UNIVERSITI PUTRA MALAYSIA

CHARACTERIZATION AND STABILITY OF SELECTED BIOCHARS AND EFFECT OF THEIR APPLICATION ON SOIL PHYSICAL PROPERTIES AND CORN GROWTH

HUDA ABULRAZZAQ MOHIALDEEN

FP 2015 72
CHARACTERIZATION AND STABILITY OF SELECTED BIOCHARS AND EFFECT OF THEIR APPLICATION ON SOIL PHYSICAL PROPERTIES AND CORN GROWTH

By

HUDA ABULRAZZAQ MOHIALDEEN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of philosophy

April 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is dedicated to:

The sake of Allah the Almighty, my Master and my Creator,
My beloved homeland Iraq, the warmest womb,
My dearest late Husband, may Allah have mercy on him,
My beloved kids, Ibrahim and Abdullatif, who make me happy and empowered me to live the life with purpose,
My family, who did not stop supporting me all the way,
My friends who never let me alone,
To all of warm people in my life who touched my deep heart,
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for Doctor of Philosophy

CHARACTERIZATION AND STABILITY OF SELECTED BIOCHARS AND EFFECT OF THEIR APPLICATION ON SOIL PHYSICAL PROPERTIES AND CORN GROWTH

By

HUDA ABULRAZZAQ MOHIALDEEN

April 2015

Chairman: Hamdan Jol, PhD
Faculty: Agriculture

The intentional amendment of soil with biochar is offering a new strategy for improving soil fertility and sequestering atmospheric CO$_2$. Nonetheless, the characteristics of biochars vary with their different conditions and pyrolysis techniques to improve the physical properties and carbon sequestration of soil as to enhance plants growth. This research is to prove that biochar considers as a stable product that can be produced from feedstock pyrolysis by one of the available bioenergy production techniques. The study aimed to improve the understanding of how adding biochar applications and the pyrolysis of native feedstock to soil can be utilized to improve carbon stability, soil physical properties, and soil fertility in Malaysia. Adding biochar to soils has established a variety of advantages that vary according to the type of the feedstock as the types of the utilized pyrolysis conditions in biochar production. An emphasis was placed on understanding how both of biomass material and production conditions of the pyrolysis process can influence biochar characteristics, and what effects can result from adding different rate of the amendment biochar on soil and plant growth. Three kinds of primary biochar were used, namely, empty fruit bunch biochar (EFB), wood biochar (WB), and rice husk biochar (RHB). EFB and WB were produced by slow pyrolysis method, whereas RHB was produced by the gasification. Four sets of experiments were conducted. In the first set of experiments, the influences of slow pyrolysis and gasification on biochars were examined independently. The physicochemical structure of the produced biochars was characterized with various analytical techniques including FTIR, XRD, SEM, HPLC, and BET surface area analysis. In the second and third sets of experiments, a field study had been carried out to evaluate the effect of the biochar incorporation on soil in regards to the carbon stability and soil physical properties, the final set was carried out in a shade house to evaluate the effect of adding biochars treatment on plants’ heights and dry shoot growth. The results revealed the presence of a very labile C-fraction in RHB with a very small decay constant K_3. Fourier transform infrared spectroscopy and X-ray diffraction showed three phases of the biochar, from the microcrystalline C of the labile fraction to the largely amorphous intermediate C of the unstable fraction, and finally the formation of turbostratic crystallite C in the recalcitrant fraction. Furthermore, biochar incorporation into soil has effect on soil water content and
hydraulic conductivity, contributes to improve soil structure, and improved moisture characteristics, regarding to the extensive pore structures, surface characteristics, and high porosity of RHB as compared to EFB and WB. EFB30 in pot trials resulted in a highly positive effect on sweet corn growth with 50% of fertilizers; On the other hand, RHB30 did not have positive impact on the growth. Due to its labile fraction might cause microbial immobilization of soil N.

