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of the requirement for the degree of Doctor of Philosophy 

 

 

INDOOR TEMPERATURE AND HUMIDITY CONTROL USING 

GENERALIZED PREDICTIVE CONTROL-FUZZY COGNITIVE MAP 

CONTROLLER ON DIRECT EXPANSION AIR CONDITIONING 

SYSTEM 

 

 

By 

 

 

FARINAZ BEHROOZ 

 

 

April 2017 

 

 

Chairman :   Professor Ir. Norman Mariun, PhD 

Faculty :   Engineering 

 

 

Nowadays, the application of different controllers on heating, ventilating and air-

conditioning system (HVACs) are considered as an important issue in order to 

improve the performance of the system, due to the high demand of these appliances 

in the buildings and their high energy consumptions in the buildings. Direct 

expansion air conditioning system (DX A/C) is mostly used in the small to medium 

size buildings in tropical regions. The DX A/C system is nonlinear, Multiple-Input 

and Multiple-Output (MIMO) and inherently complex system with strong cross 

coupling effect between supply air temperature and supply air humidity. 

 

 

The previous researches shows that designing the nonlinear controllers are limited 

and difficult due to the complexity and uncertainty of the system, and complex 

mathematical analysis in finding a Lyapunov function. On the other hand, for making 

the control design easy, the MIMO structure of the system are considered as Single-

Input and Single-Output (SISO) system by decoupling the system. In order to 

consider the coupling effects, MIMO control strategies are required. But, these 

strategies mostly are applied to the linearized model of the system around operating 

point and makes the working range of the controller limited to the neighborhood of 

operating range. For full control of the system, the wider operating range is required. 

 

 

Therefore, the goals for designing the suitable controller on DX A/C system are 

designing MIMO nonlinear controller by easy mathematic and structure. The simple 

Fuzzy Cognitive Map (FCM) control algorithm by using generalized predictive 

control (GPC) for assigning the weights are used to obtain the goals of comfort and 

energy saving by considering the real characteristics of air conditioning system. 
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The performance analysis of the designed controller was tested by set point tracking 

test and disturbance rejection test. The results for both tests showed that by changing 

the compressor and supply fan’s speed, the proposed controller successfully can be 

implemented to the DX A/C system. Also, the controller work successfully in wider 

operating range in other set points (22-26 oC). The GPC-FCM controller are 

compared by LQG controller in different conditions and the results shows the better 

performance of GCP-FCM controller in comparison with LQG one. 

 

 

The achievements of this research are a new design approach to MIMO nonlinear 

controller for DX A/C system to stabilize the humidity and temperature of the air 

conditioned room on desired set points, integration of different control categories in 

single control scenario by soft computing methodology to response all the 

requirements of the system, introducing new platform based on the Generalized 

Predictive Control- Fuzzy Cognitive Map control method for the first time in the 

literature about HVAC systems, new development in nonlinear control systems with 

simple mathematics, new solution for approaching to MIMO system with coupling 

effect without linearization of the model due to a simple structure of FCM, energy 

saving and energy efficiency by this new control design. 

 

 

In conclusion, by employing the GPC-FCM controller on the DX A/C system a soft, 

intelligent, hybrid, nonlinear and MIMO control method is obtained. Decreasing the 

energy usage of the air conditioning system are achieved by using the variable speed 

supply fan and variable speed compressor and applying the hybrid GPC-FCM 

Control design for preventing from losing energy by making the controller errors as 

least as possible. 
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Sekarang ini, permohonan alat-alat kawalan berbeza di memanaskan, menganginkan 

dan sistem penyaman udara (HVACs) dianggap sebagai satu isu penting supaya 

memperbaiki prestasi sistem, disebabkan permintaan tinggi alat-alat ini dalam 

bangunan dan penggunaan tenaga tinggi mereka dalam bangunan. Sistem penghawa 

dingin pengembangan yang langsung ada kebanyakannya digunakan dalam yang 

kecil kepada bangunan-bangunan saiz sederhana di kawasan-kawasan tropika. DX 

A/C sistem tak linear, Multiple-Input dan Multiple-Output dan sistem yang memang 

kompleks dengan kuat kesan gandingan silang antara suhu udara bekalan dan 

kelembapan udara bekalan. 

