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Fiber optical parametric amplifier (FOPA) is an optical amplifier that operates 
based on an optical nonlinear phenomenon known as four-wave mixing (FWM). 
Parametric amplification takes place when a forward-propagating pump light and 
a signal light are injected into a gain medium of highly nonlinear fiber (HNLF). 
This fiber medium of choice has its nonlinearity enhanced by about a factor of 
10 than conventional silica fiber, which could easily lead to the onset of nonlinear 
effects such as FWM, stimulated Raman scattering (SRS) and stimulated 
Brillouin scattering (SBS) when a high continuous-wave (CW) pump power is 
supplied into a long interaction length of gain fiber. The formation of parametric 
gain spectrum is dependent on the chromatic dispersion characteristics of the 
fiber as well, whereby the phase-matching condition has to be met through the 
detuning between the pump and zero dispersion wavelength (ZDW) of the fiber 
in achieving uniformity and wide bandwidth over 100 nm at any arbitrary 
wavelength. Several advantages reported on FOPA have brought to its 
discovery in various important functions such as large gain amplification, optical 
oscillation, optical sampling, transparent wavelength conversion and pulse 
generation. Previous investigation has shown that it is possible to transform a 
fiber optical parametric oscillator (FOPO) into a tunable radiation source that is 
capable of accessing wavelength regimes beyond the reach of conventional 
lasers. The nonlinear process of SRS on parametric amplification was found to 
be a useful mechanism in creating a broadband laser source since SRS allows 
the generation of new frequency at 100 nm away from the pump. The presented 
work in relation to wavelength conversion under SRS effect has proven to be 
successful through the achievement of tunable S-band idlers from a lasing signal 
at long oscillation wavelengths (where SRS is dominant) in an anomalously 
pumped FBG-formed linear cavity FOPO. On the other hand, by using similar 
configuration with cascaded oscillators, the generation of broadband multi-
wavelength (MW) lasers through the degeneration of FWM was also reported to 
span from 1436 nm to 1704 nm at initial power of 450 mW (26.5 dBm). There is 
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a need to control the gain competition between SRS and parametric process via 
the fiber Bragg grating (FBG) output reflectivity to achieve balance oscillation in 
this setup. Compared to previous Raman-assisted ring cavity FOPOs that 
operated under high pump power ranging from 3 W (35 dBm) to 5 W (37 dBm), 
the linear cavity FOPOs reported in this thesis have shown to perform well under 
low pump power of less than 1 W (30 dBm) to produce broadband laser at large 
pump-signal separation of over 100 nm. Moreover, further effort was made 
towards a single-frequency FOPO in a ring cavity configuration. In this 
demonstration, the single longitudinal mode (SLM) operation is realized using a 
5 m fiber loop mirror (FLM) to increase the cavity mode spacing and a 35 cm 
long of un-pumped erbium-doped fiber (EDF) as the saturable absorber (SA) to 
select a single longitudinal mode in the cavity. As an outcome, an SLM laser with 
narrow linewidth of about 300 kHz (short term) has successfully measured at 
pump power of 1.188 W (30.75 dBm). Such achievement has indicated a 
significant improvement in the field since the first demonstration of SLM-FOPO 
did not specify nor reveal the performance of its SLM laser linewidth spectrally 
through measurement.  
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Penguat parametrik gentian optik (‘Fiber optical parametric amplifier’, FOPA) 
merupakan sejenis penguat optik yang beroperasi berdasarkan fenomena optik 
tidak linear yang biasanya diketahui sebagai pergaulan empat gelombang 
(‘Four-wave Mixing', FWM). Amplikasi parametrik optik ini berlaku apabila 
gelombang pam dan gelombang isyarat memasuki ke dalam gentian silika amat 
tidak linear (‘Highly nonlinear fiber', HNLF) yang selalunya digunakan sebagai 
medium gandaan. Sebab pilihan gentian medium ini ialah ia mempunyai tahap 
tidak linear yang sangat tinggi (dengan faktor kira-kira 10 jika dibanding dengan 
gentian silika konvensional) dan ia dengan mudahnya boleh mengakibatkan 
pelbagai fenenoma tidak linear, termasuk penyerakan Raman teransang 
(‘Stimulated Raman scattering’, SRS) dan penyerakan Brillouin teransang 
(‘Stimulated Brillouin scattering’, SBS) apabila kuasa pam yang tinggi disalurkan 
ke dalam gentian optik yang panjang. Pembentukan spektrum ganda parametrik 
bergantung kepada serak kromat dalam gentian optik, di mana syarat padan 
fasa perlu dipenuhi melalui pelarasan antara jarak gelombang pam dengan jarak 
sifar serak dalam gentian optik untuk mencapai lebar jalur ganda yang luas dan 
seragam. Kelebihan yang dilaporkan atas penguat parametrik gentian optik telah 
membawa kepada penemuan dalam pelbagai fungsi penting seperti penguat 
isyarat, system pertukaran jarak gelombang, persampelan optik, pengayunan 
optik, penjanaan nadi dan sebagainya. Siasatan menunjukkan bahawa adalah 
mungkin untuk mengubah pengayun parametrik gentian optic (‘Fiber optical 
parametric oscillator’, FOPO) ke sumber radiasi boleh tala yang mampu 
mencapai regim panjang gelombang di luar jangkauan laser konvensional. 
Kewujudan penyerakan Raman teransang dalam amplikasi parametrik boleh 
digunakan sebagai peranti yang berguna dalam menghasilkan sumber laser 
sedemikian. Ini kerana ia membenarkan generasi frekuensi baru pada jarak 100 
nm dari jarak gelombang pam. Kerja kajian yang berkenaan penukaran panjang 
gelombang di bawah pengaruh penyerakan Raman teransang dalam tesis ini 
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menunjukkan idlers boleh tala dalam S-band boleh dihasilkan melalui ayunan 
panjang gelombang isyarat dalam rongga linear pengayun parametrik gentian 
optik. Tambahan pula, dengan konfigurasi pengayun parametrik gentian optik 
yang serupa tetapi terdiri daripada lata pengayun, jalur lebar untuk laser jarak 
gelombang berbilang dari 1436 nm ke 1704 nm berjaya diperolehi melalui proses 
merosot pencampuran empat gelombang pada permulaan kuasa pam lebih 450 
mW (26.5 dBm). Persaingan ganda antara penyerakan Raman teransang dan 
proses parametrik melalui pantulan parutan Bragg gentian (‘Fiber Bragg grating’, 
FBG) perlu dikawal untuk mencapai keseimbangan ayunan dalam konfigurasi 
ini.  
 