It has been concluded that, RHB had a higher degree of aromaticity, greater stability, and therefore should be more recalcitrant to biological and chemical degradation. Applying biochar substances by using local materials is assessing promises of being an environmentally sound in enhancing the physical characteristics of soil and crop productivity in Malaysia.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PENCIRIAN, KESTABILAN DAN KESAN BIOARANG TERHADAP SIFAT FIZIKAL TANAH DAN PERTUMBUHUAN JAGUNG

Oleh

HUDA ABULRAZZAQ MOHIALDEEN

Pengerusi : Hamdan Jol, PhD
Fakulti : Pertanian

Pindaan yang disengajakan terhadap tanah menggunakan bioarang (biochar) menawarkan strategi baharu untuk meningkatkan kesuburan tanah dan pemencilan CO₂ dalam atmosfera. Walau bagaimanapun, ciri-ciri bioarang berbeza mengikut keadaan dan teknik pirolisis untuk menambah baik sifat-sifat fizikal dan pemencilan karbon bagi tanah untuk merangsang pertumbuhan tanaman. Kajian ini dijalankan untuk membuktikan bahawa bioarang boleh dianggap sebagai produk yang stabil yang boleh dihasilkan daripada pirolisis bahan mentah melalui salah satu teknik penghasilan biotenaga sedia ada. Kajian ini bertujuan meningkatkan pemahaman mengenai kesan penambahan aplikasi-aplikasi bioarang dan pirolisis bahan mentah setempat kepada tanah boleh digunakan untuk meningkatkan kesuburan tanah, sifat fizikal tanah dan kestabilan karbon di Malaysia.

Penambahan bioarang kepada tanah telah memantapkan pelbagai kelebihan yang berbeza mengikut jenis bahan mentah dan juga keadaan pirolisis yang digunakan dalam penghasilan bioarang. Penekanan diberikan ke atas pemahaman cara kedua-dua bahan biojisim dan keadaan penghasilan bagi proses pirolisis boleh mempengaruhi ciri-ciri bioarang, dan kesan-kesan yang diperoleh dengan mencampurkan bioarang yang diubah suai dengan kadar yang berbeza terhadap tanah dan pertumbuhan tanaman. Perawatan melalui tiga kadar bioarang yang berbeza 0 t ha⁻¹, 15 t ha⁻¹, dan 30 t ha⁻¹ secara berturut-turut mengikut reka bentuk Blok Lengkap Terawak. Bioarang ditanam pada 10 cm kedalaman tanah. Selepas 194 hari, pengukuran lapangan yang terdiri daripada empat replikasi untuk kekonduksian hidraulik dan pensampelan teras dilaksanakan untuk mengukur ketumpatan pukal, kelembapan tanah, dan menganalisis ciri-ciri kelembapan. Set erakhir dilakukan di sebuah rumah lindung untuk menilai kesan perawatan bioarang campuran terhadap
ketinggian tanaman dan pertumbuhan pucuk kering melalui ujian reka bentuk yang telah diatur sebagai satu reka bentuk yang rawak sepenuhnya dengan empat replikasi. Aplikasi bahan bioarang melalui penggunaan bahan-bahan tempatan menjanjikan teknologi mesra alam bagi merangsang ciri-ciri fizikal tanah dan produktiviti tanaman di Malaysia.
ACKNOWLEDGEMENTS

IN THE NAME OF ALLAH, THE MOST GRACIOUS, THE MOST MERCIFUL.

All praise belongs to Allah, glorified is He and exalted. I thank Allah for giving me the strength and wisdom for successfully completing my thesis work.

This thesis could not be accomplished without the support and the guidance as the help of many people who I’d like to gratefully acknowledge here.

First, I am greatly honoured to express my highest thankfulness to my supervisor Dr. Hamdan Jol for their support and guidance as fruitful effort all the way in accomplishing this work. Thank you for making my life easier.

I also would like to thank all of my friends and family members for their support and encouragement to finalize my postgraduate study. This dissertation could not be accomplished without their love and warm feelings.