 

 

Penyelidikan sebelumnya menunjukkan bahawa mereka alat-alat kawalan tak linear 

dihadkan dan sukar disebabkan kerumitan dan ketakpastian sistem, dan analisis 

matematik kompleks dalam mencari satu fungsi Lyapunov. Sebaliknya, untuk 

membuat reka bentuk kawalan mudah, struktur MIMO sistem dianggap sebagai 

sistem Single-Input dan Single-Output dengan penduaan sistem. Bagi 

mempertimbangkan kesan-kesan gandingan, strategi mengawal MIMO dikehendaki. 

Tetapi, strategi-strategi ini kebanyakannya digunakan ke atas model dilinearkan 

sistem sekitar titik pengendalian dan membuat julat pekerjaan pengawal dihadkan 

kepada kawasan kejiranan julat operasi. Untuk kawalan penuh sistem, julat operasi 

lebih luas diperlukan. 

 

 

Lantarannya, matlamat bagi mereka-bentuk pengawal sesuai di DX A/C sistem 

mereka MIMO pengawal tak linear oleh matematik mudah dan struktur. Algoritma 

kawalan Fuzzy Cognitive Map (FCM) mudah dengan menggunakan kawalan (GPC) 

ramalan am untuk menentukan pemberat digunakan untuk mendapatkan matlamat 
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keselesaan dan penjimatan tenaga dengan mempertimbangkan ciri-ciri sebenar 

sistem penghawa dingin. 

 

 

Analisis prestasi pengawal bercorak telah diuji oleh titik set menjejaki penolakan 

ujian dan gangguan ujian. Keputusan untuk kedua-dua ujian menunjukkan bahawa 

dengan mengubah kelajuan pemampat dan membekalkan kipas, cadangan pengawal 

dengan jayanya boleh dilaksanakan kepada DX A/C sistem. Juga , pengawal kerja 

dengan jayanya dalam julat operasi lebih luas dalam titik set (22-26 oC) lain. 

Pengawal GPC-FCM dibandingkan oleh pengawal LQG dalam syarat-syarat berbeza 

dan keputusan menunjukkan prestasi lebih baik pengawal GCP-FCM berbanding 

dengan LQG satu. 

 

 

Kejayaan penyelidikan ini ialah pendekatan reka bentuk baru kepada MIMO 

pengawal tak linear untuk DX A/C sistem memantapkan kelembapan dan suhu bilik 

berhawa dingin di titik set teringin, integrasi kategori-kategori kawalan berbeza 

dalam tunggal senario kawalan oleh kaedah kiraan mudah kepada sambutan semua 

keperluan sistem, memperkenalkan platform baru berdasarkan Generalized 

Predictive kaedah mengawal Fuzzy Cognitive Map Control- buat kali pertama dalam 

kesusasteraan tentang sistem-sistem HVAC, pembangunan baru dalam sistem 

kawalan tak linear dengan matematik mudah, penyelesaian baru kerana mendekati 

kepada sistem MIMO dengan kesan gandingan tanpa pelinearan model disebabkan 

satu susunan biasa FCM, penjimatan tenaga dan kecekapan tenaga oleh reka bentuk 

pengaruh baru ini. 

