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Greenhouse gases (GHG) such as carbon dioxide (CO2), methane (CH4) and 
nitrous oxide (N2O) are the main cause of global warming. In Malaysia, all 
these gases can be assessed through Denitrification and Decomposition 
(DNDC) model in various agricultural systems. Three soils and agriculture 
system studied for simulation were located in Kota Bharu (Kelantan) situated 
between  6°8′N 102°15′E, Alor Setar (Kedah) situated between 06°07'N,l 
100°22'E  and Selangor, Malaysia situated at 2°43′N 101°57′E. All the three 
sites have double cropping system in a year. The objectives of these studies 
were to examine and forecast the agricultural practices involved in N2O, CO2 
and CH4 emissions from various rice fields and to utilize the modeling 
approach to estimate changes in N2O, CO2 and CH4 emissions from rice soils 
of Malaysia. 
 
Through DNDC model, four interacting sub-models: thermal/hydraulic, crop 
growth, decomposition, and denitrification were simulated. (Rice cultivation is 
an important source of GHGs that cause global warming. Rice systems 
contribute over 25% of total global anthropogenic CH4 emissions 
currently). The model efficiently treats nitrogen inputs from atmospheric 
deposition, fertilizer use and nitrogen fixation and represents soil inorganic 
turnover to enable calculation of gas emissions. The farmers of Kelantan, 
Kedah and Selangor apply 248, 280 and 300 kg N ha-1 year-1

,
 respectively. 

The model validation was found satisfactory and gave correct simulations 
when compared with other studies reported elsewhere. In Kelantan, 
simulated CO2 flux rate was 4392 kg C ha-1, 33.7 N2O kg ha-1 year-1 with -2 
CH4 flux kg ha-1 year-1. The Global Warming Potential (GWP) for CO2 flux 
was 16105 kg CO2-eq ha-1, N2O 16403 kg CO2-eq ha-1. However, CH4 was 
found as sink (-66 kg CO2-eq ha-1). Bulk of all these gases had 32442 kg 
CO2-eq ha-1 net GWP. In Kedah, the simulated CO2 flux rate was 4675 kg C 
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ha-1 and 15.2 kg N2O ha-1 year-1 recording -3 CH4 flux kg ha-1 year-1. The 
GWP for CO2 flux was 17141 kg CO2-eq ha-1, N2O 454412 kg CO2-eq ha-1.  
 
However, CH4 was found as sink (-92 kg CO2-eq ha-1) and thus, bulk of all 
these gases had 471460 kg CO2-eq ha-1 net GWP. In Selangor, CO2 flux rate 
was 1489 kg C ha-1, 152.1 N2O kg ha-1 year-1 with -2 CH4 flux. The GWP for 
CO2 flux was 5460 kg CO2-eq ha-1 and N2O 74085 kg CO2-eq ha-1. However, 
CH4 was found as sink (-66 kg CO2-eq ha-1). Bulk of all these gases had 
79440 kg CO2-eq ha-1 net GWP. The simulations for field uncertainties were 
tested with variable nitrogen rates at 20% less than recommended and 20, 
40 and 60% more N than recommended along with soil organic carbon 
(SOC) rates at 4, 3, 2 and 1.93% kg C kg-1 in Kelantan, 2, 3, 4 and  5% SOC 
rates in Kedah and 2.31, 3, 4 and 5% in Selangor. In all the rice sites, the unit 
increase in N rate as well as SOC correspondingly increased N2O flux by 
10.06, 6.80, 6.51 and 1.16 kg N ha-1. NO flux by 0.76, 3.25, 3.14 and 2.03 kg 
N ha-1 year-1.N2 flux 17.87, 18.21, 21.75 and 25.22 kg ha-1 year-1. N2O GWP 
flux rate by 3495.3, 1614.6, 6.3.0 and 499.4. In Kedah, the unit increase in N 
rate as well as SOC correspondingly increased N2O flux by 0.25, 0.42, 2.51 
and 0.96 kg N ha-1, NO flux by 1.04, 1.17, 1.33, 1.51 kg N ha-1 year-1 and N2 
flux by 0.12, 0.83, 1.19 and 0.99 kg ha-1 year-1. N2O GWP flux rate by 30.6, 
23033, 110302 and 154765. Similarly, in Selangor, the unit increase in N rate 
as well as SOC correspondingly increased N2O flux by 2.86, 3.83, 7.61 and 
1.95 kg N ha-1. NO flux by 5.41, 5.0, 4.39 and 3.78 kg N ha-1 year-1. N2 flux 
by 5.22, 9.76, 18.46 and 30.44 kg ha-1 year-1. N2O GWP flux rate by 1385.3, 
1865.3, 2701.5 and 3411.5. In conclusion, the DNDC model validations were 
accurate for Malaysian rice. The farmers of these three sites are applying 
more nitrogen fertilizer against the crop demand corresponding more yearly 
NH3 volatilization loss and increased fluxes of N2O, NO and N2 in the 
environment and excess fertilizer leach down in the soil by polluting 
underground water. In Malaysian rice, the simulated CH4 values were 
negative indicating it as sink. In these sites, the GWP is also increasing due 
to elevated CO2, ongoing management practices especially cropping system, 
straw incorporation, irrigation/flooding and N fertilizer management as well as 
C storage potential of the soil which is increasing with the passage of time 
due to left over residues and soil flooding condition. 
 