Thank you all.
I certify that a Thesis Examination Committee has met on 28th April 2015 to conduct the final examination of Huda Abd Alrazzaq Al-Gailanion her thesis entitled "Characterization and stability of selected biochars and effects of their application on soil physical properties and corn growth" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Dr. Samsuri Abd Wahid
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Dr. Shamshuddin Jusop
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Dr. Aminuddin Hussin
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Dr. Francesca Cotrufo
Associate Professor
College of Agriculture
Colorado State University
(External Examiner)

__
ZULKARNAINAINAL,
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 June 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the supervisory committee were as follows:

Hamdan Jol, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Ahmed Husni Mohd, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

Rosenani Binti Abu Bakar, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

ZULKARNAI NAINAL,
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Declaration by Graduate Student

I hereby confirm that:

- this thesis is my original work
- quotations, illustrations and citations have been duly referenced
- the thesis has not been submitted previously or concurrently for any other degree at any institutions
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be owned from supervisor and deputy vice – chancellor (Research and innovation) before thesis is published in (book form of written, printed or electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis and scholarly integrity was upheld as according to Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013). The thesis has undergone plagiarism detection software

Signature:……………………………Date: 30th June 2015

Name and Matric No: HUDA ABULRAZZAQ MOHIALDEEN/ GS27799
Declaration by Members of Supervisory Committee

This is to confirm that:

- The research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee:

Signature:
Name of Member of Supervisory Committee:

Signature:
Name of Member of Supervisory Committee:

Signature:
Name of Member of Supervisory Committee:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Objectives</td>
<td>3</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.1 Pyrolysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.2 Biochar Characterization</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Biochar Physical Properties</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Biochar Chemical Properties</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2.2.1 FTIR Analysis</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.2.2.2 Formulating Graphene Synthesis</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.3 Persistence of biochar in soils</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Biochar mineralization kinetics</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Biochar mean residence time (MRT)</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.4 Biochar effects on soil physical properties</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.4.1 Soil water content</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Soil bulk density and total porosity</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2.4.3 Hydraulic conductivity</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>2.5 Biochar Impacts on the Plants’ Growth</td>
<td>31</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>GENERAL MATERIALS AND METHODS</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>3.1 Soil sampling, preparation and analysis</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>3.2 Physical Characteristics of the Soil</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Bulk Density</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>3.2.2 Soil Porosity</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>3.2.3 Saturated hydraulic conductivity</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>3.2.4 Soil Water Content</td>
<td>36</td>
</tr>
</tbody>
</table>
CHARACTERIZATION OF BIOCHARS PRODUCED FROM EMPTY FRUIT BUNCHES, WOOD AND RICE HUSK

4.1 Introduction

4.2 Materials and Methods
 4.2.1 Biochar Samples
 4.2.2 Biochar Characteristics
 4.2.3 Biochar physical properties
 4.2.3.1 BET Surface area
 4.2.3.2 Biochar Imaging
 4.2.4 Biochar Chemical Properties
 4.2.5 Proximate Analysis
 4.2.5.1 Determination of the moisture content
 4.2.5.2 Determination of ash
 4.2.6 Determination of pH
 4.2.7 High Performance Liquid Chromatography
 4.2.8 The Statistical Analysis Results

4.3 Result and discussion
 4.3.1 Biochar characteristics
 4.3.1.1 Biochar elemental composition
 4.3.1.2 pH analysis
 4.3.2 Physical Properties
 4.3.2.1 Surface area
 4.3.3 The SEM Analysis
 4.3.4 The FTIR Analysis
 4.3.5 X-ray Diffraction (XRD) Analysis
 4.3.6 HPLC analysis

4.4 Conclusion

STABILISATION OF BIOCHARS OBTAINED FROM EMPTY FRUIT BUNCHES, WOOD, AND RICE HUSK

5.1 Introduction

5.2 Materials and Methods
 5.2.1 Incubation and C Mineralization
 5.2.2 Carbon-mineralization Kinetics
 5.2.3 The Statistical Analysis Results

5.3 Results and discussion
 5.3.1 Carbon Mineralization
 5.3.2 Kinetics of carbon mineralization
 5.3.2.1 The labile Phase
 5.3.2.2 The unstable Phase
 5.3.2.3 The recalcitrant Phase
 5.3.3 Mean Residence Time (MRT)

