UNIVERSITI PUTRA MALAYSIA

INFLUENCE OF DIFFERENT FAT REPLACERS AND DRYING TECHNIQUES ON PHYSICOCHEMICAL CHARACTERISTICS AND SENSORY ATTRIBUTES OF REGULAR AND INSTANT REDUCED-FAT COFFEE CREAMER

SIMIN HEDAYATNIA

FSTM 2015 42
INFLUENCE OF DIFFERENT FAT REPLACERS AND DRYING
TECHNIQUES ON PHYSICOCHEMICAL CHARACTERISTICS
AND SENSORY ATTRIBUTES OF REGULAR AND INSTANT
REDUCED-FAT COFFEE CREAMER

By

SIMIN HEDAYATNIA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia
in Fulfilment of the Requirement for the Degree of Master of Science

January 2015
COPYRIGHT

All materials contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is dedicated to my beloved father and mother who are always giving me
their unlimited support, love, patience and understanding.
INFLUENCE OF DIFFERENT FAT REPLACERS AND DRYING TECHNIQUES ON PHYSICOCHEMICAL CHARACTERISTICS AND SENSORY ATTRIBUTES OF REGULAR AND INSTANT REDUCED-FAT COFFEE CREAMER

By

SIMIN HEDAYAT NIA

January 2015

Chairman : Assoc. Prof. Seyed Hamed Mirhosseini

Faculty : Food Science and Technology

Coffee is one of the most popular soft drinks all around the world. Most of coffee drinkers prefer to add creamer and/or whitener to their coffee before consumption. Coffee creamers usually contain high amount of the saturated fat (15-40%). Therefore, the frequent consumption of the whitened coffee can induce many health issues (e.g. cardiovascular and chronic diseases) for coffee drinkers. In recent years, the demand for low- and reduced-fat products has been extensively increased. The aim of the present study was to formulate and characterize the reduced-fat coffee creamer with the most desirable characteristics comparable with commercial creamers.

The main objective of the present study was to investigate the effects of different type and content of fat replacer (i.e. inulin, 0, 2.5, 5 and 7.5%; maltodextrin, 0, 15, 20 and 25%, w/w) as well as different drying techniques (i.e. spray drying, drum drying and fluidized-bed drying) on physicochemical properties, microstructures, and sensory attributes of the regular-and instant reduced-fat creamers. The regular coffee creamers were produced by a single-stage drying (either spray drying or drum drying only); while the instant reduced-fat coffee creamers were produced by a double-stage drying (i.e. spray drying or drum drying along with fluidized-bed drying). Physicochemical properties of all formulated creamers were compared with the control (as a negative control) and commercial creamers (as a positive control).

The current study revealed that the physicochemical characteristics, microstructures, and sensory attributes of both regular-and instant reduced-fat creamers were significantly \(p \leq 0.05 \) influenced by both fat replacers and drying techniques. Moisture content, water activity of regular-and instant creamers were notably decreased by increasing the concentration of maltodextrin and inulin. This could be due to significant \(p \leq 0.05 \) increase in solid content of samples. The bulk density of regular-and instant creamers was dropped by increasing the content of target fat replacers and enlarging the particle size. The current study revealed that the
wettability, solubility, viscosity and glass transition temperature of the formulated creamer were significantly \((p \leq 0.05)\) improved as the contents of inulin or maltodextrin in the creamer formulation were increased.

The present study revealed that spray dried reduced-fat creamer had smaller spherical or oval shape particles than the drum dried creamers; while drum dried samples had much bigger particles with irregular shape. In this study, the drum-dried creamers had darker colour (or lower lightness) than the spray-dried samples. This might be because of its higher drying temperature and longer residence time. The drum-dried creamers with markedly bigger particle size and lower moisture content had considerably lower bulk density than the spray-dried creamer.

The current study revealed that the instant reduced-fat creamer had higher glass transition temperature than the regular reduced-fat creamer. This could be explained by the fact that the instant reduced-fat creamer had markedly lower moisture content than the regular creamer because the application of fluidized-bed drying led to decrease the moisture content, water activity, bulk density and stickiness. The agglomeration induced by fluidized bed drying significantly increased the reconstitution properties (wettability and solubility), viscosity and glass transition temperature of the reduced fat creamer. The morphology analysis revealed that agglomeration caused by fluidized-bed drying resulted in bigger particles with more porous structure than the regular creamer. Finally, the current study revealed that the instant spray-dried creamer (containing 25% maltodextrin and 7.5% inulin) had better quality comparable with commercial creamer than the instant drum-dried sample with similar formulation. The current study showed that instant spray-and drum dried reduced-fat creamers containing high amounts of maltodextrin (25%, w/w) and inulin (7.5%, w/w) had the most desirable characteristics among all formulated creamers comparable with the commercial creamer.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebegai memenuhi keperluan untuk ijazah Master Sains