 The DNDC, was modified to enhance its capacity of predicting GHG 
emissions from rice ecosystems. The major modifications focused on 
simulations of anaerobic biogeochemistry and rice growth as well as 
parameterization of rice management. The new model was tested for its 
sensitivities to management alternatives and variations in natural conditions 
including weather and soil properties. The test results indicated that (1) 
varying management practices could substantially affect CO2, CH4, or N2O 
emissions from rice; (2) soil properties affected the impacts of management 
alternatives on GHG emissions; and (3) the most sensitive management 
practices or soil factors varied for different GHGs. For estimating GHG 
emissions under certain management conditions at regional scale, the spatial 
heterogeneity of soil properties (e.g., texture, SOC content, pH) are the major 
source of uncertainty. 
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Pengerusi   : Profesor Mohd Khanif Yusop, PhD 
 
Fakulti         : Pertanian 
 
 
Gas rumah hijau (GRH) iaitu karbon dioksida (CO2), metana (CH4) dan nitrus 
oksida (N2O) adalah punca utama pemanasan global. Di Malaysia, semua 
gas ini boleh dinilai melalui proses dinitrifikasi dan penguraian (DNDC) dalam 
pelbagai sistem pertanian. Tiga jenis tanah dan sistem pertanian dikaji untuk 
simulasi dijalankan di Malaysia yang terletak di Kota Bharu (Kelantan) di 
antara 6 ° 8'N 102 ° 15'E, Alor Setar (Kedah) di antara 06 ° 07'N, 100 ° l 22'E 
dan Sabak Bernam (Selangor) antara 2 ° 43'N 101 ° 57'E. Ketiga-tiga lokasi 
ini mempunyai sistem penanaman dua kali setahun. Objektif kajian ini adalah 
untuk mengkaji dan meramal amalan pertanian yang terlibat dalam N2O, CO2 
dan pengeluaran CH4 dari pelbagai bidang beras dan menggunakan 
pendekatan model untuk menganggarkan perubahan dalam N2O, CO2 dan 
pengeluaran CH4 dari tanah padi Malaysia. 
 
 Melalui model DNDC, empat interaksi sub-model: haba/hidraulik, 
pertumbuhan tanaman, penguraian, dan proses dinitrifikasi telah 
disimulasikan. (Penanaman padi merupakan sumber penting (GHGs) yang 
menyebabkan pemanasan global. Sistem tanaman padi menyumbang lebih 
25% daripada jumlah pengeluaran  antropogenik global (CH4) pada masa 
ini). Model ini berkesan merawat input nitrogen dari pemendapan atmosfera, 
penggunaan baja dan pengikatan nitrogen dan menterjemahkan melalui 
pengiraan pelepasan gas dari tanah bukan organik. Petani Kelantan, Kedah 
dan Selangor  Malaysia menggunakan 248 kg N ha-1, 280 kg N ha-1  dan 300 
kg N ha-1 setahun masing-masing. Pengesahan model didapati memuaskan 
dan memberikan simulasi yang betul berbanding dengan kajian-kajian lain 
dilaporkan di sebelum ini. Di Kelantan, simulasi kadar fluks CO2 adalah 4392 
kg C ha-1, 33.7 N2O kg ha-1 setahun dengan -2 CH4 fluks kg ha-1 setahun. 
Potensi Pemanasan Global (GWP) untuk fluks CO2 adalah 16.105 kg CO2-eq 
ha-1, N2O 16.403 kg CO2-eq ha-1. Walau bagaimanapun, CH4 didapati 
sebagai penenggelam (-66 kg CO2-eq ha-1). Sebahagian besar daripada 
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semua gas-gas ini mempunyai 32.442 kg CO2-eq ha-1 potensi pemanasan 
global bersih. 
 