 

 

Dalam kesimpulan, dengan mengambil pengawal GPC-FCM di DX A/C sistem satu 

lembut, pintar, hibrid, tak linear dan kaedah mengawal MIMO diperolehi. Menurun 

penggunaan tenaga sistem penghawa dingin dicapai dengan menggunakan 

membekalkan kipas laju boleh ubah dan pemampat laju boleh ubah dan 

menggunakan hibrid reka bentuk GPC-FCM Control bagi mencegah dari kalah 

tenaga dengan melakukan kesilapan-kesilapan pengawal sebagai paling kurang yang 

mungkin. 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

1.1 Introduction and background 

 

The heating, ventilating and air-conditioning or simply HVAC system is the more 

energy consuming part of the building automation systems (BAS) in Intelligent 

Buildings (IBs). As a result of the limited sources of energy in the world and worsen 

by fuel crisis, designing improved controllers to save energy and energy efficiency 

is more significant challenge for control engineers (Tachwali et al., 2007). By reason 

of the critical influence of HVACs systems on energy and power consumption, it is 

significant to being familiar with the operation as well as the structure of HVAC 

systems (Tashtoush et al., 2005).  

 

 

As a part of HVAC system, the air conditioning system could be considered as the 

direct expansion air conditioning (DX A/C) system. The mentioned system has two 

types, window units and split units which they are commonly employed in small to 

medium size buildings by reason of their advantages like (Qi and Deng, 2008): 

 

 

1.  simple configuration,  

2. a higher energy efficiency, and  

3. low cost to own and maintenance. 

 

 

According to Tashtoush et al. (2005), energy efficiency and indoor climate 

conditions are most important goals of designing HVAC systems. As a consequence 

of complicated features of an HVAC system like coupling effect in air conditioning 

part, attaining to the mathematical model of HVAC system is very difficult 

(Tashtoush et al., 2005) and as well designing the appropriate controller turn into a 

big challenge (Wang et al., 2006,Lei et al., 2006).  

 

 

As the DX A/C system is a MIMO system with coupling effect between temperature 

and humidity, a single control scenario is required that considered these two 

parameters and their cross-coupling effect simultaneously (Qi and Deng, 2008). 

Also, this system is complex and nonlinear; therefore reaching the accurate 

mathematical model is difficult. Then the nonlinear control algorithm is required. 

 

 

From the energy saving point of view, the intelligent control method is required to 

adjust the parameters according to the needs of the system at that time with learning 

ability to prevent the energy lost and balance between thermal comfort and energy 

usage. 
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From optimization point of view, the inherently simple control algorithm is required 

to replace the optimal control due to their complexity. The hybrid methods performs 

better than the pure methods. The hybrid methods of more than one soft control 

methods are applied to increase the accuracy, robustness, on-line learning ability, 

and easy implementation (Naidu and Rieger, 2011).  

 

 

Designing the suitable controller based on hybrid methods could save a considerable 

amount of energy. However, designing a suitable controller to the DX A/C system 

as a nonlinear, inherently complex and MIMO system with coupling effect on 

temperature and humidity remains as a big challenge (Huang et al., 2006). 

 

 

According to Lu et al. (2005), due to the high energy consumption of HVAC system, 

small increase in system operating efficiency can result in significant energy savings. 

Therefore, many researches have been done in HVAC control and optimization 

areas. Referring to Naidu and Rieger (2011), briefly, the recent results on the topic 

of the different control techniques for HVAC systems are categorized as hard 

control, soft control, and hybrid control. 

 

 

1.2 Problem Statement 

 

On the basis of the literature review in the case of DX A/C system, the problems are 

as follows. 

 

 

1. Difficult and complex mathematical analysis for designing nonlinear 

controllers, due to the nonlinearity of the system. 

2. In order to mimic the real condition to make the designed system 

practically applicable, need to keep the MIMO structure of the system 

and considering the coupling effect of parameters. 

3. In order to work in wide operating range, need to keep the nonlinear 

feature of the system.  

4. High energy consumption of the system.  

 

 

1.3 Hypothesis and justification  

 

The hypothesis is to find a single control scenario with simple mathematics and easy 

implementation to control the MIMO nonlinear system of DX A/C that is to stabilize 

the temperature and humidity simultaneously. Another concern of this research is to 

mimic the reality as close as possible in order for the designed system to be 

practically applicable. DX A/C system is a MIMO system. Although one can utilize 

SISO control systems, to control each parameter separately, by decoupling the 

effects of control variables, yet it degrades the performance of the system (Mirinejad 

et al., 2008). 

