UNIVERSITI PUTRA MALAYSIA

BACTROCERA FLY INFESTATION ON STARFRUIT, AVERRHOA CARAMBOLA L. IN SELANGOR, MALAYSIA AND ITS PARASITOIDS

SALIM ALI JUMA

FP 2015 86
BACTROCERA FLY INFESTATION ON STARFRUIT, AVERrhoA CARAMBola L. IN SELANGOR, MALAYSIA AND ITS PARASITOIDS

By

SALIM ALI JUMA

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in the fulfillment of the requirements for the Degree of Master of Science

February 2015
COPYRIGHT

All the materials contain within the thesis, including without limitation text, logos, icons, photographs and all other art works, is copyright material of the Universiti Putra Malaysia unless otherwise stated. Used may be made of any material contained within the thesis for non-commercial purpose form the copyright holder. Commercial use of the material may be only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

To my beloved parents, my late father Ali and my late mother Saada. My Lord (Rabbi), forgive them and have mercy upon them as they brought me up (when I was) small. To my lovely wife Amina, my wonderful son Adil and my daughters Khdiya, Hajra and Asma for their support and patience during my study in Malaysia.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

BACTROCERA FLY INFESTATION ON STARFRUIT, AVERRHOA CARAMBOLA L. IN SELANGOR, MALAYSIA AND ITS PARASITOIDS

By

SALIM ALI JUMA

February 2015

Chairperson: Professor Rita Muhamad Awang, PhD

Faculty: Agriculture

Tephritid fruit flies, *Bactrocera carambola* (Drew and Hancock), and *B. papayae* (Drew and Hancock), belong to the *Bactrocera dorsalis* complex are key pests of valuable fruits in Southeast Asia. Control of these pests is often limited by difficulties in their identification that have been increasing due to recent occurrences of species with morphological characteristics of both *B. carambola* and *B. papayae* (hereafter known as intermediates). Opiinae parasitoids (Hymenoptera: Braconidae) are the important biological control agents of fruit flies in IPM. Therefore, a study was conducted to investigate the occurrence of intermediates and its proportion from their parental stocks based on field collection of flies infested starfruits, *Averrhoa carambola* L. and methyl eugenol-baited traps in three locations. In addition, field infestation of *Bactrocera* fruit flies and the associated Opiinae parasitism was assessed using infested fruits. Moreover, population fluctuation of *Bactrocera* fruit flies was studied using methyl eugenol trapping in UPM and Semenyih. A total of 7,144 fruit flies composed of *B. carambola* (59%), *B. papayae* (16%) and intermediates (25%) were collected from 240 infested fruits. From set traps, 12,522 male flies of *B. carambola* (21%), *B. papayae* (16%) and intermediates (63%) were collected. Nearly, all collected fruits were infested by *Bactrocera* fruit flies and the mean number of pupae per fruit respectively from UPM, DOA and Semenyih were 49, 47 and 28. However, per weight (g) of fruit the infestation was 0.65, 0.88 and 0.45. Similarly, the mean number of adult fruit flies per fruit was 34, 39 and 16 respectively. Opiinae parasitoids of four species; *Fopius arisanus* Sonum, *Diachasmimorpha longicaudata* Ashmead, *Psytalia fletcheri* Silvestri and *Psytalia incisi* Silvestri were identified and the percentage of parasitism were in the order of Semenyih > UPM > DOA at values of 33%, 24% and 9% respectively. The contribution of *F. arisanus* was more than 70% of total parasitoids while of others was nearly similar. The population of *B. carambola* was significantly higher (P < 0.05) in UPM while *B. papayae* was significantly higher (P < 0.05) in Semenyih. The population of intermediates was not significantly different (P > 0.05) between the locations similar to that of total flies. Among sampling months, populations showed nearly similar fluctuation trends with peak in October, December and January in
UPM. However, in Semenyih steady population throughout the year was observed with fluctuation for some fly species. The population of fruit flies in UPM was highly correlated with rainfall season though; *B. papayae* was also correlated with temperature. In Semenyih, populations of intermediates and total flies were correlated with relative humidity. Similarly, the stepwise regression analysis result from UPM showed that rainfall contributes significantly on population variations of fruit flies, except for *B. papayae*. In Semenyih, only relative humidity contributed significantly to population variations of intermediates ($R^2 = 0.49$) and total fruit flies ($R^2 = -0.37$). For the population dispersion, values of various indices and regression models in all sampling months for examined species indicated aggregated distribution except for few cases in Semenyih. The results suggest the existence of intermediate species of damaging *B. dorsalis* species and their parasitoids in studied areas. The relatively difference among locations in flies infestation and Opiinae parasitism is mostly related to orchard management and host conditions. However, population of fruit flies is highly influenced by weather condition.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