Di Kedah, kadar CO2 simulasi fluks adalah 4675 kg C ha-1 dan 15.2 kg ha-1 
setahun direkod -3 CH4 fluks kg ha-1 setahun. Yang (GWP) untuk fluks CO2 
adalah 17.141 kg CO2-eq ha-1, N2O 454.412 kg CO2-eq ha-1. Walau 
bagaimanapun, CH4 didapati meneggelamkan (-92 kg CO2-eq ha-1) dan 
dengan itu, sebahagian besar daripada semua gas-gas ini mempunyai 
471.460 kg CO2-eq ha-1 GWP bersih. In Selangor, CO2 flux rate was 1489 kg 
C ha-1, 152.1 N2O kg ha-1 year-1 with -2 CH4 flux. Di Selangor, kadar fluks 
CO2 adalah 1489 kg C ha-1, 152.1 N2O kg ha-1 setahun dengan -2 CH4 fluks. 
Yang (PPG) untuk fluks CO2 adalah 5460 kg CO2-eq ha-1 dan N2O 74085 kg 
CO2-eq ha-1. Walau bagaimanapun, CH4 didapati menenggelamkan (-66 kg 
CO2-eq ha-1). Sebahagian besar daripada semua gas-gas ini mempunyai 
79.440 kg CO2-eq ha-1 GWP bersih. Simulasi untuk ketidaktentuan lapangan 
diuji dengan pelbagai kadar nitrogen iaitu pada 20% kurang daripada yang 
disyorkan, 20, 40 dan 60% lebih daripada yang disyorkan N bersama-sama 
dengan dan kadar organic karbon dalam tanah SOC pada 4, 3, 2 dan 1.93% 
kg C kg-1 di Kelantan, 2, 3, 4 dan 5% kadar SOC di Kedah dan 2.31, 3, 4 dan 
5% di Sabak bernam. Di semua lokasi tanaman padi, peningkatan unit kadar 
N serta SOC menigkat seiring dengan pemeruapan N2O fluks oleh 10.06, 
6.80, 6.51 dan 1.16 kg N ha-1. NO flux by 0.76, 3.25, 3.14 dan 2.03 kg N ha-1 
setahun.N2 fluks 17.87, 18.21, 21.75 dan 25.22 kg ha-1 setahun. Kadar PPG 
N2O fluks terlepas adalah 3495, 3, 1614, 6, 499,4 dan 6.3.0. Di Kedah, kadar 
unit N serta SOC meningkatan selari dengan peningkatan kadar.N2O fluks 
sebanyak 0.25, 0.42, 2.51 dan 0.96 kg N ha-1, N2O fluks oleh 1.04, 1.17, 
1.33, 1.51 kg N ha-1 setahun dan N2 fluks oleh 0.12, 0.83, 1.19 dan 0.99 kg 
ha-1 setahun. Kadar N2O PPG flux ialah 30.6, 23033, 110302 dan 154765. 
Begitu juga di Selangor , peningkatan unit dalam kadar N serta SOC 
meningkat selari dengan pemeruapan N2O fluks ialah 2.86, 3.83, 7.61 dan 
1.95 kg N ha-1. NO fluks ialah 5.41, 5.0, 4.39 dan 3.78 kg N ha-1 setahun. N2 
fluks ialah 5.22, 9.76, 18.46 dan 30.44 kg ha-1 tahun-1.PPG N2O fluks 
terlepas ialah 1385,3, 1865,3, 2701,5 dan 3411,5. Kesimpulannya, model 
DNDC adalah sesuai untuk sawah Malaysia. Petani di ketiga-tiga tapak 
kajian membaja nitrogen lebih daripada keperluan tanaman selari dengan 
pemeruapan NH3 dan peningkatan fluks daripada N2O, NO dan N2 dalam 
persekitaran dan baja yang berlebihan dilarut lesap ke dalam tanah dengan 
mencemarkan air di bawah tanah. Di sawah Malaysia, nilai CH4 simulasi 
adalah negatif yang menunjukkan ia sebagai terlarut. Di dalam kajian ini, 
(GWP) juga meningkat kerana CO2 tinggi, amalan pengurusan tanaman 
terutamanya system penanaman, pengurusan jerami, pengairan/saliran dan 
pengurusan baja N serta simpanan C berpotensi untuk tanah yang semakin 
meningkat dari semasa ke semasa oleh sisa-sisa buangan dan selepas 
banjir. The DNDC, telah diubahsuai untuk meningkatkan keupayaan 
meramal pelepasan gas rumah hijau (GHG) daripada ekosistem padi. 
Pengubahsuaian utama tertumpu kepada simulasi anaerobik biogeokimia 
dan pertumbuhan padi mengikut parameter pengurusan tanaman padi. 
Model baru telah diuji untuk sensitiviti kepada pengurusan alternatif dan 
variasi dalam keadaan semula jadi termasuk cuaca dan tanah hartanah. 
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Keputusan ujian menunjukkan bahawa (1) amalan pengurusan yang 
berbeza-beza boleh memberi kesan yang ketara kepada pelepasan karbon 
dioksida (CO2), metana (CH4), atau nitrus oksida (N2O) daripada sawah padi; 
(2) Kandungan tanah menberi kesan alternatif pengurusan ke atas 
pengeluaran GHG; dan (3) amalan pengurusan tanah atau yang paling 
sensitif faktor diubah untuk GHG yang berbeza. Untuk menganggarkan 
pelepasan GHG di bawah syarat-syarat pengurusan tertentu di skala 
serantau, kepelbagaian ruang harta tanah (contohnya, tekstur, kandungan 
SOC, pH) adalah sumber utama ketidakpastian.  
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4.12: Linear regression between N rates and SOC (a) 2.31 
(b), 3 (c), 4 (d) 5 % for N2O GWP flux rate in Selangor, 
Malaysia. 

