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Wind driven ventilation techniques mainly rely on the design and geometry of the roof 

and structure. Venturi shaped roof uses two airfoil like cross section, one mounted on 
top of the other, to increase the wind speed in the venturi contraction thus reducing the 

static pressure. This negative pressure induces natural ventilation in building by 

sucking the air out through a duct connected to the roof. 

 

 

The influence of the contraction resistance referred as wind blocking effect is the most 

important effect for reducing the venturi effect of the roof.  If the passage width 

decreases more wind will only flow around and over the roof. Hence the roof is 

extremely dependent on its geometrical characteristics for its optimum performance. 

The objective of this study is to conduct a study on the geometric characteristics of the 

roof and investigate the impact of various geometries and configurations to propose an 
optimum venturi roof geometry suitable for the hot and humid regions of Malaysia. To 

achieve this, three models with different roof shapes were chosen and tested in the 

wind tunnel. 

 

 

This study compares performance of different roof models shape 1 (Shallow ellipse), 

shape 2 (ellipse) and shape 3 (hemisphere) in low speed wind tunnel and compares the 

pressure coefficient (Cp) values at the center of the roof at its contraction, as an 

indication for higher performance and  ventilation flow rates. 

 

 
The results show that shape 1 (Shallow ellipse) outperformed shape 2 (ellipse) and 

shape 3 (hemisphere). However when the upper part of the roof is unmounted, the 

hemisphere without the upper part performs the best and shape 2 without upper part of 

roof and shape 1 without the upper part of roof perform the worst. This is important at 

conditions that narrow supporting is not possible for the upper disc. Shape 3 without 

the upper part also called the simple dome shows 70% of the performance of shape 

1(shallow ellipse). When commissioning of shape 1 is not possible, the dome would be 

the best option since there is no upper part and no supporting pillars are required thus 
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alleviating construction. The results of this experimental study is believed to aid 

architects and designers of tall buildings with roof designs in order to get the most out 

of the wind for natural ventilation. 
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Teknik pengalihudaraan berasaskan angin yang utama bersandarkan bentuk dan 

geometri bumbung dan strukturnya.   Bumbung berbentuk Venturi menggunakan dua 

buah bahagian melintang seakan airfoil, dengan satu bahagian berada di atas satu sama 

lain, bertujuan untuk meningkatkan kelajuan angin di dalam venturi menyusut 

(contraction) maka menyebabkan pengurangan tekanan statik.  Tekanan negatif ini 

mengaruh pengalihudaraan semulajadi di dalam bangunan dengan menyedut udara 

keluar melalui sesalur yang disambung ke bumbung. 

 

 

Pengaruh rintangan bahagian menyusut (contraction) ini dinamakan kesan menyekat 

angin  (wind blocking effect) adalah kesan paling utama untuk pengurangan kesan 
venturi bumbung.  Jika kelebaran laluan berkurangan maka lebih banyak angin akan 

mengalir di sekeliling dan di atas bumbung.  Oleh itu ciri geometri bumbung  sangat-

sangat mempengaruhi prestasi optimum bumbung.  Objektif kajian adalah untuk 

menjalankan kajian ciri  geometri bumbung  dan mengkaji kesan berbagai geometri dan 

konfigurasi  bumbung untuk mencadangkan geometri bumbung venture yang optimum 

dan sesuai untuk kawasan panas dan humid seperti Malaysia.  Untuk mencapai tujuan  

ini tiga model berbagai bentuk telah dipilih dan diuji di dalam terowong angin.   

Perbandingan prestasi model bumbung bentuk 1 (shallow ellipse), bentuk 2 (ellipse) 

dan bentuk 3 (hemisfera) dalam keadaan halaju angin rendah di dalam terowong angin 

dengan membuat perbandingan nilai pekali tekanan (Cp) di tengah-tengah bumbung 

pada bahagian venturi menyusut, sebagai aras  prestasi dan kadar alir pengalihudaraan 
yang lebih tinggi. 

 

 

Keputusan kajian menunjukikan bahawa bentuk 1 (Shallow ellipse) menandingi bentuk 

bentuk 2 (ellipse) dan bentuk 3 (hemisfera).   Walaubagaimana pun apabila bahagian 

atas bumbung dikeluarkan, bentuk hemisferea tanpa bahagian bumbung atas memberi 

hasil terbaik manakala bentuk 1 tanpa bahagian atas menghasikan prestasi paling 

rendah.    Keadaan ini adalah penting kerana sokongan yang sempit tidak dapat dibuat 

untuk bahagian atas bumbung.  Semtara itu bentuk 3 tanpa bahagian atas  atau dome 

mudah  menunjukkan prestasi 70% daripada prestasi  bentuk 1(shallow ellipse).  