KESAN PELBAGAI JENIS LEMAK PEGANTI DAN TEKNIK PENGERINGAN KE ATAS SIFAT FIZIOKIMIA DAN DERIA RASA KOPI KRAMER KURANG LEMAK BIASA DAN SEGERA

Oleh
SIMIN HEDAYATNIA

Januari 2015

Pengerusi : Profesor Madya. Seyed Hamed Mirhosseini

Fakulti : Sains dan Teknologi Makanan

Kopi merupakan salah satu minuman paling digemari di seluruh dunia. Majoriti peminum kopi biasanya memilih untuk menambah krimmer dan/atau pemutih di dalam kopi. Namun begitu, kopi krimmer kebiasaanya mengandungi kandungan lemak tepu yang tinggi iaitu 15-40%. Pengambilan yang kerap akan menyebabkan pelbagai isu kesihatan akan timbul seperti penyakit kardiovaskular dan penyakit kronik. Justeru itu, permintaan terhadap produk kurang lemak semakin meningkat sejak kebelakangan ini. Kajian ini bertujuan untuk menghasilkan formulasi dan ciri-ciri kopi kimmer rendah lemak yang paling standing dengan krimmer komersial. Objektif utama kajian ini adalah untuk mengkaji kesan pelbagai jenis dan kandungan pengganti lemak (seperti inulin, 0, 2.5, 5 and 7.5%; maltodextrin, 0, 15, 20 dan 25%, w/w) selain penggunaan teknik pengeringan (seperti pengeringan semburan pengeringan dram dan pengeringan terbendalir katil) ke atas sifat fiziokimia, struktur mikro dan deria rasa krimmer rendah lemak biasa dan segera. Krimmer kopi yang biasa dihasilkan dengan menggunakan pengeringan peringkat tunggal (sama ada pengeringan semburan atau pengeringan dram), manakala krimmer segera dihasilkan menggunakan pengeringan peringkat berganda (seperti pengeringan semburan atau pengeringan dram bersama terbendalir katil). Sifat fiziokimia semua krimmer berformulasi akan dibandingkan dengan krimmer kawalan (sebagai kawalan negatif) dan krimmer komersial (sebagai kawalan positif).

Kajian ini telah menunjukkan ciri fiziokimia, struktur mikro dan deria rasa kedua-dua krimmer biasa dan segera menghasilkan perbezaan yang ketara setelah teknik pengeringan digunakan \((p \leq 0.05)\). Kandungan kelembapan, iaitu aktiviti air krimmer biasa dan segera menunjukkan penurunan dengan peningkatan kepekatan maltodekstrin dan inulin. Ini mungkin disebabkan perbezaan yang ketara \((p \leq 0.05)\) meningkat dalam kandungan sampel pepejal. Ketumpatan pukal krimmer biasa dan segera menurun dengan peningkatan sasaran kandungan peganti lemak dan pembesaran saiz zarah. Kajian ini juga menunjukkan bahawa kebolehbasahan, kelarutan, kelikatan dan suhu peralihan kaca krimmer berformulasi menunjukkan
perbezaan yang ketara (p ≤ 0.05) meningkat setelah kandungan inulin atau maltodekstrin ditingkatkan.

Kajian ini juga menunjukkan bahawa pengeringan sembura krimer kurang lemak mempunyai zarah berbentuk sfera atau bujur yang lebih kecil berbanding penggunaan pengeringan dram yang mempunyai zarah lebih besar dengan bentuk yang tidak teratur. Dalam kajian ini, krimer dari pengeringan dram mempunyai warna lebih gelap (atau kecerahan yang lebih rendah) daripada sampel krimer daripada pengeringan sembura. Ini mungkin kerana suhu pengeringan yang lebih tinggi dan masa pengeringan lama. Krimer daripada pengeringan dram dengan saiz zarah yang lebih besar dan kandungan lembapan yang lebih rendah mempunyai ketumpatan pukal lebih rendah daripada krimer pengeringan sembura.

Kajian ini juga menunjukkan krimer rendah lemak mempunyai suhu peralihan kaca yang lebih tinggi (T_g) daripada krimer yang biasa. Ini dapat dijelaskan oleh fakta yang mengatakan bahawa krimer segera rendah lemak mempunyai kandungan kelembapan yang rendah berbanding krimer komersial kerana penggunaan pengeringan terbendalir katil mengurangkan kandungan kelembapan, aktiviti air, ketumpatan pukal dan kelekitan. Aglomerasi disebabkan oleh pengeringan terbendalir katil meningkat dengan ketara sifat pelarut (kebolehsesahan dan kelarutan), kelekit dan suhu peralihan kaca krimer kurang lemak. Analisis morfologi mendedahkan aglomerasi disebabkan oleh pengeringan terbendalir katil menghasilkan zarah yang lebih besar dengan struktur lebih poros daripada krimer biasa.