44 
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                                                           CHAPTER 1 
 
 

                                                  INTRODUCTION 
 
 

Greenhouse gas (GHG) absorbs infrared light in the atmosphere, thereby 
trap heat and cause a warming of the earth’s surface. In terms of their global 
warming potential, the three important GHG are carbon dioxide (CO2), 
methane (CH4) and nitrous oxide (N2O). Agriculture releases to the 
atmosphere significant amounts of these three gases (Paustian et al., 2004). 
Agricultural activities have a massive impact on the climate. Carbon dioxide, 
CH4 and N2O contributing 60, 15 and 5%, respectively, towards enhanced 
global warming. Concentrations of these gases are increasing at 0.4, 3.0 and 
0.22% year-1, respectively (Battle et al., 1996). Apart from causing global 
warming N2O is also responsible for the destruction of the stratospheric 
ozone (Rodhe, 1990). Quantification of GHG emission from soil is needed for 
global modeling studies in the context of ecosystem modification and climate 
change (Li et al., 1997). They also have considerable indirect effects arising 
from changes in land use (Bellarby et al., 2008). Concentrations of 
atmospheric GHGs, such as N2O, CO2, and CH4 which can alter the earth’s 
climate have risen dramatically during the past century. Soil N2O emissions 
often indicate an inefficient use of nitrogen (N) in agricultural soils. Although 
amounts of N lost as N2O from agricultural systems may be small relative to 
fertilizer inputs and crop outputs, N2O emissions may be symptoms of N 
losses more difficult to detect, such as N2 and water soluble nitrate (NO3 -). 
Furthermore, N2O emissions have adverse effects on the atmosphere, 
because they enhance radiative forcing and catalyze ozone destruction in the 
stratosphere (Bouwman et al., 2002). Carbon dioxide is released largely from 
microbial decay or burning of plant litter and soil organic matter (Janzen, 
2004). Methane is produced when organic materials decompose in oxygen-
deprived conditions, notably from fermentative digestion by ruminant 
livestock, from stored manures, and from rice grown under flooded conditions 
(Mosier et al. 1998). Nitrous oxide is generated by the microbial 
transformation of nitrogen in soils and manures, and is often enhanced where 
available N exceeds plant requirements, especially under wet conditions 
(Oenema et al., 2005)  Agricultural GHG fluxes are complex and 
heterogeneous, but the active management of agricultural systems offers 
possibilities for mitigation. Many of these mitigation opportunities use current 
technologies and can be implemented immediately. 
 