 
Eksperimen bagi rongga linear pengayun parametrik gentian optik dengan 
bantuan penyerakan Raman teransang menunjukkan bahawa pengayun yang 
beroperasi di bawah kuasa pam yang rendah iaitu kurang daripada 1 W (30 
dBm) ini boleh menghasilkan laser jalur lebar pada jarak antara pam dan isyarat 
yang jauh. Tidak seperti rongga linear pengayun parametrik, rongga cincin 
pengayun parametrik gentian optik di bawah pengaruh penyerakan Raman 
teransang yang dilaporkan sebelum ini memerlukan kuasa pam yang agak tinggi 
iaitu dari 3 W (35 dBm) ke 5 W (37 dBm) untuk berfungsi pada jarak antara 
gelombang pam dan isyarat yang jauh. Selain itu, usaha untuk menghasilkan 
laser bersifat mod bujur tunggal melalui konfigurasi cincin rongga pengayun 
parametrik gentian optik juga dibuat. Dalam demonstrasi ini, operasi 
penghasilan laser bersifat mod bujur tunggal dilaksanakan dengan 
menggunakan cermin gelung dengan 5 m panjangnya untuk meluaskan jarak 
mod rongga dan 35 cm panjang erbium-didopkan gentian tanpa pam (‘Erbium-
doped fiber’, EDF) yang berfungsi sebagai sempit lebar garis turas untuk 
mendapatkan mod tunggal dalam rongga. Dengan mekanisme tersebut, lebar 
garis bagi laser yang bersifat mod bujur tunggal berjaya dicapai dengan sempit 
lebar 300 kHz (jangka pendek) pada kuasa pam 1.188 W (30.75 dBm). Daripada 
hasil kerja ini, pencapaian dalam mengukur lebar garis untuk laser yang bersifat 
mod tunggul menandakan peningkatan yang penting dalam bidang penyelidikan 
tersebut kerana awal kerja kajian tidak mendedahkan penilaian tersebut dalam 
ekperimennya. 
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CHAPTER 1  
 