5.4 Conclusion
6 BIOCHAR FROM EMPTY FRUIT BUNCHES, WOOD, AND RICE HUSK EFFECTS ON SOIL PHYSICAL PROPERTIES AND GROWTH OF SWEET CORN ON ACIDIC SOIL

- 6.1 Introduction
- 6.2 Materials and Methods
 - 6.2.1 BET surface area
 - 6.2.2 Physical characteristics of the soil
 - 6.2.3 The statistical analysis results
- 6.3 Result and discussion
 - 6.3.1 Physical characteristics of biochar
 - 6.3.2 Effect of biochar on soil physical properties
 - 6.3.2.1 Bulk density
 - 6.3.2.2 Hydraulic conductivity
 - 6.3.2.3 Total soil porosity
 - 6.3.2.4 Drained upper limit soil
 - 6.3.2.5 Permanent wilting point
- 6.4 Conclusions

7 EFFECT OF BIOCHARS FROM EMPTY FRUIT BUNCHES, WOOD, AND RICE HUSK ON GROWTH OF SWEET CORN

- 7.1 Introduction
- 7.2 Materials and Methods
- 7.3 The statistical analysis results
- 7.4 Result and discussion
- 7.5 Conclusions

8 SUMMARY, CONCLUSION AND RECOMMENDATIONS

- 8.1 Summery
- 8.2 Conclusions
 - 8.2.1 Characterization of Biochars
 - 8.2.2 Biochar stability
 - 8.2.3 The impacts of biochar applying on soil physical properties
 - 8.2.4 Biochars effect on sweet corn growth
- 8.3 Future Recommendations

REFERENCES

APPENDICES

A: Biochar characterization
B: Biochar characterization
C: Biochar characterization

BIODATA OF STUDENT

LIST OF PUBLICATIONS
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Pyrolysis Products and Characteristics</td>
</tr>
<tr>
<td>2.2</td>
<td>Elemental Composition for Range of Biochar Products</td>
</tr>
<tr>
<td>2.3</td>
<td>Fourier-Transform Infrared Spectroscopy Band Assignments</td>
</tr>
<tr>
<td>2.4</td>
<td>Some models on biochar decay rate</td>
</tr>
<tr>
<td>2.5</td>
<td>The Mean Residence Time (MRT) for different biochars’ types</td>
</tr>
<tr>
<td>2.6</td>
<td>The effect of charcoal on percentage of available moisture in soils on a volume basis</td>
</tr>
<tr>
<td>2.7</td>
<td>Effect of different types and different rates of biochar on soil porosity and bulk density of different types of soil Rate of 0 represents control or unamended soil</td>
</tr>
<tr>
<td>2.8</td>
<td>Soil physical characteristics associated with biochar amendment</td>
</tr>
<tr>
<td>2.9</td>
<td>Summary of the effects of biochar application on various soil and plant attributes</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of Pyrolysis Data for EFB, RHB, and WB</td>
</tr>
<tr>
<td>4.2</td>
<td>Chemical characteristics of empty fruit bunches biochar (EFB), wood biochar (WB), and rice husk biochar (RHB) used in the experimental analyses were conducted in triplicates (n=3)</td>
</tr>
<tr>
<td>4.3</td>
<td>Textural parameters obtained by N\textsubscript{2} adsorption isotherms of RHB, EFB, and WB</td>
</tr>
<tr>
<td>5.1</td>