The N loss from agriculture through emissions is insignificant in terms of 
agronomy however, the emissions of N2O has an enormous environmental 
impact. The N2O is a GHG, as well as CO2, CH4, halogenated fluorocarbon, 
and per fluorocarbon and sulfur hexafluoride. Investigations of the Inter 
governmental Panel Climate Change (IPCC) have shown that the 
atmospheric concentration of GHGs, like CO2, CH4 and N2O have increased 
by 31, 151 and 17%, respectively within less than 150 years (IPCC, 2001). 
The atmospheric concentration of N2O has increased from 270 ppb at the 
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pre-industrial time to 314 ppb (IPCC, 2001), thus it causes between 5–6% of 
the global warming. 
 
Today, there is no doubt that the change in atmospheric composition is 
mainly caused by human activities (Houghton, 1997). The increase in N2O 
and other trace gases emissions is attributed to the increased N input in the 
biosphere (IFA and FAO, 2001). It is widely known that the intense N 
fertilization in agriculture led to increased N leaching and to increased N 
emissions (Haag and Kaupenjohann, 2001). The Kyoto protocol is set the 
stage to reduce the emissions of GHGs worldwide. The N2O and NO are 
both environmentally significant trace gases produced in soils by the 
processes of nitrification and denitrification (Bremner and Robertson et al., 
1997). 
 
The production of rice in Asia has increased markedly with the introduction 
and widespread adoption of modern crop production technologies, such as 
early maturing and N responsive semi-dwarf cultivars; high use of inorganic 
fertilizers, especially N fertilizers, and pesticides; and the expansion of 
irrigation facilities. The chemical environment of reduced soil and the 
extremely limited O2 supply in the soil-floodwater system has a large 
influence on the soil nutrient dynamics of irrigated rice systems. Global and 
regional estimates of GHG emission from rice fields vary greatly with the 
assumptions made on the importance of different factors affecting the 
emissions. Only a few studies (Bachelet and Neue, 1993) have attempted to 
calculate detailed regional GHG emissions. Emissions from rice production 
and burning of biomass were heavily concentrated in the group of developing 
countries, with 97 and 92% of world totals, respectively. While CH4 emissions 
from rice occurred mostly in South and East Asia, where it is a dominant food 
source, those from biomass burning originated in Sub-Saharan Africa and 
Latin America and the Caribbean (74% of total). Manure management was 
the only source for which emissions where higher in the group of developed 
regions than in developing regions (US-EPA, 2006a). 
 
Crop growth simulation models provide a means to quantify the effects of 
climate, soil and management on crop growth and biogeochemical processes 
in soil. Several models have been developed in recent years to predict GHG 
emissions from agricultural fields. Early models used regression relationships 
between rates of emissions and either the crop biomass (Kern et al., 1997) or 
grain yield . These relationships were based on the assumption that higher 
the biomass production of the crop, the more substrate would be available for 
CH4 production, either from increased crop residues or from higher rates of  
rhizo-deposition. Lu et al. (2000) developed a model for CH4 production 
derived from incubation studies. They developed Methane Emission in Rice 
Ecosystems model for simulating CH4 emissions from rice fields. The model 
was based on CERES-Rice model but did not cover N2O or CO2 emissions. 
Other models, however, include the entire set of GHG, for example, 
CENTURY (Parton, 1996), and Info Crop (Aggarwal et al., 2004) but are not 
yet at a stage where their predictive ability is satisfactory. Moreover, the 
models have hardly been used in tropical regions.  
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Problem statement  
 
In Malaysia, yet, no research has been conducted on greenhouse gas 
emissions from agricultural lands as influenced by climate, soil characteristics 
and management practices to clarify the magnitude and controlling factors of 
emissions coming from our agricultural systems, and in the development of 
region-specific emission coefficients. The increasing concentration of 
greenhouse gases (e.g. CO2, CH4, N2O) have led to changes in the earth’s 
climate and a warming of the earth’s surface due to human activities.  
 