Kesimpulannya, kajian ini menunjukkan bahawa krimer segera daripada pengeringan sembura (yang mengandungi 25% maltodekstrin dan 7.5% inulin) mempunyai kualiti yang lebih baik setanding dengan krimer komersial daripada kopi segera daripada pengeringan dram dengan formulasi yang sama. Kajian ini juga menunjukkan bahawa krimer segera pengeringan sembura dan krimer rendah lemak pengeringan dram yang mengandungi jumlah maltodekstrin yang tinggi (25%, w / w) dan inulin (7.5%, w / w) mempunyai ciri-ciri yang paling didehndaki di kalangan semua Krimer berformulasi setanding dengan krimer komersial.
ACKNOWLEDGEMENTS

First and foremost, I give my greatest thanks to God for giving me the wisdom, ability, health and endurance to complete this degree.

I would like to express the deepest appreciation to my supervisor Assoc. Prof. Dr. Seyed Hamed Mirhosseini for his encouragement, ever-lasting support, guidance and supervision of this thesis. You have been a tremendous mentor for me. Without his supervision and constant help this dissertation would not have been possible.

I would also like to appreciate my other committee members: Prof. Dr. Yazid Abd Manap and Assoc. Prof. Dr. Roselina Karim for their encouragement, useful comments, and challenging questions. I would also like to express thanks to the technical staff of Faculty of Food Science and Technology in Food Biochemistry and Engineering Laboratories. A very special thank you goes to Mr. Amran and Madam Rosmawati Othman for being so supportive and warm welcome.

The most importantly, I take pleasure in expressing my gratitude to my father, Saeed and my mother Marzieh, who always encouraged me to obtain higher education. They bore me, raised me, supported me, taught me, and loved me. To them I dedicate this thesis. I'm so lucky to have them be my parents.

I want to thank my beloved sisters Sima and Mahshad who have always stimulated me to stay open-minded and to keep on doing the best I could. I would also like to thank Azad and Rozhin for all emotional support. Thanks for being with me.

A special thanks to my caring, loving, and supportive fiancé Rasa. Words cannot express how grateful I am to my fiancé for all of the sacrifices that you’ve made on my behalf. Himself, Rasa has been my best friend and a great companion, loved, supported, encouraged, entertained, and helped me get through this agonizing period in the most positive way. My heartfelt thanks.

Lastly, my special thanks to my best friends Maryam, Elham, Mahdokht, Homa, Hanie and Adila for helping me get through the difficult times, and for all the emotional support, camaraderie, entertainment, and caring they provided.
I certify that a Thesis Examination Committee has met on 15 January 2015 to conduct the final examination of Simin Hedayatnia on her thesis entitled "Influence of Different Fat Replacers and Drying Techniques on Physicochemical Characteristics and Sensory Attributes of Regular and Instant Reduced-Fat Coffee Creamer" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Yaya Rukayadi, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Jinap bt Selamat, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Russly b Abdul Rahman, PhD
Professor
Halal Products Research Institute
Universiti Putra Malaysia
(Internal Examiner)

Kamariah Long, PhD
Senior Lecturer
Center for Biotechnology
MARDI
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 March 2015
This Thesis was submitted to the Senate of University Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the supervisory committee were as follows:

Seyed Hamed Mirhosseini, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairperson)

Mohd Yazid Abdul Manap, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Roselina Karim, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Simin Hedayatnia GS31758
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ____________________________
Name of
Chairman of Supervisory Committee:

Signature: ____________________________
Name of
Member of Supervisory Committee:

Signature: ____________________________
Name of
Member of Supervisory Committee:

PROF. DATO' DR. MOHD. YAZID ABD. MANAP, D.S.I.S.
Pengarah
Institut Penyelidikan Produk Halal
Universiti Putra Malaysia
43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

PROF. MADIA DR. ROSELINA KARIM
Pensyarah
Jabatan Teknologi Makanan
Fakulti Sains & Teknologi Makanan
Universiti Putra Malaysia,
43400 UPM Serdang, Selangor,
Malaysia
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

2.1 Coffee

2.2 Coffee Creamer

2.2.1 History

2.2.2 Consumption of Coffee Creamer

2.2.3 Classification of Coffee Creamers

2.2.3.1 Coffee Creamer in Powder Form

2.2.3.2 Coffee Creamer in Liquid Form

2.3 Coffee Creamer Composition

2.3.1 Fat

2.3.2 Sweetener

2.3.3 Emulsifier and Stabilizer

2.3.4 Protein

2.3.5 Other Ingredients

2.3.5.1 Fat Replacers

2.4 Drying Techniques

2.5 Instantization and Agglomeration

3 METHODOLOGY

3.1 Materials and Methods

3.1.1 Materials and Chemicals

3.1.2 Methodology

3.1.3 Production of Reduced-Fat Creamer

3.1.3.1 Preparation of Creamer Emulsion

3.1.3.1.1 Commercial Sample (Control Positive)

3.1.3.1.2 Control Sample (Control Negative)

3.1.3.2 Homogenization Process

3.1.3.3 Spray Dryer Operation

3.1.3.4 Drum Dryer Operation

3.1.3.5 Fluidized-Bed Dryer Procedure

3.2 Analytical Tests

3.2.1 Moisture Content and Water Activity Analysis

3.2.2 Measurement of Bulk Density

3.2.3 Morphology Structure Analysis
3.2.4 Analysis of Droplet Size Distribution 29
3.2.5 Determination of Wettability 29
3.2.6 Solubility Index Measurement 29
3.2.7 Measurement of Apparent Viscosity 29
3.2.8 Glass transition temperature Analysis 30
3.2.9 Lightness (L*) Measurement 30
3.2.10 Sensory Evaluation 30
3.3 Statistical Design and Data Analysis 31