<td>Non-linear Regression for C Mineralization of EFB\textsubscript{15}, WB\textsubscript{15}, and RHB\textsubscript{15} (Applied to the Soil at a Rate of 15 t ha-1) and EFB\textsubscript{30}, WB\textsubscript{30}, and RHB\textsubscript{30} (Applied at a Rate of 30 t ha-1)</td>
</tr>
<tr>
<td>5.2</td>
<td>The MRT for each fraction and the half life</td>
</tr>
<tr>
<td>6.1</td>
<td>Surface properties of biochars</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Biomass Residues Produced From Various Industries in Malaysia</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Thermal conversion technology product three different substances: bio-oil, syngas, and biochar</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Thermal conversion processes and products</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Biochar Components as a percentage of total weight</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>The relationship between pyrolysis temperature and BET surface area</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Test methods to determine biochar carbon stability</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Factors influencing biochar carbon mean residence time</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>Representation of soil water retention curve by van Genuchten with a hypothesized impact of adding biochar</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>The UPM-Nasmech Carbonator Pilot Plant</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>The Charcoal kiln</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>The Rice Husk/Straw Gasification System</td>
<td>56</td>
</tr>
<tr>
<td>4.4</td>
<td>High Performance Liquid Chromatography (HPLC) that used for Quantitative Hydrolysis of Cellulose and Hemicellulose in the Biochars</td>
<td>62</td>
</tr>
<tr>
<td>4.5</td>
<td>Scanning Electron Microscopy images of biochars at 750X magnification</td>
<td>68</td>
</tr>
<tr>
<td>4.6</td>
<td>FT-IR Spectra of Rice Husk Biochar (RHB), Wood Biochar (WB), and Empty Fruit Bunch Biochar (EFB)</td>
<td>70</td>
</tr>
<tr>
<td>5.2</td>
<td>Soil respiration chamber design</td>
<td>79</td>
</tr>
<tr>
<td>5.3</td>
<td>Diagram showing the chamber design put into the soil, using Soda lime</td>
<td>80</td>
</tr>
<tr>
<td>5.4</td>
<td>Cumulative C release as CO$_2$ emission after adding the soil application of EFB15, WB15, and RHB15 (applied to the soil at a rate of 15 t ha$^{-1}$) and EFB30, WB30, and RHB30 (applied at a rate of 30 t ha$^{-1}$). SE are shown n=4)</td>
<td>85</td>
</tr>
</tbody>
</table>
5.5 Soil surface CO$_2$- emission after soil application of EFB15, WB15, and RHB15 (applied to the soil at a rate of 15 t ha$^{-1}$) and EFB30, WB30, and RHB30 (applied at a rate of 30 t ha$^{-1}$). SE are shown (n=4)