 

INTRODUCTION 
 
 
1.1 Overview 
 
 
The variety of applications that are fully utilizing web services nowadays has 
created a high demand for advancements in optical telecommunications. 
Presently, much of the data transmission in computing and communication 
industry are conducted through fiber optic systems, as the optical fiber 
cables provide greater bandwidth that enables them to  carry more 
information with greater fidelity than copper wire over massive distance. 
They are reliable to perform under noisy environment as well. Thus, these 
advantages have encouraged the widespread of fiber transmission line 
worldwide, connecting every possible corner to the global fiber network. The 
statement included below describes the rapid growth of activities for the 
expansion of current optical telecommunications networks in the recent 
years. 
 
 
“Tokyo, June 27, 2013: The SJC Parties, today announced that the 
Southeast Asia-Japan Cable (SJC) system is now operational. The SJC is 
an 8,900-kilometer cable system, which could further extend to 9,700 
kilometers.  At a project cost of around US$400 million, the SJC cable 
system consists of 6 fiber pairs with the initial design capacity of 28 Terabits 
per second to meet bandwidth-intensive applications such as internet TV, 
online games and enterprise data exchange.  
 

  NEC News, June 27, 2013 [1] 
 
 

“MANILA, Philippines, Aug. 28, 2014: The Southeast Asia - United States 
Cable (SEA-US) will provide much needed Asia-US connectivity and will be 
the fastest cable connecting Indonesia and the Philippines to the United 
States. NEC has awarded contract to build first 100 Gb/s submarine cable 
with a span over 10,000 km. This capacity will cater to the exponential 
growth of bandwidth demand between both continents.” 
 

NEC News, Aug 28, 2014 [2] 
 
 

In the early 1980s, the existing transmission technology using coaxial cables 
has been recognized as inadequate to accommodate high data capacity 
transmission. As an alternative to meet the required capacity, the 
telecommunication industry has expanded their transmission capabilities by 
slowly replacing copper wires with fiber optic cables, which permits large 
amount of data to be transmitted over vast distance in high speed [3]. The 
optical fiber was originally impractical in long distance communications due 
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to high loss experienced by the propagating signals during transmission. 
With relentless effort from the researchers to resolve the problem, the first 
optical fiber with attenuation less than 20 dB/km was successfully 
demonstrated in 1970 [4] and that brought remarkable progress in the 
production of low loss transmission medium for long haul transmission 
system. To encounter inevitable power attenuation across the long distance, 
electrical repeater system acting as optoelectronic regenerator device was 
initially installed to amplify and retransmit the signal. This scheme appears 
effective, though it has a drawback in that the bandwidth of the device is 
much less than the bandwidth of the optical fibers thus the repeaters 
become bottlenecks that severely limit the speeds of signals transmission. 
The incompetency of optoelectronic repeaters has motivated the 
development of optical amplifiers, which are capable of wideband 
amplification without undergoing the E/O conversion process.  
 