4 RESULTS AND DISCUSSION 34
4.1 Preliminary Study 34
4.1.1 Application of Protein in Creamer Formulation 34
4.1.2 Application of Emulsifier and Stabilizer in Creamer Formulation 35
4.1.3 Establishment of Desirable Spray Drying Condition 35
4.1.4 Establishment of Desirable Drum Drying Condition 36
4.1.5 Establishment of Desirable Fluidized-Bed Drying Condition 37
4.2 Effects of Different Compositions and Drying Techniques on Physicochemical Characteristics of Regular Reduced-Fat Creamers 37
4.2.1 Moisture Content and Water of Regular Reduced-Fat Creamers 37
4.2.2 Bulk Density of Regular Reduced-Fat Creamers 41
4.2.3 Morphology Structure of Regular Reduced-Fat Creamers 43
4.2.4 Volume-Weighted Mean (or Particle Size) of Regular Reduced-Fat Creamers 45
4.2.5 Wettability of Regular Reduced-Fat Creamers 49
4.2.6 Solubility of Regular Reduced-Fat Creamers 51
4.2.7 Apparent Viscosity of Regular Reduced-Fat Creamer 54
4.2.8 Glass transition temperature of Regular Reduced-Fat Creamers 56
4.2.9 Colour of Regular Reduced-Fat Creamers 60
4.2.10 Single and Interaction Effects of Drying Variables on Characteristics of Regular Creamers 64
4.3 Effects of Different Compositions and Fluidized Bed Drying on Physicochemical Characteristics of Instant Reduced-Fat Creamer 67
4.3.1 Moisture Content and Water Activity of Instant Reduced-Fat Creamers 67
4.3.2 Bulk Density of Instant Reduced-Fat Creamers 70
4.3.3 Morphology Structure of Instant Reduced-Fat Creamers 72
4.3.4 Volume-Weighted Mean (or Particle Size) of Instant Reduced-Fat Creamers 74
4.3.5 Wettability of Instant Reduced-Fat Creamers 77
4.3.6 Solubility of Instant Reduced-Fat Creamers 80
4.3.7 Apparent Viscosity of Instant Reduced-Fat Creamers 82
4.3.8 Glass transition temperature of Instant Reduced-Fat Creamers 83
4.3.9 Colour of Instant Reduced-Fat Creamers 86
4.3.10 Sensorial Analysis 88
4.3.11 Single and Interaction Effects of Drying Variables on Characteristics of Regular-Creamers 91
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Main consumer preference to have reduced fat products</td>
</tr>
<tr>
<td>2.1</td>
<td>Various coffee creamers containing different compositions</td>
</tr>
<tr>
<td>2.2</td>
<td>Coffee drinking statistics</td>
</tr>
<tr>
<td>2.3</td>
<td>Different sources of inulin</td>
</tr>
<tr>
<td>2.4</td>
<td>Inulin application in some food and non-food products</td>
</tr>
<tr>
<td>2.5</td>
<td>Overview studies of the different inulin concentrations in some food products</td>
</tr>
<tr>
<td>2.6</td>
<td>Maltodextrin applications in some food products</td>
</tr>
<tr>
<td>2.7</td>
<td>Spray drying operation of some food products</td>
</tr>
<tr>
<td>2.8</td>
<td>Properties of skim powders obtained from drum and spray drying techniques</td>
</tr>
<tr>
<td>3.1</td>
<td>The ingredients of different reduced-fat creamer formulations</td>
</tr>
<tr>
<td>3.2</td>
<td>Most popular consumed commercial coffee creamer in Malaysia markets</td>
</tr>
<tr>
<td>3.3</td>
<td>The composition of the control samples for spray drying and drum drying</td>
</tr>
<tr>
<td>3.4</td>
<td>Matrix of full factorial design of regular-and instant spray and drum dried reduced-fat creamer containing inulin and maltodextrin</td>
</tr>
<tr>
<td>3.5</td>
<td>Matrix of full factorial design of regular-and instant drum-dried reduced-fat creamer containing inulin and maltodextrin</td>
</tr>
<tr>
<td>4.1</td>
<td>The effect of different protein types on lightness and solubility index of reduced-fat creamers</td>
</tr>
<tr>
<td>4.2</td>
<td>Reduced-fat creamer with different sodium caseinate concentrations</td>
</tr>
<tr>
<td>4.3</td>
<td>The effect of different di-potassium hydrogen phosphate concentrations on feathering of reduced-fat creamer</td>
</tr>
<tr>
<td>4.4</td>
<td>Matrix of preliminary study of spray drying</td>
</tr>
<tr>
<td>4.5</td>
<td>Matrix of preliminary study of drum drying</td>
</tr>
<tr>
<td>4.6</td>
<td>Matrix of preliminary study of fluidised-bed drying parameters</td>
</tr>
<tr>
<td>4.7</td>
<td>Drying condition for production of regular reduced-fat creamer</td>
</tr>
<tr>
<td>4.8</td>
<td>Two-way ANOVA for different analysis of regular spray-dried creamers</td>
</tr>
<tr>
<td>4.9</td>
<td>Two-way ANOVA for different analysis of regular drum-dried creamers</td>
</tr>
<tr>
<td>4.10</td>
<td>t-test analysis on the moisture content of regular-and instant spray-and drum dried creamers</td>
</tr>
<tr>
<td>4.11</td>
<td>t-test analysis on the bulk density of regular-and instant spray-and drum dried creamers</td>
</tr>
<tr>
<td>4.12</td>
<td>t-test analysis on volume-weighted mean of regular-and instant spray-and-drum dried creamers</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>4.13</td>
<td>t-test analysis on wettability of regular-and-instant spray-and-drum dried creamers</td>
</tr>
<tr>
<td>4.14</td>