5.6 Amorphous carbon structure

5.7 Kinds of two basic units are shown, circled and classified. The carbonaceous substances noticed in biochar are likely to consist of both aromatic and aliphatic substances

5.8 Schematic type of turbostratic carbon structure

6.3 Effects of biochar treatment using different rates of EFB, WB, RHB, for six months on soil porosity. The error bars represent the mean ± 2 SE, n = 4

6.4 Effects of biochar treatment using different rates of EFB, WB, RHB, for six months on the drained upper limit. The error bars represent the mean ± 2 SE, n = 4

7.1 The growth of sweet corn in the shade house

7.2 Sweet corn shoot dry weight by using soil amended with different rates of EFB, WB, RHB, for 30 days. The error bars represent the mean ± 2 SE (n = 4)

7.3 Sweet corn heights by using soil amended with different rates of EFB, WB, RHB, for 30 days. The error bars represent the mean ± 2 SE (n = 4)

7.4 Effect of biochar treatments on sweet corn growth
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Biochar characterization</td>
</tr>
<tr>
<td>A1</td>
<td>Fourier transformation infrared spectra of rice husk biochar (RHB), empty fruit bunches (EFB), and wood biochar (WB) used in the field.</td>
</tr>
<tr>
<td>A2</td>
<td>XRD data of RHB, WB, and EFB.</td>
</tr>
<tr>
<td>B</td>
<td>Carbon mineralization of biochar</td>
</tr>
<tr>
<td>B1</td>
<td>Statistical analysis of rice husk biochar at rate 15 t/ha by using Sigma plot 10.0</td>
</tr>
<tr>
<td>B2</td>
<td>Statistical analysis of rice husk biochar at rate 30 t/ha by using Sigma plot 10.0</td>
</tr>
<tr>
<td>B3</td>
<td>Statistical analysis of wood biochar at rate 15 t/ha by using Sigma plot 10.0</td>
</tr>
<tr>
<td>B4</td>
<td>Statistical analysis of wood biochar at rate 30 t/ha by using Sigma plot 10.0</td>
</tr>
<tr>
<td>B5</td>
<td>Statistical analysis of empty fruit bunches biochar at rate 15 t/ha by using Sigma plot 10.0</td>
</tr>
<tr>
<td>B6</td>
<td>Statistical analysis of empty fruit bunches biochar at rate 30 t/ha by using Sigma plot 10.0</td>
</tr>
<tr>
<td>B7</td>
<td>Soil Surface CO₂-Emission after Soil Application of EFB15, WB15, and RHB15 (Applied to the Soil at a Rate of 15 t ha⁻¹) and EFB30, WB30, and RHB30 (Applied at a Rate of 30 t ha⁻¹)</td>
</tr>
<tr>
<td>B8</td>
<td>Cumulative C Release as CO₂ Emission after Soil Application of EFB15, WB15, and RHB15 (Applied to the Soil at a Rate of 15 t ha⁻¹) and EFB30, WB30, and RHB30 (Applied at a Rate of 30 t ha⁻¹)</td>
</tr>
<tr>
<td>B9</td>
<td>Repeated measures analysis of variance for cumulative C release as CO₂ emission after soil application of EFB15, WB15, and RHB15 (Applied to the Soil at a Rate of 15 t ha⁻¹) and EFB30, WB30, and RHB30 (applied at a rate of 30 t ha⁻¹)</td>
</tr>
<tr>
<td>C</td>
<td>Biochars effect on soil physical properties and plant growth</td>
</tr>
</tbody>
</table>
ANOVA for the effect of EFB15, WB15, and RHB15 (Applied to the Soil at a Rate of 15 t ha$^{-1}$) and EFB30, WB30, and RHB30 (Applied at a Rate of 30 t ha$^{-1}$ on soil bulk density)

ANOVA for the effect of EFB15, WB15, and RHB15 (Applied to the Soil at a Rate of 15 t ha$^{-1}$) and EFB30, WB30, and RHB30 (Applied at a Rate of 30 t ha$^{-1}$ on soil porosity)

ANOVA for the effect of EFB15, WB15, and RHB15 (Applied to the Soil at a Rate of 15 t ha$^{-1}$) and EFB30, WB30, and RHB30 (Applied at a Rate of 30 t ha$^{-1}$ on soil hydraulic conductivity)

ANOVA for the effect of EFB15, WB15, and RHB15 (Applied to the Soil at a Rate of 15 t ha$^{-1}$) and EFB30, WB30, and RHB30 (Applied at a Rate of 30 t ha$^{-1}$ on drained upper limit)