INFESTASI LALAT BUAH BACTROCERA KE ATAS BUAH BELIMBING BESI AVERRHOA CARAMBOLA L. DI SELANGOR, SEMENANJUNG MALAYSIA DAN PARASITOIDS

Oleh

SALIM ALI JUMA

Februari 2015

Pengerusi: Profesor Rita Muhamad Awang, Ph.D

Fakulti: Pertanian

Tephritid lalat buah, Bactrocera carambolae (Drew dan Hancock) dan Bactrocera papayae (Drew dan Hancock) yang tergolong dalam Bactrocera dorsalis kompleks merupakan perosak utama buah-buahan penting di Asia Tenggara. Kawalan terhadap perosak tersebut biasanya terhad oleh kesulitan terhadap pengidentifikasian perosak tersebut yang meningkat disebabkan oleh kehadiran spesis terbaru dengan ciri morfologikal kedua-dua B. carambolae dan B. papayae (selepas ini dirujuk sebagai perantara). Opiniae parasitoids (Hymenoptera: Braconidae) merupakan agen kawalan biologi penting lalat buah Bactrocera dalam IPM. Oleh sebab itu, satu kajian dijalankan untuk menyelidik kewujudan perantara dan perkadaran daripada stok induknya dan kemudian menilai infestasi lapangan lalat buah Bactrocera dan parasitisme Opiniae yang berkaitan berdasarkan pengumpulan lapangan lalat buah belimbing besi yang telah diserang, iaitu Averrhoa carambola L. dan dengan menggunakan perangkap methyl eugenol di Universiti Putra Malaysia (UPM), Jabatan Pertanian (DOA) Serdang dan Semenyih. Di samping itu, turun naik populasi lalat buah Bactrocera telah dikaji dari Disember 2012 hingga November 2013 menggunakan perangkap methyl eugenol di UPM dan di Semenyih. Sebanyak 7,144 lalat buah yang terdiri daripada B. carambolae (59%), B. papayae (16%) dan perantaranya (25%) telah dikumpul dari buah yang telah diserang. Daripada set perangkap, 12,522 lalat jantan B. carambolae (21%), B. papayae (16%) dan perantara (63%) telah dikumpul. Hampir semua buah yang dikumpul telah diserang oleh lalat buah Bactrocera dan min bilangan pupa dari UPM, DOA dan Semenyih ialah 49, 47 dan 28 per buah dan masing-masing 0.647, 0.876 dan 0.446 buah per g. Begitu juga, min bilangan lalat buah dewasa per buah ialah masing masing 34, 39 dan 16. Empat spesis Opiniae parasitoids; Fopius arisanus Sonum, Diachasmimorpha longicaudata Ashmead, Psyttalia fletcheri Silvesteri dan Psyttalia incisi Silvesteri telah dikenal pasti dan peratus parasitisme adalah dalam susunan, iaitu Semenyih > UPM > DOA pada nilai masing-masing 33%, 24% dan 9%. Sumbangan F.arisanus adalah lebih daripada 70% dari keseluruhan parasitoids manakala yang lain-lain adalah hampir sama. Populasi B. carambolae secara
signifikan adalah lebih tinggi (P < 0.05) di UPM, manakala B. papayae secara signifikan adalah lebih tinggi (P < 0.05) di Semenyih. Populasi perantara secara signifikannya tidak berbeza (P < 0.05) antara lokasi iaitu sama dengan jumlah keseluruhan lalat. Antara bulan persampelan, populasi menunjukkan hampir sama tred fluktuasi dengan catatan tertinggi adalah dalam bulan Oktober, Disember dan Januari di UPM. Walau bagaimanapun, di Semenyih, populasi sekata di sepanjang tahun telah diperoleh dengan catatan fluktuasi bagi sesetengah spesis lalat. Populasi lalat buah di UPM mempunyai korelasi yang tinggi dengan musim hujan, sedangkan, B. papayae juga mempunyai korelasi dengan suhu. Di Semenyih, populasi perantara dan jumlah keseluruhan lalat mempunyai korelasi dengan kelembapan relatif. Di samping itu, analisis regresi berperingkat di UPM menunjukkan bahawa faktor hujan menyumbang secara signifikan ke atas variasi populasi lalat buah kecuali B. papayae. Di Semenyih, hanya kelembapan relatif menyumbang secara signifikan ke atas variasi populasi perantara (R² = 0.49) dan jumlah keseluruhan lalat (R² = -0.37). Bagi serakan populasi, nilai bagi pelbagai indeks dan model regresi dalam semua bulan persampelan bagi spesis yang spesifik menunjukkan distribusi beragregat kecuali bagi beberapa kes di Semenyih. Oleh itu, perbezaan relatif dari segi porposisi, infestasi, dan distribusi parasitoidnya dipengaruhi oleh keadaan perumah dan pengurusan di ladang buah-buahan. Manakala, populasi lalat buah dipengaruhi oleh keadaan cuaca.
ACKNOWLEDGEMENTS