<td>t-test analysis on solubility of regular-and-instant spray-and-drum dried creamers</td>
</tr>
<tr>
<td>4.15</td>
<td>t-test analysis on viscosity of regular-and-instant spray-and-drum dried creamers</td>
</tr>
<tr>
<td>4.16</td>
<td>t-test analysis on glass transition temperature of regular-and-instant spray-and-drum dried creamers</td>
</tr>
<tr>
<td>4.17</td>
<td>t-test analysis on lightness (L*) of regular-and instant spray-and drum dried creamers</td>
</tr>
<tr>
<td>4.18</td>
<td>Sensory analysis of tested instant creamers</td>
</tr>
<tr>
<td>4.19</td>
<td>Two-way ANOVA for different analysis of instant spray-dried creamers</td>
</tr>
<tr>
<td>4.20</td>
<td>Two-way ANOVA for different analysis of instant drum-dried creamers</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Average annual coffee consumption in some Asian countries</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Classification of coffee creamer</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Obesity in international perspective</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Four drying process steps</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>(A) Schematic mechanism of agglomeration process, (B) Spray-dried creamer agglomeration process</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>General methodology</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>The drum-dried samples containing 0% fat replacers (maltodextrin and inulin)</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Laboratory scale spray drying operation</td>
<td>25</td>
</tr>
<tr>
<td>3.4</td>
<td>Aluminium packed spray-dried creamer</td>
<td>25</td>
</tr>
<tr>
<td>3.5</td>
<td>A) A Schematic diagram of Simon drum dryer B) Laboratory scale Simon drum dryer</td>
<td>26</td>
</tr>
<tr>
<td>3.6</td>
<td>(A) Schematic diagram of fluidised-bed dryer and (B) Laboratory scale fluidised-bed dryer</td>
<td>27</td>
</tr>
<tr>
<td>3.7</td>
<td>Scanning Electron Microscope (SEM) instrument</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Moisture content of regular spray-dried reduced-fat creamers</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>Water activity of regular spray-dried reduced-fat creamers</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>Moisture content of regular drum-dried reduced-fat creamers</td>
<td>39</td>
</tr>
<tr>
<td>4.4</td>
<td>Water activity of regular drum-dried reduced-fat creamers</td>
<td>40</td>
</tr>
<tr>
<td>4.5</td>
<td>Bulk density of regular spray-dried reduced-fat creamers</td>
<td>42</td>
</tr>
<tr>
<td>4.6</td>
<td>Bulk density of regular drum-dried reduced-fat creamers</td>
<td>43</td>
</tr>
<tr>
<td>4.7</td>
<td>Scanning electron micrographs (SEM) of creamers produced by spray drying (a and b) and drum drying (c and d) (magnification of 500)</td>
<td>44</td>
</tr>
<tr>
<td>4.8</td>
<td>Volume-weighted mean of regular Spray-dried reduced-fat creamers</td>
<td>46</td>
</tr>
<tr>
<td>4.9</td>
<td>Size enlargements induced with increasing maltodextrin content for spray-dried creamers containing 0% inulin and different maltodextrin content A (0%), B (15%), and C (25%)</td>
<td>47</td>
</tr>
<tr>
<td>4.10</td>
<td>Volume-weighted mean of regular drum-dried reduced-fat creamers</td>
<td>48</td>
</tr>
<tr>
<td>4.11</td>
<td>Drum-dried creamers with different volume weighed mean, (A: 15% maltodextrin and 0% inulin; B: 25% maltodextrin and 0% inulin)</td>
<td>49</td>
</tr>
<tr>
<td>4.12</td>
<td>Wettability of regular spray-dried reduced-fat creamers</td>
<td>50</td>
</tr>
<tr>
<td>4.13</td>
<td>Wettability of regular drum-dried reduced-fat creamers</td>
<td>51</td>
</tr>
<tr>
<td>4.14</td>
<td>Solubility of regular spray-dried reduced-fat creamers</td>
<td>52</td>
</tr>
<tr>
<td>4.15</td>
<td>Solubility of regular drum-dried reduced-fat creamers</td>
<td>53</td>
</tr>
<tr>
<td>4.16</td>
<td>Solubility improvement of regular drum-dried creamer A) 0% maltodextrin , B) 15% maltodextrin and C) 25% maltodextrin creamers by increasing the maltodextrin concentration (inulin 0%)</td>
<td>53</td>
</tr>
<tr>
<td>4.17</td>
<td>Apparent viscosity of regular spray-dried reduced-fat creamers</td>
<td>55</td>
</tr>
<tr>
<td>4.18</td>
<td>Apparent viscosity of regular drum-dried reduced-fat creamers</td>
<td>56</td>
</tr>
<tr>
<td>4.19</td>
<td>Glass transition temperature of regular spray-dried creamers</td>
<td>57</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.20</td>
<td>DSC Thermogram analyzed for T_g of regular spray-dried powders</td>
<td></td>
</tr>
<tr>
<td>4.21</td>
<td>Glass transition temperature of regular spray-dried creamers</td>
<td></td>
</tr>
<tr>
<td>4.22</td>
<td>DSC Thermogram analyzed for T_g of regular drum-dried powders</td>
<td></td>
</tr>
<tr>
<td>4.23</td>