ANOVA for the effect of EFB15, WB15, and RHB15 (Applied to the Soil at a Rate of 15 t ha$^{-1}$) and EFB30, WB30, and RHB30 (Applied at a Rate of 30 t ha$^{-1}$ on permanent wilting point)
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis Of Variance</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>AWC</td>
<td>Available Water Content</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer-Emmer-Teller</td>
</tr>
<tr>
<td>C_1</td>
<td>Amount of labile pool</td>
</tr>
<tr>
<td>C_2</td>
<td>Amount of unstable pool</td>
</tr>
<tr>
<td>C_3</td>
<td>Amount of recalcitrance pool</td>
</tr>
<tr>
<td>C_t</td>
<td>C mineralized (mg C g$^{-1}$)</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation Exchange Capacity</td>
</tr>
<tr>
<td>CRD</td>
<td>Completely Random Design</td>
</tr>
<tr>
<td>EFB</td>
<td>Empty Fruit Bunch Biochar</td>
</tr>
<tr>
<td>EFB15</td>
<td>Empty Fruit Bunch Biochar, applied to the soil at a rate 15 t/ha</td>
</tr>
<tr>
<td>EFB30</td>
<td>Empty Fruit Bunch Biochar, applied to the soil at a rate 30 t/ha</td>
</tr>
<tr>
<td>FC</td>
<td>Field Capacity</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gases</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>IBI</td>
<td>International Biochar Initiative</td>
</tr>
<tr>
<td>K_1</td>
<td>Decay rate constant of labile C_1 pool</td>
</tr>
<tr>
<td>K_2</td>
<td>Decay rate constant of unstable C_2 pool</td>
</tr>
<tr>
<td>K_3</td>
<td>Decay rate constant of recalcitrance C_3 pool</td>
</tr>
<tr>
<td>K_s</td>
<td>Hydraulic conductivity</td>
</tr>
<tr>
<td>LCA</td>
<td>Life Cycle Assessment</td>
</tr>
<tr>
<td>MRT</td>
<td>Mean Residence Time</td>
</tr>
<tr>
<td>MWD</td>
<td>Mean Weight Diameter</td>
</tr>
<tr>
<td>OM</td>
<td>Organic Matter</td>
</tr>
<tr>
<td>ρ_b</td>
<td>Soil bulk density</td>
</tr>
<tr>
<td>PWP</td>
<td>Permanent wilting point</td>
</tr>
<tr>
<td>RCBD</td>
<td>Randomized Complete Block Design</td>
</tr>
<tr>
<td>RHB</td>
<td>Rice Husk Biochar</td>
</tr>
<tr>
<td>RHB15</td>
<td>Rice Husk Biochar, applied to the soil at rate 15 t/ha</td>
</tr>
<tr>
<td>RHB30</td>
<td>Rice Husk Biochar, applied to the soil at rate 30 t/ha</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>SOM</td>
<td>Soil Organic Matter</td>
</tr>
<tr>
<td>Syngas</td>
<td>Synthesis Gas</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>$t_{1/2}$</td>
<td>Half-life of carbon</td>
</tr>
<tr>
<td>t/ha</td>
<td>Ton/ hectare</td>
</tr>
<tr>
<td>WB</td>
<td>Wood Biochar</td>
</tr>
<tr>
<td>WB15</td>
<td>Wood Biochar, applied to the soil at rate 15 t/ha</td>
</tr>
<tr>
<td>WB30</td>
<td>Wood Biochar, applied to the soil at rate 30 t/ha</td>
</tr>
<tr>
<td>WHC</td>
<td>Water holding capacity</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

More than two million tons of agricultural wastes are produced in Malaysia annually. The presence of this waste and residues has generated several disposal problems to the country (Sopian et al., 2005), the main problems are: uncontrolled released of greenhouse gases/global warming, groundwater contamination from leachate, environmental pollution for example emission of smoke and haze hazard and emission of toxic chemicals such as dioxins (Hassan et al., 2005). Therefore, it is important to find beneficial way to utilize for these resources.

The main sources for agricultural wastes in Malaysia are generally produced from oil palm, paddy straw, sawn logs, and tropical fruits (Azlina et al., 2010). The process of milling palm to extract oil produces solid wastes of fibber, shell, and empty fruit bunches, where refining one ton of oil palm is producing nearly 0.15 tons of palm fiber, 0.07 tons of palm shell, and 0.2 tons of empty fruit bunches (Azlina et al., 2010). In contrast, paddy straw and rice husks can consequently produce wastes of 78% and 22% its weight that can be reused for generating biomass-based power (Umamaheswaran & Batra, 2008), Figure 1.1.

Figure 1.1 Biomass Residues Produced From Various Industries in Malaysia
(Source: Hassan & Shirai, 2003)

Thermo-chemical conversion of waste via pyrolysis demonstrates an excellent potential technique that produces biochar as being a co-product. That, when applied to soil, it probably enhances the soil structure, sequesters carbon, and absorbs toxins (Liu et al., 2012; Ahmad et al., 2014; Ennis et al., 2012).
The term ‘biochar’ is a solid material obtained from thermo-chemical conversion of biomass in an oxygen-limited environment that is used for the safe and long-term storage of carbon in the environment and for soil improvement. Additionally, it is a relatively recent development, emerging in conjunction with soil management and carbon sequestration issues (Lehmann et al., 2006). Another definition is referring ‘biochar’ term simply as the meaning of ‘Charcoal application to soils’ that could be enhanced its physicochemical features of soil (Brown, 2009).

Realizing the heterogeneity of Biochar’ material can possess a range of chemical structures and elemental composition. This variability is based on the pyrolysis temperatures, heating rates, and biomass, which given this large variability is to be expected in the physicochemical properties of the biochars, and ultimately, in their performance as a soil amendment in the soil (McHenry, 2011).

