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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfilment of  the requirement for the degree of Doctor of Philosophy 

 

ISOLATION AND MOLECULAR CHARACTERIZATION OF EgCBF3 

ENCODING OIL PALM CBF/DREB TRANSCRIPTION FACTOR AND 

EFFECTS OF ITS ECTOPIC EXPRESSION IN 

TOMATO (Solanum lycopersicum CV. MT1) 

 

By 

 

 

MORTAZA EBRAHIMI 

February 2015 

Chairman: Professor Datin Siti Nor Akmar Abdullah, PhD 

Faculty:  Agriculture 

One of the well understood mechanisms in plants to overcome biotic and abiotic 

stresses is mediated through transcription factors. The APETALA2/Ethylene 

Response Factor (AP2/ERF) is one of the plant specific transcription factors. 

They are categorized into three families, termed AP2, RAV and ERF. ERF family 

is divided into two major subfamilies; the Ethylene Responsive Factors (ERF) 

and the C repeat-binding factor/dehydration responsive element-binding factor 

(CBF/DREB). In this study, a new member of the CBF/DREB was isolated from 

oil palm (Elaeis guineensis var. Dura × Pisifera) ripening fruit and designated as 

EgCBF3. Bioinformatics analysis revealed that EgCBF3 belongs to A-1 subgroup 

of CBF/DREB subfamily. The transcripts of EgCBF3 were detected ubiquitously, 

in oil palm’s root, leave and mesocarp tissue. This gene was responsive to the 

cold, ethylene, abscisic acid, NaCl and polyethylene glycol treatments. The 

EgCBF3::mGFP fusion protein was localized to the nucleus of onion epidermal 

cells. Using in vitro and in vivo DNA-protein binding assays it has been shown 

that EgCBF3 was able to bind with DRE/CRT element. Expression pattern of 

polygalacturonase (SlPG) and SlE8  two fruit ripening related genes were 

affected under transient overexpression of EgCBF3 in tomato fruits at four 

different developmental stages. Two carotenoid biosynthesis-related genes 

phytoene desaturase (SlPDS) and phytoene synthetase (SlPSY) showed up-



© C
OPYRIG

HT U
PM

ii 

 

regulation at four studied stages. Same result was observed for 9-cis-

epoxycarotenoid dioxygenase (SlNCED1). The ethylene biosynthesis related 

genes demonstrated an expression pattern related to the fruit developmental 

stages. These results predict that EgCBF3 can mediate abiotic stress response in 

ripening fruits and regulates the ripening process through modulation of ethylene 

and abscisic acid biosynthesis. Functional characterization of EgCBF3 was 

further performed using stable transformation of tomato cv. MT1. An in vitro 

technique was developed for efficient regeneration of transgenic tomato. Seed 

pretreatment with Thidiazuron (TDZ, 1 mg/l) enhanced organogenesis of the 

cotyledonary leaf with abaxial side down on MS medium supplemented with 2 

mg/l Benzyl Amino Purine (BAP) and 0.02 mg/l Indole Acetic Acid (IAA). The 

EgCBF3 tomatoes demonstrated dwarfism for the first few weeks, delayed leaf 

senescence and flowering time, increased chlorophyll content (~0.085 mg/cm
2
) 

and abnormal morphology compare to wild type. In vitro studies of the transgenic 

lines confirmed that overproduction of EgCBF3 can enhance drought, salt and 

cold tolerance in tomato. Expression of ethylene biosynthesis-related genes 

encoding 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-

aminocyclopropane-1-carboxylic acid oxydase (ACO) were down-regulated in 

transgenic lines. Also, the studied pathogenesis-related genes showed altered 

expression in wounded leaves of transgenic plants compared to wild types. These 

findings were consistent with the hypothesis that EgCBF3 can modulate plant 

growth and development, as well plant biotic and abiotic stress tolerance through 

direct regulation of related regulons, and partly via ethylene regulatory pathway.   
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

 

PEMENCILAN DAN PENCIRIAN MOLEKUL EgCBF3 

PENGEKOD FAKTOR TRANSKRIPSI CBF / DREB KELAPA SAWIT 

DAN KESAN PENGEKSPRESAN EKTOPIKNYA DI DALAM TOMATO 

 (Solanum lycopersicum cv. MT1) 