Apuntuk  kerja tugasmula bentuk  1 tidak mungkin dibuat, maka bentuk dome menjadi 
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pilihan terbaik kerana tidak ada bahagian bumbung atas dan tiada tiang sokong yang 

memudahkan kerja binaan.  Dipercayai bahawa hasil kajian dapat membantu arkitek 

dan pereka bangunan tinggi mendapat kebaikan pengalihudaraan semulajadi 

sepenuhnya.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background 

 

As stated in the American Society of Heating Air conditioning and Refrigeration 

Engineers (ASHARE), natural ventilation is ventilation provided by thermal, wind, or 

diffusion effects through doors, windows, or other intentional openings in the building 

[1]. Historically many buildings in the past used natural ventilation. . There are lot of 

variety of mosque roof designs but in general, there are two distinguished 

characteristics of overall mosque designs in Malaysia which are the domed and pitched 

roof mosques. The significant variation on the design of the mosques is strongly 

evident more in the roof design than in the spatial layout which shows the importance 

of the roof design in natural ventilation of buildings. 

 

Shape and size of the openings and roof dramatically influences the air change in the 

naturally ventilated spaces as the wind speed and the temperature difference cannot be 

controlled. The three types of openings are eave, ridge and wall openings. These three 

types of openings are shown in the figure 1.1. 

 

Figure 1.1 : Typical openings used for natural ventilation of dairy buildings [2] 

 

 

The shape of the roof and its slope also plays an important role and is quoted as follows 

“The vertical separation between the eave and ridge openings has a significant impact 

on the pressure differences generated by the chimney effect. Therefore, the roof slope 

is an important consideration in the design of a naturally ventilated building.” [2]. 

 

 

1.2 The purpose of ventilation 

 

Buildings are ventilated for two basic purposes [3-5]. First is to achieve an acceptable 

indoor air quality and the other is to provide thermal comfort.  Indoor air quality is 

based on removing or dilution of indoor pollutant concentration by supply of fresh air. 

Accordingly ventilation is not for oxygen supply in buildings nor to get rid of carbon 

dioxide [6]. The reason is that it is hardly possible to consume the oxygen to an extent  
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that there is a need to increase the oxygen level, and even harder to reach levels of 

carbon dioxide which are harmful to us. However they are good indicators of the other 

contaminants such as odour and moist which are produced by human body. 

 

Optimum indoor air quality is defined as “air which is free of pollutants that cause 

irritation, discomfort or ill health among occupants” [3]. 

 

 Typically Pollutants are: 

 Odour and moisture from humans and human activities. 

 Emissions from building materials, furnishing, fittings, equipment, detergents 

etc. (Volatile organic and chemical compounds, e.g. formaldehyde). 

 Environmental Tobacco smoke (ETS) and pollution from combustion 

processes (e.g. CO and NOx ). 

 Radon and pollution from outdoor sources [6]. 

 

Besides providing good indoor air quality, ventilation also helps to achieve thermal 

comfort. ISO 7730 states that “Thermal comfort is that condition of mind that 

expresses satisfaction with the thermal environment” [7]. Unwanted heating or cooling 

of all body or parts of the body causes discomfort and dissatisfaction. As far as thermal 

comfort is concerned there are three objectives of natural ventilation in daytime [3]: 

 

 Cooling of the building structure 

 At times when the outdoor temperatures are lower than the indoor temperature 

the air can be replaced or diluted. 

 Direct cooling of occupants by means of evaporation and convection. 

 

The cooling of building structures at night time can also result in the cooling of the 

interior of the building. In this case the mass of the building is used as a thermal 

storage during the cooler times and acts as a heat sink during the next day [6]. 

 

 

1.3 Comparisons between Natural and Mechanical Ventilation 

 

There are more benefits to have natural ventilation than mechanical ventilation. Some 

of these benefits are cooling energy savings, better comfort, productivity and occupant 

health. The following are some comparisons between using mechanical and natural 

ventilation in buildings. 

