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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 
the requirements for the degree of Master of Science 

STRUCTURAL, MAGNETIC AND ELECTRICAL PROPERTIES OF YBCO-
123 SUPERCONDUCTOR REACTED WITH Y2O3 AND BaZrO3

NANOPARTICLES 

By

NURHIDAYAH BINTI MOHD HAPIPI 

December 2017

Chairman: Assoc. Prof. Chen Soo Kien, PhD 
Faculty: Science 

In this work, superconducting properties of YBa2Cu3O7-δ (Y-123) reacted with 5.0 mol.% 
of Y2O3 and different molar percentages (mol.%) of BaZrO3 (BZO) nanoparticles were 
studied. Series 1 samples are Y-123 reacted with x mol.% BZO nanoparticles and Series 
2 samples are Y-123 reacted with 5.0 mol.% of Y2O3 and x mol.% BZO nanoparticles (x
= 0.0 – 7.0 mol.%). The samples were prepared using co-precipitation (COP) method. 
The phase formation, microstructure, magnetic and electrical properties of the samples 
were investigated using thermogravimetric analysis (TGA), X-ray diffraction (XRD), 
scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), 
temperature dependence of resistance measurement, and alternating current 
susceptibility (ACS). XRD patterns indicated that all of the samples could be indexed to 
space group (Pmmm) with orthorhombic crystal structure. Y-123 is the major phase while 
Y-211 was detected as minor secondary phase in all the samples. Besides, BZO peaks 
started to appear when its addition level was increased from 1.0 mol.%. The SEM images 
showed that all the samples have irregular shaped grains and they are randomly 
distributed. The average grains size for both series increased in the range of 0.30 μm to 
0.50 μm with increasing amount of BZO nanoparticles addition. Yet, the grain size for 
Series 2 samples is slightly higher than that in Series 1 indicating that Y2O3 may promote 
grain growth. The temperature dependence of resistance measurements showed a
metallic behaviour at normal state and a superconducting transition to zero resistance for 
all the samples. The value of Tc for the pure sample is 91.6 K and it decreased to 81.5 K 
and 87.6 K for Series 1 and Series 2 samples, respectively for 7.0 mol.% BZO addition. 
The Tc values and the transition width, Tc for the Series 2 are slightly higher than Series 
1. The higher value of transition width, Tc shows the degradation of homogeneity within 
the samples. The ACS measurement showed the decreasing of Tc-onset, Tcj and Tp with the 
increase of BZO nanoparticles addition for all the samples. The decrease of Tcj and Tp is 



© C
OP

UPM

ii

due to the weakening of the intergranular coupling and the decrease of pinning forces. 
The obtained Io and Jcm for Series 2 are higher than that for Series 1 indicating that the 
grain coupling of the former is stronger. As a conclusion, the results shows that the co-
addition of Y2O3 and BZO (Series 2) can maximize the Jcm value and improve a flux 
pinning if compared to the addition of BZO only (Series 1). However, the optimum value 
for co-addition of BZO is only up to 2.0 mol.% since further addition will degrade the 
superconductivity of the samples. The highest Jcm is 2.096 A/ cm2 for co-addition of 2.0 
mol.% BZO and Y2O3. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Sarjana Sains 