In other words, the hypothesis are: 
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1. A single control scenario with simple mathematics and easy 

implementation design by considering the nonlinearity, MIMO 

structure and coupling effect, it will control the MIMO nonlinear 

system of DX A/C. 

2. Compressor and supply fan work simultaneously, the temperature and 

humidity of the air conditioned room will stabilize at desired set 

points.  

3. Mimic the reality as close as possible, the designed system will be 

practically applicable. 

 

 

To solve the aforementioned problem and improve the performance of the system 

MIMO model have been used. However, based on the literature, MIMO control 

systems have been applied to linearized model of the systems. It means that the 

controller is able to stabilize the system around a certain operating point and stability 

of the system is not guaranteed if the changes are too big (Venkatesh and Sundaram, 

2012). 

 

 

Therefore, nonlinear control techniques are introduced to the DX A/C systems. 

However, due to complexity and uncertainty of the system, application of nonlinear 

control techniques to the system is limited. Complex mathematical analysis, stability 

analysis and dependence to the whole set of states are among the reason that hinder 

the use of nonlinear control (Gruber and Balemi, 2010). Lyapunov stability theory, 

feedback linearization and adaptive control are some of the approaches that have 

been applied to the system (Afram and Jenabi-Sharifi, 2014). 

 

 

Considering the above mentioned challenges, a simple control method that can deal 

with the complexity of the system and, at the same time, can be practically feasible 

is of interest. Fuzzy Cognitive Map is a technique that can meet the needs for this 

purpose. According to the structure of the FCM, designing a single control scenario 

by considering the characteristics of the system would be possible. The inputs and 

outputs of the system with other effective parameters in the process like actuators 

could be considered as concepts (Stylios and Groumpos, 2000). There are links 

between concepts which represent the effect of one concept over others (Aguilar, 

2005). The MIMO characteristic is considered. It also means that the coupling effects 

between control variables are taken into account. Moreover, the algorithm and its 

mathematics are simple and the control signals are applied to the nonlinear dynamic 

model of the system. As a result, the nonlinear MIMO controller with simple 

mathematics and algorithm is designed based on soft computing method of FCM. 
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1.4 Research Objectives 

 

The aim of this research is applying the nonlinear MIMO controller on direct 

expansion air conditioning system. Thus, the most important goals of this research 

are as follows. 

 

1. Designing a hybrid, non-linear, intelligent, robust controller with 

simple algorithm. 

2. Performance analysis test of proposed controller by set point tracking 

and disturbance rejection. 

3. Controller performance analysis by working of the controller in wider 

operating range in different initial set points. 

4. Comparison the GPC-FCM controller with LQG controller in 

different conditions. 

 

 

1.5 Research Scope 

 

As it is revealed, the purpose of this research should be applying the hybrid 

Generalized Predictive control- Fuzzy Cognitive Map (GPC-FCM) as a soft control 

method to control the typical DX A/C system. Reconstructing of mentioned DX A/C 

system by MATLAB software is based on Qi and Deng (2008) works. The 

mentioned model was validated by comparing the model simulation results with the 

experimental results. Therefore, the model is valid and it is useful for designing the 

MIMO controller.  In this research, the GPC-FCM controller is also programmed by 

MATLAB.  

 

 

The system is working on Malaysia weather condition. The initial temperature is 

considered 30 oC which is the average temperature in Malaysia and 80% for humidity 

which is average humidity in Malaysia. The desired set points for indoor temperature 

and humidity are 25 oC and 50% respectively. 

 

 

The dimensions of the air conditioned room are 6.8 m (L) × 3.9 m (W) × 2.9 m (H). 