<td>DSC Thermogram of glass transition temperature of the regular spray-dried powders</td>
<td></td>
</tr>
<tr>
<td>4.24</td>
<td>Lightness (L^*) of regular spray-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.25</td>
<td>Lightness (L^*) of regular drum-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.26</td>
<td>Images of spray-dried creamers (a: commercial creamer; c: control creamer; e: creamer) and drum dryed creamers (b: commercial creamer; d: control creamer; f: creamer)</td>
<td></td>
</tr>
<tr>
<td>4.27</td>
<td>Moisture content of instant spray-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.28</td>
<td>Water activity of instant spray-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.29</td>
<td>Moisture content of instant drum-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.30</td>
<td>Water activity of instant drum-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.31</td>
<td>Effects of agglomeration process on the moisture content of the regular-and instant spray-dried creamers (15% Maltodextrin and 5% inulin)</td>
<td></td>
</tr>
<tr>
<td>4.32</td>
<td>Bulk density of instant spray-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.33</td>
<td>Bulk density of instant drum-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.34</td>
<td>Microstructure of regular-and-instant spray-dried creamers (a, b) and regular-and-instant drum-dried creamers (c, d)</td>
<td></td>
</tr>
<tr>
<td>4.35</td>
<td>Scanning electron micrographs (SEM) of individual instant reduced-fat creamer particles dried using spray drying followed by fluidized-bed drying (a), drum drying followed by fluidized-bed drying (b)</td>
<td></td>
</tr>
<tr>
<td>4.36</td>
<td>Volume-weighted mean of instant spray-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.37</td>
<td>Volume-weighted mean of instant drum-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.38</td>
<td>Particle size of A) regular and B) instant spray-dried reduced-fat creamer containing 25% maltodextrin and 0% inulin</td>
<td></td>
</tr>
<tr>
<td>4.39</td>
<td>Particle size of A) regular and B) instant drum-dried reduced-fat creamer containing 25% maltodextrin/0% inulin</td>
<td></td>
</tr>
<tr>
<td>4.40</td>
<td>Wettability of instant spray-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.41</td>
<td>Wettability of instant drum-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.42</td>
<td>Solubility of instant spray-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.43</td>
<td>Solubility of instant drum-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.44</td>
<td>Apparent viscosity of instant spray-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.45</td>
<td>Apparent viscosity of instant drum-dried reduced-fat creamers</td>
<td></td>
</tr>
<tr>
<td>4.46</td>
<td>Glass transition temperature of instant reduced-fat spray-dried creamers</td>
<td></td>
</tr>
<tr>
<td>4.47</td>
<td>Glass transition temperature of instant reduced-fat drum-dried creamers</td>
<td></td>
</tr>
<tr>
<td>4.48</td>
<td>DSC thermograms of the drum-dried creamer a) before agglomeration process (regular creamer) b) after agglomeration process (instant creamer)</td>
<td></td>
</tr>
<tr>
<td>4.49</td>
<td>Lightness (L^*) of instant reduced-fat spray-dried creamers</td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>Lightness (L^*) of instant reduced-fat drum-dried creamers</td>
<td></td>
</tr>
<tr>
<td>4.51</td>
<td>Significant effect of agglomeration process on colour of drum-dried creamers</td>
<td>88</td>
</tr>
<tr>
<td>4.52</td>
<td>The effect of different chosen-creamers on taste evaluation</td>
<td>89</td>
</tr>
<tr>
<td>4.53</td>
<td>The effect of different chosen-creamers on aroma evaluation</td>
<td>89</td>
</tr>
<tr>
<td>4.54</td>
<td>The effect of different chosen-creamers on colour evaluation</td>
<td>90</td>
</tr>
<tr>
<td>4.55</td>
<td>The effect of different chosen-creamers on overall acceptability evaluation</td>
<td>90</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ANOVA Analysis of Variance
DE Dextrose equivalent
DPHP Di-potassium hydrogen phosphate
e.g Exempli gratia
etc Et cetera
et al Et alibi
g Gram
pH Hydrogen ion exponent
IN Inulin
Kcal/g Kilocalories per gram
Kg Kilogram
Kj/g kilojoules per gram
Kpa kilopascals
kWh.tonne-1 kilowatt hour per tonne
MA Maltodextrin
µL Microliter
mL Milliliter
mm Millimeter
mg Milligram
mL/min Milliliters per minute
min Minute
MPa Mega Pascal
rpm Revolution per minute
DRFC Drum-dried reduced-fat creamer
SRFC Spray-dried reduced-fat creamer
RS Rotation speed
SEM Scanning electron microscopy
SMP Skim-milk powder
SP Steam pressure
T Temperature
h Time (Hour)
s Time (Second)
US United States
D3,4 Volume-weighted mean particle size, µm
H2O Water
w/w Weight/weight
WPNI Whey Protein Nitrogen Index
°C Degree centigrade
≤ Equal or less
% Percentage
CHAPTER 1