I would like to express my sincere gratefulness to my supervisor, Prof. Dr. Rita Muhamad Awang for her kind guidance, encouragement, support and patience throughout this study. Her vast knowledge, understanding, critical ideas and opinions have contributed greatly to the achievement of this study. Similar thanks go to my co-supervisors, Dr. Alvin Kah-Wei Hee and Associate Prof. Dr. Nur Azura Binti Adam. Their advice was valuable and fruitful to my work. I also acknowledge the financial support by World Bank through The State University of Zanzibar (SUZA) under the Higher Science and Technical Education Development Project Tanzania. SUZA, my employer is also acknowledged for granting me a study leave to the completion of the study. I extend my heartfelt thanks to my beloved wife Bibi Amina for her undying support, prayers and patience throughout my study in Malaysia. She has been my inspiration in the course of my study. I also thank my wonderful children Khadija, Hajra, Adil and Asma for always making me smile and their understanding of my absence. The assistance of the University Agricultural Park UPM, Department of Agriculture Serdang, and Golden Fruit Orchard in Semenyih, Selangor Malaysia is gratefully acknowledged. I am very grateful to the following staffs from the Department of Plant Protection, UPM, for their technical advices; Mr. Tamsil, Mr. Hishamuddin, Mr. Rajan and Mr. Jakasi. I forward my appreciation to Entomologist, Dr. Salmah Binti Yaakob from Universiti Kebangsaan Malaysia for the confirmation of identified species of parasitoids. I also thank Dr. Manjeri, a Post doctorate research fellow, from the Department of Plant Protection, UPM, for helpful comments on improving the earlier versions of this thesis. The help of my colleagues, my friends and all other people is gratefully acknowledged.
I certify that a Thesis Examination Committee has met on 16 February 2015 to conduct the final examination of Salim Ali Juma on his thesis entitled "Bactrocera Fly infestation on Starfruit, Averrhoa carambola L. in Selangor, Malaysia and its Parasitoids" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Kamaruzaman b Sijam, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Dzolkhifli b Omar, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Hafidzi b Mohd Noor, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Idris Abd Ghani, PhD
Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 March 2015
This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science.

The members of supervisory committee were as follows:

Rita Muhamad Awang, PhD
Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Alvin Kah-Wei Hee, PhD
Senior Lecture
Faculty of Science
Universiti Putra Malaysia
(Member)

Nur Azura Binti Adam, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate Student

I hereby confirm that:

- This thesis is my original work;
- Quotations, illustrations and citations have been duly referenced;
- This thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- Intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- Written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: __________________________ Date: __________________________

Name and Matric No.: Salim Ali Juma (GS28743)
Declaration by Members of Supervisory Committee

This is to confirm that:
- The research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate studies) Rules 2003 (Revision 2012-2013) are adhered to.