 

oleh 

MORTAZA EBRAHIMI 

February 2015 

Pengerusi: Profesor Datin Siti Nor Akmar Abdullah, PhD 

Fakulti: Pertanian  

Salah satu mekanisma yang difahami secara mendalam adalah perantaraan melalui 

faktor transkripsi. ‘APETALA2/Ethylene Response factor’ (AP2/ERF) adalah 

salah satu faktor transkripsi khusus tumbuhan. Mereka dikategorikan kepada tiga 

famili iaitu AP2, RAV dan ERF.  Famili ERF dibahagikan kepada dua subfamili 

utama; ‘Ethylene Responsive Factors’ (ERF) dan ‘repeat-binding 

factor/dehydration responsive element-binding factor’ (CBF/DREB). Dalam kajian 

ini, ahli baru CBF/DREB telah dipencilkan daripada buah kelapa sawit (Elaeis 

guineensis var. Dura × Pisifera) masak dan dinamakan sebagai EgCBF3. Analisis 

bioinformatik mendedahkan EgCBF3 adalah kepunyaan subfamili CBF/DREB 

kumpulan A-1. Traskrip EgCBF3 dikesan merata dalam akar, daun,  dan tisu 

mesokarp. Gen ini responsif pada rawatan sejuk, etilina, asid absisik, NaCl dan 

polietilina glikol. Protein gabungan GFP EgCBF3 tersasar dalam nukleus sel 

epidermis bawang. Asai pengikat DNA-protein in vitro dan in vivo menunjukkan 

bahawa EgCBF3 mengikat elemen DRE/CRT. Corak pengekspresan 

polygalacturonase (SIPG) dan SIE8 dua gen kemasakan buah responsif etilina 

menunjukkan perubahan pengekspresan dalam pengekspresan transien EgCBF3 

dalam buah tomato pada empat peringkat perkembangan berlainan. Dua gen 

berkaitan biosintesis karotenoid, phytoene desaturase (SIPDS) dan phytoene 

synthetase (SIPSY) menunjukkan peningkatan tahap pengekspresan dalam 
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keempat peringkat yang dikaji. Keputusan yang sama telah dilihat untuk 9-cis-

epoxycarotenoid dioxygenase (SINCED1). Gen biosintesis etilina menunjukkan 

corak pengekspresan bertalian dengan peringkat perkembangan buah. Keputusan 

ini mencadangkan EgCBF3 menjadi perantara tindakbalas tekanan abiotik pada 

peringkat kemasakan buah dan mengawal proses peranuman melalui modulasi 

biosintesis etilina dan asid absisik. Pencirian kefungsian EgCBF3 selanjutnya 

dibuat melalui transformasi kekal menggunakan tomato cv. MT1. Teknik in vitro 

telah dibangunkan untuk kecekapan dalam pertumbuhan semula tomato 

transgenik. Prarawatan biji benih dengan TDZ (1 mg/L) meningkatkan 

organogenesis  daun kotiledon dengan bahagian abaksial di bawah di dalam media 

MS yang ditambah dengan 2 mg/L BAP dan 0.02 mg/L IAA.. Tomato EgCBF3 

menunjukkan sifat kerdil untuk beberapa minggu, penangguhan senesens dan 

pembungaan, peningkatan kandungan klorofil (~0.085 mg/cm
2
)

 
dan morfologi 

bunga yang tidak normal berbanding tomato liar. Kajian in vitro ke atas lajur 

transgenik mengesahkan bahawa penghasilan berlebihan EgCBF3 boleh 

meningkatkan toleransi terhadap kekeringan, kemasinan dan kesejukan dalam 

tomato. Ekspresi gen biosintesis etilena yang mengekodkan 1-aminocyclopropane-

1-carboxylic acid synthase (ACS) dan 1-aminocyclopropane-1-carboxylic acid 

oxidase (ACO) telah menurun. Juga gen pengekspresan gen patogenesis yang 

dikaji menunjukkan perubahan dalam tisu daun transgenik yang cedera berbanding 

jenis liar. Penemuan ini adalah konsisten dengan hipotesis yang EgCBF3 boleh 

mengawal pertumbuhan dan perkembangan tumbuhan, juga toleransi terhadap 

tekanan biotik dan abiotik melalui kawalan terus regulon dan sebahagiannya 

melalui tapak jalan peagawalaturan etilina.  
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(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) 