 
The first successful optical amplifier that has been developed and 
revolutionized the optical communication industry is the erbium-doped fiber 
amplifiers (EDFAs) [5]. With subsequent modern fibers that exhibit losses of 
less than 0.2 dB/km at 1550 nm, new type of optical amplifier called fiber 
optical parametric amplifier (FOPA) was created [6]. Like the EDFA, FOPA 
can support the technology of wavelength division multiplexing (WDM)  
where the capacity can be increased by enabling multiple channel 
wavelengths to be carried in a single fiber, reducing the number of cables 
deployed [7]. Current WDM technologies have the ability to transport data 
in excess of 10 Gb/s. With the development of optical amplifiers, laser can 
be produced simply by operating the optical amplifier with a positive 
feedback. By feeding back the output of an optical amplifier to its input for 
laser oscillation, a fiber laser could be obtained when a continuous-wave 
(CW) or pulsed pump is added into the cavity. The output laser can consist 
of either a single or multi wavelength with certain tunability. Most research 
work presented in this thesis focus on the fiber laser generated from fiber 
optical parametric oscillator (FOPO) as its architectural concept is based on 
the addition of fiber-Bragg gratings (FBGs) to provide light feedback. FOPO 
can be utilized in applications with WDM technology that will be 
demonstrated by generating broadband multiwavelength (MW) based on 
the nonlinear effect of four-wave mixing (FWM) and Stimulated Raman 
Scattering (SRS). The parametric gain obtained from FOPA under 
combined influence of FWM and SRS is investigated first before continuing 
on to the experimental studies of FOPO. Besides that, a single frequency 
FOPO will be developed and analyzed. This type of fiber laser has found to 
be useful in coherent communication.  
 
 
1.2 Problem Statement  
 
 
Typical FOPOs operate under relatively high pump power oscillation 
between 1 W (30 dBm) to 5 W (37 dBm). Unfortunately, if the pump power 
is not properly managed, the induced nonlinear processes will bring a 
detrimental effect to the desired output. This effect involves the growth of 
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backward Stimulated Brillouin scattering (SBS) when there is increasing 
pump power within the gain fiber and that would consequently reduce the 
amount of transmitted power from the oscillator. Such a drawback cannot 
be eliminated, but proper approach has been suggested to minimize them. 
In the study of fiber lasers, most single wavelength and MW fiber lasers 
operated and confined within C- or L-band region due to the limited gain 
bandwidth. One possible way to achieve single wavelength as well as MW 
lasers across wide wavelength region for > 100 nm in FOPO is to utilize the 
influence of nonlinear Raman scattering to perform laser oscillation. So far, 
the investigation on Raman-assisted parametric oscillator has only been 
found using ring cavity configuration. And, no previous work on the laser 
oscillation under nonlinear Raman effect in U-band is reported using a linear 
cavity FOPO. A few issues have been encountered when pursuing the 
development of a single-longitudinal mode (SLM) operation in FOPO. This 
includes the use of a long gain medium (> 50 m) for achieving high gain (~ 
30 dB) with wide bandwidth (~ 80 nm), which forms a long cavity on FOPO. 
This characteristic favors the generation of densely spaced longitudinal 
modes within the cavity. Hence, a noisy laser could likely be produced from 
this type of fiber laser. It is impossible to achieve SLM-FOPO without any 
external mode suppression mechanism. The introduction of an external 
mode suppression mechanism into the cavity of FOPO for achieving SLM 
oscillation however comes with some disadvantages such as the structure 
of the cavity would get complex and it demands an even higher pump power 
to overcome the cavity losses for lasing. Furthermore, the stability of FOPO 
system could also be severely affected as the devices used for generating 
a single mode laser are sensitive to the environment perturbation. In the 
past, there is only one research work done on SLM-FOPO which a subring 
cavity and an un-pumped EDF are deployed as the mode suppression 
devices in the setup to produce SLM laser. However, no result was reported 
on the performance of its SLM linewidth and stability from this 
demonstration. 
 