<table>
<thead>
<tr>
<th>Signature:</th>
<th>Signature:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Chairman of Supervisory Committee:</td>
<td>Name of Member of Supervisory Committee:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Member of Supervisory Committee:</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**

2 **LITERATURE REVIEW**

 2.1 Starfruit
 2.1.1 Origin and distribution of starfruit
 2.1.2 Economic importance of starfruit
 2.1.3 Phenology of starfruit
 2.1.4 Important pests of starfruit
 2.2 Taxonomy of *Bactrocera* fruit flies
 2.3 Biology of *Bactrocera* fruit flies
 2.4 Geographical ranges and distribution of *Bactrocera* fruit flies
 2.5 Host ranges and preferences of *Bactrocera* fruit flies
 2.6 Fruit damage and its symptoms
 2.7 Control measures of *Bactrocera* fruit flies
 2.7.1 Physical control measures
 2.7.2 Cultural control measures
 2.7.3 Genetic control measure
 2.7.4 Chemical control measure
 2.7.5 Behavioural control measures
 2.7.6 Biological control measures
 2.7.6.1 Predators
 2.7.6.2 Entomopathogens
 2.7.6.3 Parasitoids
 2.8 Taxonomy of Opiinae parasitoids
 2.9 Biology of Opiinae parasitoids
 2.10 Geographical distribution of Opiinae parasitoids
 2.11 Host ranges and preferences of Opiinae parasitoids
 2.12 Population fluctuation and dispersion of *Bactrocera* fruit flies
 2.12.1 Abiotic factors and population fluctuation of *Bactrocera* fruit flies
 2.12.2 Distribution patterns of *Bactrocera* fruit flies
 2.12.3 Fruit factor and population fluctuation of *Bactrocera* fruit flies
2.12.4 Biotic factors and population fluctuation of Bactrocera fruit flies

3 OCCURRENCE OF TEPHRITID FRUIT FLIES WITH INTERMEDIATE MORPHOLOGIES OF B. CARAMBOLAE AND B. PAPAYAE

3.1 Introduction
3.2 Materials and Methods
 3.2.1 Sampling locations and time
 3.2.2 Host fruit
 3.2.3 Sampling procedures
 3.2.3.1 Experiment 1: Collection and incubation of sample fruits to obtain fruit flies
 3.2.3.2 Experiment 2: Capture of male fruit flies using methyl eugenol traps
 3.2.4 Identification of adult fruit fly species
 3.2.5 Experimental design and statistical analysis
3.3 Results and Discussion
 3.3.1 Identified fruit flies
 3.3.2 Number of fruit flies of different species recovered from damaged fruits
 3.3.3 Number of total female and male fruit flies recovered from damaged fruits from different locations
 3.3.4 Number of fruit flies of different species captured by methyl eugenol traps from different locations
3.4 Conclusion

4 FIELD INFESTATION OF BACTROCERA FRUIT FLIES ON STARFRUIT, AVERRHOA CARAMBOLA L. AND THEIR ASSOCIATED OPIINAE PARASITISM

4.1 Introduction
4.2 Materials and Methods
 4.2.1 Sampling locations, time and procedures
 4.2.2 Identification of parasitoid species
 4.2.3 Sex separation
 4.2.4 Statistical data analysis
 4.2.5 Calculations of infestation and percentage of parasitism
4.3 Results and Discussion
 4.3.1 Infestation
 4.3.2 Identified species of parasitoids
 4.3.3 Total number of adult fruit flies emerged from damaged fruits
 4.3.4 Number of parasitoids of different species
 4.3.5 Percentage of parasitism
 4.3.6 Number of females and males of parasitoid progeny of different species
 4.3.7 Correlations between fruit weights with infestation
4.3.8 Correlations between fruit weights with percentage of parasitism

4.4 Conclusion

5 POPULATION FLUCTUATION OF BACTROCERA FRUIT FLIES

5.1 Introduction

5.2 Materials and Methods
 5.2.1 Sampling sites and time
 5.2.2 Sampling procedures
 5.2.3 Statistical data analysis
 5.2.3.1 Population distribution of male *Bactrocera* fruit flies
 5.2.3.2 Population fluctuation of male *Bactrocera* fruit flies
 5.2.3.3 Population dispersion of male *Bactrocera* fruit flies
 5.2.3.4 Sampling size for male *Bactrocera* fruit flies