 

 

1.4 Occupant Health, Comfort and Productivity 

 

Based on research in both European and North American countries, there are lower 

symptoms in the naturally ventilated buildings compared to mechanically ventilated 
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and air-conditioned buildings [8]. Natural ventilation systems can provide more 

healthy, comfortable, and productive environments than mechanical systems. 

Architects have accepted natural ventilation as one of several objectives of high quality 

sustainable design [9]. In cooling the building mechanically, fans become one of the 

mechanical means which use a significant amount of the energy [9]. 

 

Heating Ventilating and Air conditioning (HVAC) equipment cost and space 

requirements mechanical heating, ventilating, and air conditioning equipment often are 

one of the large cost of construction of new buildings and the renovation of existing 

buildings. These costs may be expected to range from 35% to 45% of construction 

costs in larger office and institutional buildings [9]. Consequently, by replacing or at 

least reducing mechanical systems for ventilation and cooling, one of the potentially 

quite large costs can be saved. 

 

Mechanical air handling equipment including fans, filters, heating and cooling coils, 

vertical distribution shafts and ducts, horizontal distribution duct networks, dampers, 

supply diffusers and return grilles consume vast amounts of space. Therefore, 

mechanical equipment‟s consume about 20% to 40% of the total volume of the 

building. Natural ventilation systems recover much of this volume as occupied space 

for the spatial interior of the building. This recovered space (volume) may be used for 

formal architectural objectives or for daylight distribution [10]. 

 

 

1.5 Ambient Air Quality 

 

Another important issue in natural ventilation systems is the impact of ambient air 

quality. Typical natural ventilation systems do not use filtration. The filtration in 

mechanical ventilation systems does not remove all contaminants from the outdoor air. 

It generally includes some form of particle filtration. Natural ventilation helps improve 

indoor air quality. Also, it can control indoor humidity and airborne contaminants 

which are health hazards. So, the acceptability of having a better ambient air quality in 

natural ventilation systems must be considered [10]. 

 

 

1.6 Advantages of Natural Ventilation Systems 

Advantages of natural ventilation are as follows [9]. 

• Removal of mechanical air handling systems. 

• Reducing cooling energy consumption. 

• Eliminating the use of fan power required. 

• Providing quantitative health, comfort, and productivity advantages. 

• Providing qualitative advantages of „fresh air‟ in the minds of most occupants. 

• Having better control of their environments and less restrictive comfort criteria. 
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• Reducing significant fraction costs of conventional mechanical ventilation systems in     

commercial buildings. 

• Eliminating the large spatial requirements that conventional mechanical systems     

demand. 

• Avoiding the duct cleanliness dilemma, and its attendant costs. 

 

 

1.7 Uniform building by-law 1984 

Malaysia Uniform Building by Laws 1984  states minimum requirements for air wells 

in buildings for natural ventilation purposes as follows: 

1. For buildings up to 2 storeys in height: 7 square meters; 

2. For buildings up to 4 storeys in height: 9 square meters; 

3. For buildings up to 6 storeys in height: 11 square meters; 

4. For buildings up to 8 storeys in height: 13 square meters; 

5. And for buildings more than 8 storeys in height: 15 square meters 

The minimum width required in any direction will be 2.5 meters. 

 

 

1.8 Problem statement 

 

Roof being the most exposed part of the building to winds, has the ability to extract the 

air out of the building. In a design by Bronsema the building uses two airfoils, one 

located above the other at the roof to create a contraction resembling the venturi, and 

according to Bernoulli‟s principle creating a negative pressure at the center of the 

contraction which is supposed to aid the natural ventilation by sucking the air out of the 

building through a central air channel or duct (Figure 1.2). 

 

However if the disc is placed too close to the extraction points the element could 

constrict the air flow between the disc and roof to a point where the oncoming winds 

would stack up at the cap thus creating a dead zone without pressure of velocity. In a 

sense if the constriction is too much a Venturi “disc” can become a windbreak also 

referred to as wind blocking effect which shows the extreme importance of the 

geometry of roof. 

 

Figure 1.2 : VENTEC roof designed by Bronsema[11] 
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Later studies on the venturi roof has focused on the geometrical features that can 

possibly affect the performance of the roof. Adding guiding vanes, width of the 

building and vertically translating the full square disc, but the geometry of the roof was 

not changed. There is no reported studies on how can different roof shapes affect the 

performance of the roof. 