(Kelley and Sternberg, 2009). Phyre2 uses the profile–profile 

matching algorithms to predict protein structure. The three ß-

sheets and one α-helix are indicated in the picture. 
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The horizontal axis is demonstrated as % of reliability 

(https://www.predictprotein.org/). (b) Prediction of the 

subcellular localization for EgCBF3. 
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EgCBF3 is localized in the nucleus. Predictprotein uses a 

Metastudent predictator for gene ontology (GO). First a BLAST 
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in the BLAST database. Metastudent uses F1 score to predict 

the reliability. The maximum F1 score achives in metastudent is 

0.36 for the biological process ontology prediction. The F1 

score is calculated using the following equation: F1= (2 × 

precision × recall)/precision + recall. Where recall means: 

‘Precision corresponds to the number of correctly predicted GO 

terms divided by the number of all predicted GO terms’. 
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DRE/CRT (mDRE/CRT), GCC-box and mutated GCC-box 

(mGCC-box) probes. 

3.13 (a) Expression profile of EgCBF3 in oil palm’s leaf, root and 

mesocarp tissue at different stages of development (waa: weeks 

after anthesis). Expression ratio of EgCBF3 in mesocarp tissue 

under different treatments: (b) Cold (4°C) treatment, (c) PEG 

(20% PEG8000) treatment, (d) Ethylene (10% (w/v) ethephon) 

treatment, (e) ABA (100 μM) treatment and f NaCl (300 mM) 

treatment. The expression ratio was calculated using the 

REST2009 software ver.2.0.13 (QIAGEN). Gene expression 

was normalized with Elaeis guineensis actine gene (accession 

number: AY550991.1) and EgGAPDH gene (accession number: 

DQ267444.1). The vertical axis for a, b and d are displayed in 

Log10 scale. 
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Solanum lycopersicum elongation factor 1a (SlEF1α) gene 
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number: U60480.1). The vertical axis for all figures is displayed 

in Log10 scale.    
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CHAPTER 1 

INTRODUCTION 

Oil palm (Elaeis guineensis Jacq.) is a perennial monocot crop originated from West 

and Central Africa (Soh et al., 2009). Oil palm trees produce oil rich fruits and it is the 

highest yielder among oil producing crops. This tree is cultivated in 16.4 million 

hectares of agricultural lands worldwide (FAO, 2013), and Malaysia is undoubtedly 

one of the biggest producers and exporters of the oil palm products, by having about 

17.6 million tons (24.1%) of the total global palm oil trade (Oil World, 2013). It is 

reported that 77% of the arable land (15% of the total land) in Malaysia is devoted to 

oil palm (MPOB 2012). The most economic part of this crop is the fruit, in which two 

types of vegetable oil are produced. Almost 95% of total oil of the fruit is crude palm 

oil (CPO) produced from the mesocarp tissue, and about 5% of oil is the non-edible 

palm kernel oil (PKO). 

The oil palm fruit, like tomato and many other fruits where there is a burst in ethylene 

production during the ripening stage (Tranbarger et al., 2011), is categorized as a 

climacteric fruit. This gaseous hormone plays a key regulatory role in the ripening 

process in these fruits. This is clearly indicated through comparative transcriptome 

analysis where 37% of the differentially expressed genes during fruit development and 

ripening stages in tomato are influenced by ethylene (Alba et al., 2005). Expression of 

proteins involved in fruit development and ripening is modulated by regulatory proteins 

and transcription factors (TF) especially play a major role in transcriptional regulation 

of these genes. Extensive studies have been made on characterization of different 

classes of TFs regulating the fruit ripening process, upstream as well as downstream of 

the ethylene signaling pathway, however function of the APETALA2/Ethylene 

Response Factors (AP2/ERF) proteins have received very little attention. This 

AP2/ERF superfamily is one of the largest plant specific TFs. The AP2/ERF is 

classified into three subfamilies: the APETALA2 (AP2) family with two AP2/ERF 

domains; the RAV (Related to ABI3/VP1) family with a B3 domain and an AP2/ERF 

domain; and Ethylene Response Factor (ERF) family with one AP2/ERF domain. 