It has long been known that rice soil is an important emitter of methane which 
may vary due to environmental and agronomic conditions (e.g. climate, soil 
types and farming practices). In rice soils, CH4 is produced by methanogens 
through anaerobic decomposition of organic matter, and part of the CH4 is 
oxidized by methanotrophic bacteria in aerobic regions of the soil (i.e. the 
surface soil layer and the rice rhizosphere). The modern agricultural practices 
are strongly linked to GHG emission. These practises have raised average 
temperatures, patterns of precipitation, water logging, soil acidity, soil fertility, 
water quality, flooding incidences, high concentrations of tropospheric ozone, 
risk of pests, diseases, weeds, emergence of poisonous residues in the food 
chain and shift of optimal production zones towards specific crops and 
farming practices. It is vital need to study Malaysian agricultural activities and 
entire suite of greenhouse gases (CO2, CH4, and N2O) needs to be properly 
monitored, estimated and interpreted through DNDC model and outcomes 
could be set for future planning. 

 

DeNitrification-DeComposition is a computer simulation model of C and N  
biogeochemistry in agro-ecosystems. The model can be used for predicting 
emissions of trace gases including N2O, NO, N2, NH3, CH4 and CO2. The 
DNDC model has been widely used over the last 10 years by many 
researchers (Cai et al., 2003; Li et al., 1997, 2000, 2004). Simulated results 
showed that DNDC was able to simulate the basic patterns of NO, N2O, CH4 
and NH3 fluxes simultaneously (Li, 2000). This feature could be valuable in 
assessing the net effect of the changing climate or alternative agricultural 
management on either the atmosphere or agriculture. Recently the DNDC 
model has been modified for predicting GHG emissions from rice rice 
ecosystems (Li et al., 2004). The modified model was tested for its 
sensitivities to management alternatives and variations in natural conditions 
including weather and soil properties. When estimating GHG emissions 
under specific management conditions at regional scale, the spatial 
heterogeneity of soil properties (e.g., texture, SOC content, pH) are the major 
sources of uncertainty. The modified DNDC model was used for estimating 
emissions of CO2, CH4, and N2O from all of the rice paddies in China with 
two different water management practices, i.e., continuous flooding and 
midseason drainage that were the dominant practices before 1980 and in 
2000, respectively (Li et al., 2004).  
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DNDC consists of two components. The first component entails three sub-
models and converts primary drivers (i.e., climate, soil, vegetation and 
anthropogenic activity) to soil environmental factors (i.e., temperature, 
moisture, pH, Eh and substrate concentration gradient). The second 
component consists of nitrification, denitrification and fermentation sub-
models; and simulates production/consumption of N2O, NO, N2, NH3 and CH4 
driven by the modeled soil environmental conditions. With the bio-
geochemical reactions embedded in the model framework, DNDC can predict 
the turnover of soil organic matter and the consequent trace gas emissions 
and nitrate leaching losses. 
 
In Malaysia,  a limited data analysis GHG’s emissions from agricultural lands 
as influenced by climate, soil characteristics and management practices to 
clarify the magnitude and controlling factors of emissions coming from our  
agricultural systems, and in the development of region-specific emission 
coefficients.   
The objectives of the present study were 
 

1. To evaluate the use of DNDC model to estimate greenhouse gas 
(N2O,CO2 and CH4) emission from Malaysian rice fields  
 

2. To assess the greenhouse gas emission from different rice (Kedah, 
Kelantan and Selangor) growing areas in Malaysia using DNDC 
model. 

3. To investigate the responses of greenhouse gas emissions and global 
warming potential of rice fields to different management practices. 
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