5.3 Results and Discussion
 5.3.1 Identified fruit fly species
 5.3.2 Distribution of male *Bactrocera* fruit fly populations between locations
 5.3.3 Population fluctuation of male *Bactrocera* fruit flies
 5.3.3.1 Population fluctuation of male *Bactrocera* fruit flies in UPM
 5.3.3.2 Population fluctuation of male *Bactrocera* fruit flies in Semenyih
 5.3.3.3 Correlations between population of *Bactrocera* fruit flies and weather parameters in UPM
 5.3.3.4 Correlations between population of *Bactrocera* fruit flies and weather parameters in Semenyih
 5.3.3.5 Stepwise regression for population of *Bactrocera* fruit flies against weather parameters in UPM
 5.3.3.6 Stepwise regression for population of *Bactrocera* fruit flies against weather parameters in Semenyih
 5.3.4 Population dispersion of *Bactrocera* fruit flies
 5.3.4.1 Population dispersion of male *Bactrocera* fruit flies in UPM
 5.3.4.2 Population dispersion of male *Bactrocera* fruit flies in Semenyih
 5.3.4.3 Taylor’s power law and Iwao’s patchiness regression in UPM
 5.3.4.4 Taylor’s power law and Iwao’s patchiness regression in Semenyih
5.3.5 Sample size
 5.3.5.1 Sample size in UPM Serdang
 5.3.5.2 Sample size in Semenyih

5.4 Conclusion

6 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATIONS FOR FUTURE STUDIES

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Mean number of fruit flies of different species recovered from damaged fruits from different locations</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Mean number of females and males of total fruit flies recovered from damaged fruits from different locations</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Mean number of fruit flies of different species captured by methyl eugenol traps from different locations</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean weight of fruits, number of pupae per fruit and per weight of fruit from each location</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean number of total fruit flies recovered from damaged fruits from different locations</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>Mean number of parasitoids of different species per fruit from different locations</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>Percentage of parasitism of different species of parasitoids per fruit from different locations</td>
<td>38</td>
</tr>
<tr>
<td>4.5</td>
<td>Mean number of female and male parasitoids of each species from different locations</td>
<td>40</td>
</tr>
<tr>
<td>4.6</td>
<td>Correlation coefficient (r) values for fruit weight and infestation variables in each location</td>
<td>41</td>
</tr>
<tr>
<td>4.7</td>
<td>Correlation coefficient (r) values for the fruit weight and percentage of parasitism variables in each location</td>
<td>42</td>
</tr>
<tr>
<td>5.1</td>
<td>Mean number of fruit flies of different species by methyl eugenol traps per year from two locations</td>
<td>51</td>
</tr>
<tr>
<td>5.2</td>
<td>Correlation coefficient (r) values for population of different fruit fly species and weather parameters in UPM Serdang</td>
<td>56</td>
</tr>
<tr>
<td>5.3</td>
<td>Correlation coefficient (r) values for variables studied (population of different fruit fly species and weather parameters in Semenyih</td>
<td>56</td>
</tr>
<tr>
<td>5.4</td>
<td>Regression coefficients (R^2) for population of different fruit fly species against weather parameter variables in UPM Serdang</td>
<td>57</td>
</tr>
</tbody>
</table>
5.5 Regression coefficients (R²) for population of different fruit fly species against weather parameter variables in Semenyih

5.6 Distribution statistics and dispersion indices of different Bactrocera fruit fly species in UPM Serdang location

5.7 Distribution statistics and dispersion indices of different Bactrocera fruit fly species in Semenyih location

5.8 Regression data of Taylor’s power law and Iwao’s patchiness models analysis for population of different Bactrocera fruit flies in UPM Serdang