 

A study conducted in the UKM university on a full scale model have reported that 

venturi shaped roofs have created significant air changes in the hot and humid regions 

of Malaysia equivalent to the wind towers of the middle east. However no parametric 

study has been done on the roof geometry and its effect on ventilation. No explanations 

are given in terms of the criteria of implementing this roof design. The so called venturi 

tower shown in figure 1.3 has obvious contradictions in the roof design with the reports 

of an optimized roof performed on Bronsema‟s venturi roof and raises the controversial 

issue of which is an optimized roof geometry for the climate of Malaysia. The low 

wind speeds of Malaysia and the requirement of high ventilation rates and air 

movement, highlights the need for and optimized roof design which cannot be achieved 

without the knowledge on the influence of roof geometrical on the performance of the 

roofs. 

 

 

Figure 1.3:  Full scale model at UKM University[12] 

 

 

Studies on venturi roofs show that there is a fine balance between the venturi effect and 

the wind blocking effect which are influencing the performance of the roof and even 

insignificant geometrical characteristics like the pillars or the support of the upper roof 

can hinder its performance. Being more precise any venturi looking roof does not 

necessarily mean that the venturi effect is taking place in the roof. Every roof design 

needs to be investigated for this effect and cannot be generalized or predicted. 

Therefore is a need to quantify a suitable venturi roof for the hot and humid climatic 

conditions of Malaysia in a separate study. 
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1.9 Objective 

 

The objective of this study is to fabricate three roofs with different shapes and 

experimentally identify how different geometries influence the performance of the roof, 

and find the optimum configuration that creates the highest negative pressure at the 

roof center. This optimum configuration is mathematically referred to as contraction 

ratio and is affected by both variation in geometry of roof and the distance between the 

two parts of the roof. 

 

According to the literature, in wind tunnel experiments, the negative pressure at the 

center of the roof also known as pressure coefficient (Cp) is the major criteria for 

comparing the performance of the roof and consequently knowing whether the venturi 

effect is taking place or the wind blocking effect is the governing phenomena. The 

center of the roof where the highest contraction is present yields the lowest pressure 

coefficient and the specific location for the tap measurement. 

 

The specific objectives of this study are to: 

 

 

1) Measure the pressure coefficient (Cp) for Bronsema‟s design for validation 

2) Determine suitable geometric shape and gap between the two roof parts, best 

suitable for the hot and humid regions of Malaysia. 

 

 

1.10 Significance of study 

 

This work contributes to knowledge in green building technology where roof can have 

a major impact on inducing natural ventilation. The study can be of concern to 

architects and professions of those related to green buildings, as it intends to give an 

insight on the effect of different geometrical shapes on the performance of the roof and 

introducing a geometrical shape of roof, preforming efficiently in the climatic 

conditions of Malaysia. 

 

 

1.11 Scope and limitations 

 

This study has considered a number of roof configurations that are likely to present a 

good performance in the hot and humid climate of Malaysia. All parameters that are 

believed to influence the results are kept constant (i.e. wind speed, height of the 

building) and the effect of roof shape and the optimum distance between the two parts 

of the venturi roof in terms of venturi versus wind blocking effect is studied. The 

pressure coefficient at the roof center is considered as the criteria of determination of 

the performance of the roof. The roofs are fabricated from high density polyethylene 

(HDPE). The scale ratio of the models are 1:50 as the roofs are assumed to be 

applicable to be mounted on buildings or towers at heights above 25 meters. 

 

As this experiment is conducted using wind tunnel and models have to be fabricated for 

change in any geometrical parameter. Except experimental errors, a drawback of this 

method is number of models that can be fabricated as it can be time consuming and 

expensive. This reduces the ability of a thorough parametric study. Numeric simulation 

can be helpful in such cases however the limitations of a licensed CFD software and 
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instruments and equipment‟s of the wind tunnel required for validating the CFD results 

at the time of the study suggests the wind tunnel experimental method. 

 

It is also not clear to what extent the difference in pressure coefficient at the roof center 

will affect the natural ventilation of the building. Also the building is considered 

standing alone and the effect of other building upstream is ignored. 

 

 

1.12 Thesis layout 

 

Chapter 1 introduces the topic on ventilation principals, venturi roof design and their 

definitions.  Chapter two presents the literature review. Chapter three presents research 

methodology using wind tunnel. Chapter four presents the results and discussions and 

finally chapter five presents the conclusions and recommendations for future work. 
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