INTRODUCTION

The recent changes in the lifestyles of numerous people worldwide have led to an increase in demand for convenient health food products, along with healthier foods in general, such as food products containing low-fat content and high fibre level, which produce lower energy level in the human’s body (Nishinari, 2009). The recommended daily intakes of total fibre for adults are 38 and 35 g for men and women, respectively (Trumbo et al., 2002). Fat is the most concentrated source of energy in the diet program that is providing 9 kcal/g energy as compared to 4 kcal/g for proteins and carbohydrates (American Heart Association, 1996). However, consumers prefer to consume foods with minimal or reduced-fat irrespective of the food taste. As shown by the Calorie Control Council (CCC, 1996), 88% of American adults prefer to consume the low- or reduced-fat or even fat-free foods and beverages because high fat daily intake is always associated with high risk for the obesity, cancer, chronic and cardiovascular diseases. Table 1.1 summarized some of the health issues that describing the consumer preferences for low-fat products. One of the most common strategies for low fat products is to use fat replacers to compensate for the shortcomings in the sensory attributes and textural properties of the product (Sandrou and Arvantoyannis, 2000). However, this strategy does not guarantee the textural properties (such as creaminess) and consumer acceptability (Szczesniak, 2002). Food scientists have conducted extensive research to develop an “ideal fat replacer” that could provide similar taste and functional properties comparable to conventional fat, but without inducing any negative side effects on the human health (Akoh, 1998).

Table 1.1. Main consumer preference to have reduced-fat products

<table>
<thead>
<tr>
<th>Why people use reduced-fat food products?</th>
<th>Percentages %</th>
</tr>
</thead>
<tbody>
<tr>
<td>To stay in better overall health</td>
<td>77</td>
</tr>
<tr>
<td>To eat or drink healthier food and beverages</td>
<td>71</td>
</tr>
<tr>
<td>To reduce fat intake</td>
<td>68</td>
</tr>
<tr>
<td>To reduce cholesterol</td>
<td>61</td>
</tr>
<tr>
<td>To maintain current weight</td>
<td>57</td>
</tr>
<tr>
<td>To reduce calories</td>
<td>56</td>
</tr>
<tr>
<td>To maintain an attractive physical appearance</td>
<td>52</td>
</tr>
<tr>
<td>To reduce weight</td>
<td>43</td>
</tr>
<tr>
<td>For refreshment or taste</td>
<td>39</td>
</tr>
<tr>
<td>To help with a medical condition</td>
<td>31</td>
</tr>
</tbody>
</table>

Source: Calorie Control Council (CCC) 1996, natural survey

Coffee creamer, also known as "coffee whitener" or "coffee sweetener" are liquid or granular substances intended to substitute for milk or cream as an additive to coffee or other beverages. Coffee additives are dried milk concentrates, evaporated
milk, coffee cream, liquid milk, and coffee whiteners or creamer (Kelly et al., 1999). A desired or preferred coffee creamer is supposed to have certain characteristics in terms of solubility, stability, whitening ability and viscosity (Golde and Schmidt, 2005; Tuot et al., 2014). Coffee creamer should remain physically stable during storage and its viscosity should be constant over the time of storage. Coffee creamer should be dissolved rapidly in the hot water without separation of its components. In addition, it should provide a good whitening effect after adding to hot coffee or similar hot beverages (Oldfield and Singh, 2005).