5.9 Regression data of Taylor’s power law and Iwao’s patchiness models analysis for population of different Bactrocera fruit flies in Semenyih
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Population of fruit flies of different species in relation to weather</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>parameters from December 2012 - November 2013 in UPM Serdang</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Population of total fruit flies in relation to weather parameters</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>from December 2012 - November 2013 in UPM Serdang</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Population of fruit flies of different species in relation to weather</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>parameters from December 2012 - November 2013 in Semenyih</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Population of total fruit flies in relation to weather parameters</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>from December 2012 - November 2013 in Semenyih</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Relationships between required numbers of samples and mean density at fixed</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>precision levels of 0.25, 0.15 and 0.10 for B. carambolae in UPM Serdang</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Relationships between required numbers of samples and mean density at</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>fixed precision levels of 0.25, 0.15 and 0.10 for B. papayae in UPM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serdang</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Relationships between required numbers of samples and mean density at</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>fixed precision levels of 0.25, 0.15 and 0.10 for intermediates in UPM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serdang</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>Relationships between required numbers of samples and mean density at</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>fixed precision levels of 0.25, 0.15 and 0.10 for total fruit flies in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UPM Serdang</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>Relationships between required numbers of samples and mean density at</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>fixed precision levels of 0.25, 0.15 and 0.10 for B. carambolae in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semenyih</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>Relationships between required numbers of samples and mean density at</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>fixed precision levels of 0.25, 0.15 and 0.10 for B. papayae in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semenyih</td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td>Relationships between required numbers of samples and mean density at</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>fixed precision levels of 0.25, 0.15 and 0.10 for intermediates in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semenyih</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>Relationships between required numbers of samples and mean density at</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>fixed precision levels of 0.25, 0.15 and 0.10 for total fruit flies in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semenyih</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Incubation of damaged fruits to obtain fruit fly pupae and adults and adult parasitoids</td>
<td>20</td>
</tr>
<tr>
<td>3.2</td>
<td>A trap (plastic bottle) hanging on starfruit tree</td>
<td>21</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic diagram of sampling bottle</td>
<td>22</td>
</tr>
<tr>
<td>3.4</td>
<td>Image analysing microscope connected with camera for identification</td>
<td>23</td>
</tr>
<tr>
<td>3.5</td>
<td>Dino-Lite Premier digital microscope connected with computer for capturing of images</td>
<td>23</td>
</tr>
<tr>
<td>3.6</td>
<td>Bactrocera carambolae</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>(A) B. carambolae whole body (male), dorsal view</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>(B) B. carambolae whole body (female), dorsal view</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>(C) B. carambolae wing</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>(D) B. carambolae fore leg femora</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>(E) B. carambolae abdomen, dorsal view</td>
<td>25</td>
</tr>
<tr>
<td>3.7</td>
<td>Bactrocera papayae</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>(A) B. papayae whole body (male), dorsal view</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>(B) B. papayae whole body (female), dorsal view</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>(C) B. papayae wing</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>(D) B. papayae fore leg femora</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>(E) B. papayae abdomen, dorsal view</td>
<td>26</td>
</tr>
<tr>
<td>3.8</td>
<td>Intermediate species</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>(A) Intermediate species whole body, lateral view</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>(B) Intermediate species whole body, lateral view</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>(C) Intermediate species, wing</td>
<td>27</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Fopius arisanus whole body (female), dorsal view</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Diachasmimorpha longicaudata whole body (female), lateral view</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Psyttalia fletcheri whole body (male), dorsal view</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Psyttalia incisi whole body (female), lateral view</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Sampling plan of starfruit trees in UPM Serdang</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Sampling plan of starfruit trees in Semenyih orchard</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>CRD</td>
<td>Completely Randomized Design</td>
</tr>
<tr>
<td>DOA</td>
<td>Department of Agriculture</td>
</tr>
<tr>
<td>EPP</td>
<td>Entry Point Project</td>
</tr>
<tr>
<td>GFO</td>
<td>Golden Fruit orchards</td>
</tr>
<tr>
<td>GI</td>
<td>Green’s Index</td>
</tr>
<tr>
<td>ID</td>
<td>Index of Dispersion</td>
</tr>
<tr>
<td>IDS</td>
<td>Institute for Development Studies</td>
</tr>
<tr>
<td>IPM</td>
<td>Integrated Pest management</td>
</tr>
<tr>
<td>MAT</td>
<td>Male Annihilation Technique</td>
</tr>
<tr>
<td>MCI</td>
<td>Mean Crowding Index</td>
</tr>
<tr>
<td>ME</td>
<td>Methyl Eugenol</td>
</tr>
<tr>
<td>MOA</td>
<td>Ministry of Agriculture and Agro-Based Industry Malaysia</td>
</tr>
<tr>
<td>NAP</td>
<td>National Agricultural Policies</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis Software</td>
</tr>
<tr>
<td>SIT</td>
<td>Sterile Insect Technique</td>
</tr>
<tr>
<td>S.E</td>
<td>Standard Error</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Fruits are important agricultural products that contribute significantly to food security as well as increase household income and national earning. Accordingly, sustainable production of adequate and high quality fruits is necessary to meet the increasing demand of both domestic and international level. Starfruit is widely cultivated in Southeast Asia as a food and commercial crop. In Malaysia, starfruit has been included in the National Agricultural Policies (NAP) 1, 2 and 3 established in 1984, 1994, and 1998-2010 respectively and in the Entry Point Project (EPP)7 (2013) as an important export fruit. It is grown throughout the country primarily for commercial purpose and holding a significant rank in export market, and making it an economically viable fruit crop. According to Arshad et al., (2007), in 2004, about RM3.1 million was obtained from export portion of produced starfruit primarily, to Singapore, Hong Kong and Netherlands. This export value ranked third contributing 12.86% of the fresh fruit market after papaya (33.68%) and melon (22.67%). Malaysia is exporter of starfruit (IDS, 2003). For that reason, starfruit gains its national and universal status. It considerably contributes to the economy of Malaysia through the increase of income to farmers, workers and government. However, production and market of starfruit face problems from invasive insect pests, particularly fruit flies (Vijaysegaran, 1984).