 
1.3 Research Objectives 
 
 
The research objectives of this thesis are stated below: 
 

a. To investigate the SBS suppression through pump phase modulation 
(PPM) technique using different waveform of pseudo random binary 
sequence (PRBS) and sinusoidal frequency in FOPA. 
 

b. To investigate the system performance of a linear cavity FOPO under 
Raman effect in ultralong (U-band) wavelength region.   
 

c. To design a new structure of linear cavity FOPO utilizing Raman 
effect to generate a broadband multiwavelength lasers. 

 
d. To design and investigate a SLM-FOPO based on the proposed 

mechanism of subring cavity and unpumped EDF in the ring cavity.  
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1.4 Scope of Research Work 
 
 
This research study emphasizes mainly on the implementation of single-
pump FOPOs, which utilize a standard highly nonlinear fiber (HNLF) as its 
gain medium to generate laser. Prior to the experimental work of FOPO, a 
setup of FOPA is characterized experimentally first and the pump phase 
modulation technique is adopted in the FOPA to suppress the backward 
SBS from the high pump power injection into the fiber. Next, a FOPO using 
a normal FBG pair to form its linear cavity is introduced to operate under the 
influence of SRS with parametric amplification. The proposed work that is 
based on combined processes of FWM and SRS will then be applied for 
different applications in two different architectures as listed below:  
 
 
1) Architecture 1: A linear cavity FOPO formed using a pair of FBGs with 

its center wavelength lasing within the Raman-dominant gain region. 
This proposed design intends to investigate the wavelength conversion 
at large pump-signal separation of about 100 nm under SRS effect. 
 
 

2) Architecture 2: Cascaded oscillators formed using two pairs of FBGs, 
with one center wavelength oscillating within the parametric-dominant 
gain region and another in the Raman-dominant region, in a linear cavity 
configuration. The motivation of this study is to obtain MW lasers in 
extended FWM bandwidth by deliberately manipulating each of their 
oscillation strength through FBG reflectivity to balance gain competition 
between parametric oscillator (PO) and Raman oscillator (RO) in series. 

 
 
This dissertation also includes the investigation of SLM operation in a ring 
cavity FOPO using proposed setup mentioned below.   
 
 
3) Architecture 3: A ring-cavity SLM-FOPO is designed using a passive 

subring cavity and an unpumped EDF as the saturable absorber to 
obtain an SLM laser. The outcome of this experimental setup will be 
evaluated between two cases under multiple longitudinal mode (MLM) 
and SLM condition of the cavity. 

 
 
The research scope of this dissertation is summarized using a flow chart in 
Figure 1.1. 
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Figure 1.1: Scope of work chart 
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1.5 Thesis Organization 
 
 
The content of this thesis is organized into six chapters. The present chapter 
1 introduces the latest trends in modern optical fiber communication 
networks and the research objectives of this thesis.  
 
 
In Chapter 2, a comprehensive review on the literature of nonlinear optics is 
included and the nonlinear phenomena based on third-order susceptibility 
of the optical fiber are discussed in detail. The chapter also includes the 
association of the configuration of a laser resonator to the cavity modes. The 
basic theory of SLM operation is studied and discussed with a graphical 
description. 
 
 
Chapter 3 introduces the theoretical studies and experiments to 
characterize the fiber optical parametric amplifiers (FOPAs) by including 
their experimental set-up and results. Several techniques such as multi-tone 
radio frequency (RF) modulation and PRBS modulation for SBS 
suppression are investigated. The impact of SBS suppression on FOPA is 
presented.   
 
 
Chapter 4 presents extensive theoretical studies of the combined influence 
of nonlinear parametric process and SRS in a FOPA. Using these nonlinear 
effects, a linear-cavity FOPO with oscillation occurs at long wavelength will 
then be described. The performance of linear cavity FOPO will be 
determined and discussed through these parameters: threshold power, 
output power, wavelength tunability, conversion efficiency (CE) and stability. 
 
 
Chapter 5 proposes the mechanism involved to produce SLM in a FOPO. 
The performance requirement for obtaining SLM in an optical oscillator will 
be identified through experimental results. The proposed system design 
utilizing feedback mirror configuration for narrow laser in ring cavity will be 
discussed and evaluated based on mode observation, laser linewidth 
measurement and stability. 
 
 
Chapter 6 summarizes the overall research work done and at the end, some 
recommendations for future works are included.
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