) vegetable and meat component plus cow manure, (d) fruit and meat component plus cow manure
components plus cow manure, (c) vegetable and meat component plus cow manure, (d) fruit and meat component plus cow manure; surface plot for pH for food waste compost containing (e) vegetable, fruit and meat components, (f) vegetable and fruit components plus cow manure, (g) vegetable and meat component plus cow manure, (h) fruit and meat component plus cow manure

4.13 The contour plots for electrical conductivity for food waste compost containing (a) vegetable, fruit and meat components, (b) vegetable and fruit components plus cow manure, (c) vegetable and meat component plus cow manure, (d) fruit and meat component plus cow manure; surface plot for electrical conductivity for food waste compost containing (e) vegetable, fruit and meat components, (f) vegetable and fruit components plus cow manure, (g) vegetable and meat component plus cow manure, (h) fruit and meat component plus cow manure

4.14 Overlaid contour plot of C/N ratio, pH and electrical conductivity for food waste compost containing (a) vegetable, fruit and meat components, (b) vegetable and fruit components plus cow manure, (c) vegetable and meat component plus cow manure, (d) fruit and meat component plus cow manure

4.15 Optimization plot for mixture of the food waste with cow manure compost

4.16 The contour plot for C/N ratio of (a) pure food waste compost, (b) mixture of food waste with dry leaf compost, (c) mixture of food waste with cow manure compost

4.17 The contour plot for pH of (a) pure food waste compost, (b) mixture of food waste with dry leaf compost, (c) mixture of food waste with cow manure compost

4.18 The contour plot for electrical conductivity of (a) pure food waste compost, (b) mixture of food waste with dry leaf compost, (c) mixture of food waste with cow manure compost

5.1 Total carbon content for substrate (above) and food waste compost (below)

5.2 Total nitrogen content for substrate (above) and food waste compost (below)

5.3 Volatile solid for substrate (above) and food waste compost (below)

5.4 pH value for substrate (above) and food waste compost (below)

5.5 Electrical conductivity for substrate (above) and food waste compost (below)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/N ratio</td>
<td>Carbon-to-nitrogen ratio</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
</tbody>
</table>

xvii
CHAPTER 1

INTRODUCTION

1.1 Background of study

Food waste is a putrescible and recyclable material in dominant composition (40%-64%) in municipal solid waste in Malaysia (Periathamby et al., 2009). Malaysia with a population more than 30 million in 2014 produced up to 8000 tonnes/day of food waste in a day (Anonymous, 2014), which is an increment of 7070 tonnes/day from food waste in 2011 (Anonymous, 2013). The reasons of this escalating quantity of food waste are because of the changes in eating habits as living standards have improved through the years where people can afford more food products than before (Abdul, 2010) and the rapid population expansion and urbanisation (Zamali et al., 2009).

Landfill and incineration are the more common methods for food waste disposal. Landfill is a general and widely accepted method for managing food waste as it is cost effective and simple to be applied. However, food waste management via landfill has become more difficult as many landfills have reached their capacity in Malaysia (Moh and Manaf, 2014). Contrarily, incineration method is costly and requires high energy usage and technology. Incineration method is rarely applied for food waste treatment as it creates air pollution (Zhang et al., 2014). Both of these methods are unsustainable for managing food waste as they bring significant environment impacts.

In Malaysia, the authority is facing strenuous challenges in food waste handling and treatment. Food waste imparts the current environmental issue due to its improper separation with municipal solid waste and that it attributed to the production of greenhouse gases in landfills. Thi et al. (2015) reported that food waste might emit greenhouse gases that bring negative impacts to climate changes. Therefore, there is a need to have a cost effective and environment friendly food waste handling and management system.

Food waste is discarded on a daily basis due to living nature of human beings via agricultural, industrial and domestic activities. Due to the feature of high moisture content, high organic content and possesses more than 90% of biodegradability, it is good for using as feedstock in an anaerobic digestion (Li et al., 2013a; Abdullah and Chin, 2010; Veeken and Hamelers, 1999). Anaerobic digestion is a biological degradation process, where organic substrates transform to stable and humic-like substances under mesophilic, thermophilic and absence of oxygen condition that can be used as an organic compost (Iyengar and Bhave, 2006; 2014; Li et al., 2013a; Zhang et al., 2014). Generally, anaerobic digestion is an effective, high economic and high environment feasibility in food waste handling (Chang and Hsu 2008; Zhang et al., 2015).
1.2 Problem statement

Food waste is major types of municipal organic wastes in Malaysia. The low cellulose content and C/N ratio of food waste has a potential in resulting acid accumulation, high concentration of ammonia, low compost quality and low biogas production in a mono-digestion (Alburquerque et al., 2012; Zhang et al., 2014). The co-digestion of food waste with other organic wastes such as green waste and cow manure can improve the compost quality and biogas production yield (Alburquerque et al., 2012; Dias et al., 2014; Fred et al., 2014; Zhang et al., 2014). As the food waste is a commonly available waste, it is feasible for anaerobic co-digestion all the times. Anaerobic co-digestion also helps in reducing costs by processing several wastes in a single facility (Alatriste-Mondragon et al., 2006).