Bactrocera fruit flies (Diptera: Tephritidae) represent the most damaging pests of starfruit and other valuable tropical fruits, particularly in Southeast Asia and Pacific regions (Allwood et al., 1999; Vargas et al., 2002). The damage occurs when gravid female fruit fly oviposits on fruit to initiate a life cycle while allowing the entrance of pathogenic organisms (Christenson and Foote, 1960). In addition, the hatched larvae feed on and destroy the flesh of fruit resulting in reduced growth, rot and immature shedding of fruits (Galán-Saúco et al., 1993). Such damage to fruit; consequently, results in reduced fruit production and market opportunities. In Malaysia, fruit fly problem has been previously addressed and Bactrocera carambolae and Bactrocera papayae of B. dorsalis complex species with their intermediate species have been reported to seriously attack many species of commercial crops throughout Peninsular Malaysia; especially starfruit of all varieties (Allwood et al., 1999; Wee and Tan, 2005). Both immature and mature fruits are infested though; mature ones are mostly affected causing almost total loss of yield in absence of preventive strategies.

Currently, several measures have been implemented to control fruit fly problem on starfruit orchards in Malaysia. The use of Opiinae parasitoids (Hymenoptera: Braconidae) as a biological control agent of fruit flies is worldwide increasing included in IPM programs to reduce the effects of pervasively used chemical pesticides (Li et al., 2006; Nicácio et al., 2011). This entomophagous insect deposits its egg on fruit fly egg or larvae existing inside the fruit, resulting in the death of its host in immature stage (Hajek, 2004). This process reduces population of fruit flies, hence, reducing crop loss in the field. The presence of potential parasitoids of Bactrocera fruit flies in Malaysia has been long addressed (Clausen et al., 1965).
However, they have not been utilized in controlling fruit fly problems. The advanced monitoring of fruit fly population in terms of distribution, fluctuation and dispersion is important before application of management strategies, as it enables planning of the right time of the year and space in an orchard for better management outcomes.

There are several studies that have addressed *Bactrocera* fruit flies and their parasitoids because of their economic importance in agricultural sector. In Malaysia, field surveys on *Bactrocera* fruit flies and their parasitoids have been studied many years ago and *B. dorsalis* Hendel was identified as a major pest of starfruit and Opiinae as its important parasitoids (Vijayasegaran, 1984). The population of *B. dorsalis* was reported to fluctuate with weather and fruit factor (Tan and Serit, 1994). However, the occurrence of intermediate species of *B. dorsalis* complexes in recent years tends to complicate the identification of their sibling species, hence, limits the effectiveness of biological control efforts. To date, there is a dearth of recent studies on intermediates of *B. dorsalis* complex species and Opiinae parasitoids. Therefore, this study was intended to build up a record and update the status of *Bactrocera* fruit flies in terms of species composition, infestation, population fluctuation and dispersion and associated parasitoid parasitism in selected areas in the State of Selangor, Malaysia. It is also expected to contribute to the development of knowledge on the ecology, identification, and rearing of these insect species for the success of biological and other control programs against fruit fly problem.

Therefore, the objectives of this study are to:

1. Investigate the occurrence of Tephritid fruit flies with intermediate morphologies of *B. carambolae* and *B. papayae*.
2. Assess the field infestation of *Bactrocera* fruit flies on starfruit and their associated Opiinae parasitism.
3. Study population fluctuation of *Bactrocera* fruit fly species.
REFERENCES

Ministry of Agriculture and Agro-Based Industry Malaysia (2004). *Technical Document for Market Access on Starfruit (carambola).* Crop Protection and Plant Quarantine Services Division, Department of Agriculture, Kuala Lumpur, Malaysia.

Vargas, R.I., Leblanc, L., Harris, E.J. and Manoukis, N.C. (2012b). Regional suppression of Bactrocera fruit flies (Diptera: Tephritidae) in the Pacific through biological control and prospects for future introductions into other areas of the world Insects. 3: 727-742.