One of the main health issues for coffee drinkers is the presence of high percentage of fat in creamer formulation. In this regard, the reduced-fat creamer can be alternatively produced by the partial replacement of fat portion with fat replacer components (i.e. fat replacers such as maltodextrin and inulin). Maltodextrin is one of the most popular polysaccharide-based fat replacers. It has many industrial applications based on the degree of starch hydrolysis. Furthermore, it is a white powder with low bulk density and soluble in water which is widely used as a texture modifier, gelling agent, fat replacer, volume enhancer, and encapsulation agent (Kiessling and Zeller, 2005). Inulin is another type of water soluble carbohydrate with a neutral taste and minimal side effects on organoleptic attributes of the food product (El-Nagar et al., 2002). In the current study, the effects of different concentrations of maltodextrin and inulin on physiochemical characteristics and organoleptic attributes of the regular-and instant reduced-fat creamers were investigated.

The characteristics of coffee creamer are also highly influenced by the processing conditions. Drying is the most important processing step as it has different effect on the characteristics of powder products. Spray drying is one of the most common techniques applied for different food products (Chegini and Ghobadian, 2005; Chavez and Ledeboer, 2007) such as, creamer powder (Kiessling and Zeller, 2005; Beeson and Erickson, 2001), milk powder (Yazdanpanah and Langrish, 2011) and yogurt (Koc et al., 2010). However, it has several technical disadvantages such as high energy consumption, thermal degradation and production of the amorphous particles (White and Cakebread, 1966). Drum-drying is another drying technique that is widely used in bakery goods, beverages, cereal and dairy foods (Pua et al., 2010). The main advantages of drum drying are high drying rate and low production cost compared to other drying techniques (Vega et al., 2001). Moreover, further agglomeration is highly recommended to improve the quality and reconstitution properties of spray-and drum dried powders. In this regards, fluidized-bed drying is widely used for agglomeration purpose after drying process especially for spray drying. This may be possibly lead to induce further crystallization (Yazdanpanah and Langrish, 2011). The main research questions were as follows:

- Whether different drying techniques and conditions can significantly affect the physiochemical characteristics and overall acceptability of the regular-and instant reduced-fat creamer?
• Is there any significant different among all formulated creamers before and after fluidized-bed drying? Or is there any significant difference between physicochemical characteristics and overall acceptability of the regular-and instant reduced-fat creamers?

• Which one of fat replacers and drying techniques can provide creamer with more desirable characteristics and overall acceptability?

• Is there any significant difference between commercial creamers and newly formulated reduced-fat creamer in terms of overall quality and acceptability?

In this study, the effects of different drying techniques (i.e. drum-drying, spray-drying and fluidized-bed drying) and type and concentration of the fat replacers (maltodextrin and inulin) on physicochemical characteristics, functional properties and overall acceptability of the regular-and instant reduced-fat creamer were all investigated. The efficiency of different drying techniques and creamer composition were determined by assessing moisture content, water activity, bulk density, morphology structure, particle size distribution, wettability, solubility, viscosity, and glass transition temperature, colour intensity, and sensory attributes of various formulated creamers. The main goal of the present work was to produce the regular-and instant reduced-fat creamers with desirable physicochemical and functional characteristics comparable with commercial coffee creamers. In the current study, the specific objectives were as follows:

• To investigate the effect of type and content of fat replacers on physicochemical characteristics and overall acceptibility of regular-and instant reduced-fat coffee creamer.

• To evaluate the effect of drying techniques on physicochemical characteristics and overall acceptibility of regular-and instant reduced-fat coffee creamer.
REFERENCES

Amid, B. T., & Mirhosseini, H. (2012). Effect of different purification techniques on the characteristics of heteropolysaccharide-protein biopolymer from durian (Durio zibethinus) seed. Molecules, 17(9), 10875-10892.

Hennelly, P. J., Dunne, P. G., O’Sullivan, M., & O’Riordan, D. (2005). Increasing the moisture content of imitation cheese: effects on texture, rheology and
microstructure. *European Food Research and Technology*, 220(3-4), 415-420.

LIST OF PUBLICATIONS

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION : ______________

TITLE OF THESIS / PROJECT REPORT :
Influence of different fat replacers and drying techniques on physicochemical characteristics and sensory attributes of regular and instant reduced-fat coffee creamer.

NAME OF STUDENT : ____________________________

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.

2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.

3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as :

*Please tick (V)

☐ CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).

☐ RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).

☐ OPEN ACCESS I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for :

☐ PATENT Embargo from __________ until __________

(date) (date)

Approved by:

(Signature of Committee Chairperson) Date : 21/11/2013

Name: ____________________________

Department of Food Technology

University Putra Malaysia

43400 UPM Serdang, SELANGOR

Tel No: 603-8946 8390 Fax No: 603-8942 3552