Rao et al. (2011) verified that the maximum methane yield was obtained with optimum mixture in co-digestion of sewage sludge with cow manure and fruit juice water. Besides, Abdullah and Chin (2010) used mixture design to formulate mixture with 44.0% w/w of vegetable scraps, 19.7% w/w of fish processing wastes and 36.2% w/w of onion peels at desired moisture content (60%) and C/N ratio (30%) for commencing a composting process. Besides, Chae and Ahn (2013) found that mixture made up of 25% of food waste, 12% of rice bran and 63% of sawdust was the optimum culture medium to produce fruit body of Pleurotus ostreatus. Based on findings above, it is observed that mixture proportions largely affect anaerobic digestion and compost quality.

The compositions of food waste are heterogeneous usually due to different eating habits of human beings, which might hinder the anaerobic digestion. Therefore it is required to mix other organic material to reach an adequate proportional for anaerobic digestion. A standard simulation approach of mixture optimisation is essential to generate appropriate portion of each component in mixture for initiating anaerobic digestion process. Design of experiment is a statistical approach, and it is frequently applied to different engineering problems to improve the performance and to find the optimum process responses. The major advantages of this practice are shorten time taken for development of model, lowered total cost, lowered variance and improved process responses as compared with traditional methods such as trial and error method (Rao and Baral, 2011).

As the quality of compost produced from food waste depends on its compositions and other combination of wastes, this study attempts to investigate the effect of substrate components consisting of food waste, dry leaf and cow manure on compost quality under mesophilic phase and optimisation pattern using simplex centroid mixture design.

1.3 Objective

The general objective of this study is to determine effect of substrate compositions on quality of compost. The simplex centroid mixture design was applied to determine
the optimised proportional of substrate in order to enhance the efficiency of anaerobic digestion using a pilot scale anaerobic digester. The profiling pattern in this pilot scale anaerobic digester was also investigated in order to get a better understanding on general cycle of a complete anaerobic digestion of food waste. The specific objectives are:

To produce a good quality pure food waste compost in a single digestion and to improve the quality of food waste compost by co-digesting dry leaf or cow manure through a mesophilic phase with the aid of optimization technique.

To determine the profiling pattern in this pilot scale anaerobic digester by feeding pure food waste and mixture of the food waste with cow manure in a steady-state input-output manner.

1.4 Scope of this thesis

It is hoped that at this study helps in alleviating food waste issue and environment pollutions raised by food waste by converting food waste to organic compost.

Chapter 2 provides information on the current status of food waste in Malaysia, previous studies on anaerobic digestion on food waste management, Cowtec anaerobic digester in Malaysia and parameters in monitoring anaerobic digestion process.

Chapter 3 describes the analytical process of measuring chemical properties of substrates and liquid compost, procedure of using anaerobic digester including sorting out plastic material, shredding into smaller size of particles, mixing, then followed by digestion, discharging of liquid compost and burning biogas gas. The information and design of the anaerobic digester is illustrated. The statistical process of obtaining mixture proportional is explained. The profiles of physic-chemical properties of food waste composts when continuing fed with pure food waste and the mixture of the food waste with cow manure was determined using analytical process of measuring physic-chemical properties.

Chapter 4 provides the information and process of regression analysis, interpretation of contour plot and surface plot and model validation in obtaining the optimum mixture proportional. The discussion of nutrient assessment for optimum mixture is presented in this chapter.

Chapter 5 details the profiling pattern in this pilot scale anaerobic digester by feeding pure food waste and mixture of the food waste with cow manure in a continuous steady-state input-output manner.

Lastly, conclusions and recommendation for future studies are made in chapter 6.
REFERENCES

Alzahrin, A. (2010). Resident was compulsory to separate waste as government provide free container in 2013. Berita Harian (Daily News).

PUBLICATION

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION: ____________________________

TITLE OF THESIS / PROJECT REPORT:

PILOT SCALE ANAEROBIC DIGESTION OF FOOD WASTE

NAME OF STUDENT: LIM WEI JIE

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.

2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.

3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as:

*Please tick (V)

☐ CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).

☐ RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).

☐ OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for:

☐ PATENT Embargo from __________ until __________

(date) (date)

Approved by:

(Signature of Student) (Signature of Chairman of Supervisory Committee)

New IC No/ Passport No.: Name:

Date: Date:

[Note: If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]