There are two major subfamilies of the ERF; the Ethylene Responsive Factors (ERF) 

and the C-repeat-binding factor/dehydration responsive element-binding factor 

(CBF/DREB).  It has been well documented that members of AP2/ERF act as key 

regulators in plant developmental processes, plant architecture (Chung et al., 2010), 

and biotic and abiotic stress tolerance in plants (Mei et al., 2007). These proteins are 

major regulators of fruit ripening via regulation of ethylene biosynthesis and the 

signaling pathway (Karlova et al., 2011; Tiznado-hernández and Mattoo 2012). Despite 

the economic importance of oil palm fruits, functions of the regulatory proteins 

involved in different aspects of fruit ripening process are not thoroughly understood. 

Fruit ripening transcriptome analysis for lipid and carotenoid metabolism in oil palm 

was reported by Tranbarger et al. (2011). Although, their study provided a better 

understanding of the molecular mechanisms regulating fruit ripening in oil palm, but 

the mechanism is not fully discovered. Tranbarger et al. (2011) reported that a member 

of type VII and a type IX transcription factor of AP2/ERF superfamily showed up-

regulation at the transition stage from system I of ethylene production to system II 

(Tranbarger et al., 2011) in the mesocarp tissue of oil palm fruits. Data mining of 
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transcriptomic datasets provided by Xu et al. (2011), Bourgis et al. (2011) and 

Tranbarger et al. (2011) showed no evidence of expression of CBF/DREB in oil palm 

ripening fruit. 

Although, it has been shown that the CBFs play an important role in plant resistance to 

abiotic stresses, especially freezing tolerance, their function in biotic stress tolerance, 

as well as fruit ripening process is still under investigation (Yamaguchi-Shinozaki and 

Shinozaki, 1994; Stockinger et al., 1997; Thomashow, 1999; Medina et al., 2011; 

Zhang et al., 2009b; Li et al., 2011). Alongside the in vitro DNA-protein binding assay 

demonstrating preference of the CBFs for the DRE/CRT element, there are some recent 

finding verifying possible affinity of this protein with both DRE/CRT and GCC-box 

elements in in vivo condition (Gutha and Reddy, 2008; Li et al., 2011).  

Among the different biotic and abiotic stresses, freezing condition is a key factor with 

adverse effects on plant yield and geographical distribution. However, several reports 

showed contradictory role of ethylene in plant cold acclimation. While cold 

acclimation in tomato and tobacco was reported to be enhanced by ethylene (Ciardi et 

al. 1997; Zhang and Huang 2010), new recent findings indicate negative effects of 

ethylene in plant freezing tolerance (Shi et al., 2012; Zhao et al., 2014). In addition, 

more recent report indicated that the freezing tolerance in Arabidopsis was negatively 

affected by suppression of CBF through ethylene production (Shi et al., 2012).  

Ethylene biosynthesis related enzymes contain different cis elements like GCC-box and 

DRE/CRT on their promoter sequences (Zhang et al., 2009b). So, it is hypothesized 

that a mechanism for the CBFs, to regulate chilling tolerance in plants is mediated 

partly through ethylene biosynthesis pathway and as a result, it can regulate plant 

growth, development and disease resistance, either directly by binding to the related 

cis-elements on different target genes or indirectly by ethylene biosynthesis pathway. 

So, the main objectives of this study were: 

 1. To isolate and clone the oil palm EgCBF3 expressed in ripening oil palm 

fruit  

2. To determine the EgCBF3 responsiveness to different hormonal and stress 

treatments in oil palm mesocarp tissue 

3. To characterize the DNA-protein binding and trans-activation abilities of 

EgCBF3 using in vitro and in vivo assays. 

4. To characterize the possible function of EgCBF3 in regulating ethylene 

biosynthesis-related genes, pathogenesis-related genes and abiotic stress 

tolerance in tomato cv. MT1 using transgenic approaches.  
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