The three main techniques employed for producing biochar from various biomass sources are pyrolysis, gasification and combustion. Pyrolysis is actually a thermo-chemical process where biomass is converted to a carbon-rich solid (biochar) and volatile matter (liquids and gases) by heating in the absence of oxygen (Maschio et al., 1992). Furthermore, traditional charcoal producing commonly utilizes slow pyrolysis conditions: slow heating rates (1-250 °C/min) in the absence of oxygen, and long residence times (hours to days), while gasification means incomplete combustion of biomass resulting in production of combustible gases consisting of Carbon monoxide, Hydrogen and traces of Methane (Bridgwater, 1995).

Malaysia produces large quantities of palm oil empty fruit bunches approximately 18 million tons annually. Universiti of Putra Malaysia worked together with Nasmech Technology Sdn Bhd to process empty fruit bunches biochar (EFB) through slow pyrolysis of biomass, with a capacity of 20 tons/day (Kong et al., 2014). The plant consisted of three pairs of ovens and a rotating drum. For the start-up, the oven heated by using a produced hot air by a diesel burner. When fully operational, the heat supplied through generated hot gas by a recycle gas burner. Whereas biochar from Malaysian mangrove wood, that is regarded as a widespread tree located in swamps especially at river mouths, is produced by kilning the logs over a lengthy eight to ten days at 220 °C followed by baking process for another two weeks at 83 °C, it is appeared as a strong and high density structure (Sivakumarana, 2010).

Rice husk and paddy straw tend also to be a significant potential for biomass-based power generation following wood and palm oil residues. (Hashim, 2005) recorded that the rice husk generated in year 2000 up to 471000 tonnes and also the potential power generated from the utilization of rice husk was approximately 72.07 MW during the gasification process. This trend is predicted while continue rising every year (Yusof et al., 2008).

The stability of biochar in soil is an important whether it is to be used for carbon sequestration in addition to long-term enhancement of soil characteristics. It is widely
recognized that a substantial fraction of biochar is quite stable in soil; but CO$_2$ gas is released immediately after application (Bruun et al., 2014).

Although, biochars are produced in Malaysia; few research studies have been conducted on the decomposition of biochars in soil. Thus, an investigation on the biochar decay rate is important prior to the biochar application. This thesis correlates pyrolysis technologies and the resulting biochar characteristics to its stability. In addition, the carbon mineralization was assessed based on the characteristics of the biochar. The half-life was determined for the biochars produced by both pyrolysis and gasification.

This thesis results have potential consequences related to the concerns about global warming; as decreasing the emission of CO$_2$ gas from the soil might increase the value of the applied biochar, which in its turn, can contribute in producing more economically productive bioenergy. These facts are valuable in an attempt to substitute feedstock sources for soil amendments, reducing greenhouse gas emissions, in addition to consider it as a sustainable source to obtain energy.

1.2 Objectives

The overall objective of this thesis was to study the short-term effects of soil application of slow pyrolysis and gasification biochar on carbon mineralization. It also correlates the pyrolysis technologies and the described characteristics of biochar to its stability. The half-life and mean residences time were determined.

This main objective was attained by achieving the following objectives:

1) To study the characteristics of three kinds of produced biochar from the slow pyrolysis and gasification.
2) To measure the stability of biochars in soil, and to correlate between the defined stability and the biochar structure.
3) To determine the effect of adding biochars to soil on the physical properties of the treated soil.
4) To determine the effect of adding biochars to soil on growth of the sweet corn
REFERENCES

Eastman, C. M. (2011). Soil Physical Characteristics of an Aeric Ochraqualf amended with Biochar. (Master of Science), The Ohio State University, USA.

Patwardhan, P. R. (2010). Understanding the product distribution from biomass fast pyrolysis. (Doctor of Philosophy), Iowa State University.

Poitras, R., & Straubing, S. (2009). The Effects of Biochar Applications on Soil Fertility & Crop Production for a Small Farm in the Northeast US. Morgan Bay: Northeast SARE Farmer Grant Program in cooperation with MOFGA.