The model of the DX A/C system which is used in this thesis is based on the 

information reported by Qi (2009) work. The information was reported by Qi (2009) 

is based on experimental DX A/C system which is available in the HVAC Laboratory 

of Department of Building Services Engineering in the Hong Kong Polytechnic 

University. The experimental DX A/C system consist of: 

 

 

1. variable speed compressor (Model: HITACHI THS20MC6-Y, 

Allowable frequency range: 15 ̴  110 HZ, Rated capacity: 9900 W at 

90 HZ, Displacement: 3.04 ml/rev) 

2. variable speed supply fan (Model: KRUGER BSB 31, Nominal flow 

rate: 1700 m3/h (0.47 m3/s), Total pressure head: 1100 Pa) 

3. electronic expansion valve 
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4. computerized data measuring (Data acquisition unit, Model: 

AGLIENT 34970A/34902A; platinum Resistance Temperature 

Device type, Model: CHINO Pt100/0oC-3W,Class A, SUS ɸ 3.2-

150L; Pressure transmitters, Model: SETRA C206; Barometer, 

Model: VAISALA PTB-101B; Air flow rate measuring apparatus 

(FRMA), Model: ROSEMOUNT 3051; Hot-film anemometer, 

Model: EE70-VT62B5; Pulse-width-modulation (PWM), Model: 

EVERFINE PF9833; Coriolis mass flow meter, Model: KROHNE 

MFM1081K+F; Manometer, Model: ROSEMOUNT 3051) 

5. LabVIEW logging and control system (PI controllers, Model: 

YOKOGAWA UT350-1) 

 

 

Tolerance of air conditioned room temperature (T) is ± 0.7 oC and tolerance of air 

conditioned humidity (W) is ± 0.000198 kg/Kg. 

 

 

1.6 Research Contribution 

 

The contributions of this research are as below: 

 

 

1. Decreasing the energy usage of the air conditioning system as a part 

of HVAC system in building automation systems (BASs) by applying 

the new, novel controller based on the combination of some soft 

control methods.  

2. Employing the GPC-FCM controller as a soft, intelligent control 

method on DX A/C system to achieve a hybrid nonlinear robust 

control method on the system. 

3. Obtaining a real-time, closed-loop controller with the ability of on-

line learning by simple control algorithm which has fast convergence 

due to utilizing efficient learning ability on applied controller on DX 

A/C structure. 

4. Obtaining the desired air humidity and air temperature of the air-

conditioned space by considering the coupling effect of humidity and 

temperature from the evaporator simultaneously. 

 

 

1.7 Thesis layout 

 

This thesis is presented in five chapters. The outlines are as follows: 

 

 

Chapter 1 provides introduction and background information about HVAC and DX 

A/C systems, BAS and intelligent buildings. The main problem statement, 

hypothesis and justification, objectives, scopes and contributions are also included 

in this chapter. 
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Chapter 2 reviews the HVAC and A/C systems. Then, the different control 

approaches that have been applied on HVACs and A/Cs, their advantages and 

disadvantages are included in this chapter. Then, the FCM method are introduced, 

with the reasons for choosing, improvements in compare with previous methods, 

significance of FCM method in developing the nonlinear control algorithms. At the 

end of this chapter, the thermal comfort in hot and humid areas and research 

background and refrigeration cycle are investigated. 

 

 

Chapter 3 provides information of the research methodology. The overview on 

methodology, choosing a proper model of the system, open loop response of the DX 

A/C system, and choosing the required parameters from the system in order to design 

a controller are explained in this chapter. The designed FCM controller is presented 

and also the application of GPC method for assigning the initial weights and 

supervised learning strategy on proposed FCM controller are investigated. At the end 

of this chapter the stability analysis of FCM controller, performance analysis tests 

and performance criteria by performance indexes are explained. 

 

 

Chapter 4 includes the obtained results using proposed controller in Chapter 3. The 

set ups that have been used for simulation is mentioned. First, the open loop response 

of the DX A/C system are simulated and compared with Qi (2009) works. Then, the 

performance of the GPC-FCM controller is discussed separately. Next, the 

performance analysis of the controllers is carried out to summarize the performance 

and robustness of the proposed controller. At last, the GPC-FCM controller is 

compared with LQG controller in different conditions. This chapter is ended up by 

discussion and summary. 

 

 

Chapter 5 conclude this thesis and introduces the potential areas of the future 

researches. 
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