SIFAT-SIFAT STRUKTURAL, MAGNETIK DAN ELEKTRIK DALAM 
SUPERKONDUKTOR YBCO-123 YANG BERTINDAK BALAS DENGAN Y2O3

DAN BaZrO3 NANOPARTIKEL

Oleh 

NURHIDAYAH BINTI MOHD HAPIPI 

Disember 2017 

Pengerusi: Prof. Madya Chen Soo Kien, PhD 
Fakulti: Sains 

Dalam kajian ini, sifat-sifat superkonduktor YBa2Cu3O7-δ (Y-123) yang bertindak balas 
dengan 5.0 mol.% Y2O3 dan nanopartikel BZO pada peratusan molar yang berbeza 
(mol.%) telah dikaji. Sampel Siri 1 adalah Y-123 yang bertindak balas dengan x mol.% 
nanopartikel BZO dan sampel Siri 2 adalah Y-123 yang bertindak balas dengan 5.0 
mol.% Y2O3 dan x mol.% nanopartikel BZO (x = 0.0 – 7.0 mol.%). Sampel Y-123 telah 
disediakan menggunakan kaedah se-pemendakan. Kesan penambahan nanopartikel pada 
pembentukan fasa, mikrostruktur, sifat-sifat magnetik dan elektrikal ke atas sampel telah 
dikaji menggunakan analisis termogravimetrik (TGA), pembelauan sinar-X (XRD), 
mikroskop elektron pengimbas (SEM), spektroskopi serakan tenaga sinar-X (EDX), 
pergantungan suhu pada pengukuran kerintangan, dan kerentanan arus ulang-alik 
(KAU). Corak XRD menunjukkan bahawa semua sampel boleh diindekskan kepada 
kumpulan ruang (Pmmm) dengan struktur hablur ortorombik. Y-123 adalah fasa utama 
manakala Y-211 dikesan sebagai fasa minor kedua di dalam semua sampel. Selain itu, 
puncak BZO mula kelihatan apabila aras penambahan meningkat daripada 1.0 mol.%.  
Imej SEM menunjukkan bahawa semua sampel mempunyai bentuk tak menentu dengan 
taburan rawak. Purata saiz bijirin bagi kedua-dua siri bertambah dalam kadar 0.30 μm 
hingga 0.50 μm dengan peningkatan jumlah penambahan nanopartikel BZO. Walau 
bagaimanapun, saiz bijirin bagi sampel Siri 2 adalah tinggi sedikit berbanding Siri 1 
menunjukkan Y2O3 menggalakan pertumbuhan bijirin. Semua sampel dalam Siri 1 dan 
Siri 2 menunjukkan sifat logam pada keadaan normal dan peralihan mensuperkonduksi 
ke rintangan sifar seperti yang ditunjukkan oleh pergantungan suhu pada pengukuran 
rintangan. Nilai Tc bagi sampel tulen adalah 91.6 K dan nilai ini berkurang kepada 81.5 
K dan 87.6 K bagi sampel Siri 1 dan Siri 2, masing-masing dengan penambahan 7.0 
mol.% nanopartikel BZO. Nilai Tc dan lebar peralihan, Tc bagi Siri 2 adalah tinggi 
sedikit berbanding Siri 1. Ketinggian nilai lebar peralihan, Tc menunjukkan 
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ketakhomogenan di dalam sampel. Pengukuran bagi KAU menunjukkan penurunan bagi 
Tc-onset, Tcj dan Tp dengan peningkatan penambahan nanopartikel BZO untuk semua 
sampel. Penurunan Tcj dan Tp  adalah disebabkan gandingan antara butiran yang melemah 
dan penurunan daya pengepinan. Keputusan arus Josephson, Io dan ketumpatan arus 
genting antara butiran, Jcm bagi Siri 2 adalah lebih tinggi berbanding Siri 1 menunjukkan 
bahawa gandingan butiran bagi Siri 2 adalah lebih kuat. Sebagai konklusi, keputusan 
menunjukkan bahawa penambahan bersama Y2O3 dan BZO (Siri 2) boleh 
memaksimumkan nilai Jcm dan menambahbaik pengepinan fluks jika dibandingkan 
dengan penambahan BZO sahaja (Siri 1). Walaubagaimanapun, nilai optimum bagi 
penambahan bersama BZO adalah sehingga 2.0 mol.% memandangkan penambahan 
selanjutnya akan merosotkan kesuperkonduksian sampel. Jcm yang tertinggi adalah 2.096 
A/ cm2 bagi penambahan bersama 2.0 mol.% BZO dan Y2O3. 
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CHAPTER 1

INTRODUCTION 

1.1 Background 

A superconductor is a material that has a zero resistance when cooled below its critical 
temperature, Tc. The critical temperature or the transition temperature is the temperature 
at which a superconductor loses its resistance. Resistance causes the energy flows 
through the material to lose. All metals and alloy materials have a resistance and the 
resistance decreases at lower temperature due to the decrease in thermal vibrations of the 
atoms resulting in less scattering of conduction electrons. However, superconducting 
materials would suddenly lose all trace of electrical resistance once they are cooled into 
the superconducting state below the Tc (Rose-Innes and Rhoderick, 1978).  

They are two distinctive properties to consider a material as a superconductor. First, no 
resistance is observed in a superconductor below its Tc value and superconductivity will 
disappear if the current passed is higher than the critical current density, Jc. Secondly, no 
magnetic induction, B = 0 inside the superconductor in weak external magnetic field 
when cooled below its Tc value (Cyrot and Pavuna, 1992).  

The phenomenon of superconductivity was observed for the first time in 1911 when 
Heike Kamerlingh Onnes cooled mercury to the temperature of liquid helium, 4 K and 
he found that the resistance of mercury disappeared (Eck, 1999). Over the years, it was 
believed that superconductivity could only occur when the materials were held at very 
low temperature (low temperature superconductor, LTS). Nevertheless, in 1986, the 
discovery of cuprates marked the beginning of superconductivity at higher temperatures 
(high temperature superconductor, HTS) hence provides a new prospective in the 
superconducting area (Khare, 2003).  

1.2 History of High Temperature Superconductor (HTS) 

High-temperature superconductors (HTS) are materials that superconduct at higher 
temperatures (above 30 K) and can be cooled to superconducting state using liquid 
nitrogen (77 K). The first HTS was discovered in late 1986, when Alex Müller and Georg 
Bednorz synthesized a brittle ceramic compound (La-Ba-Cu-O compounds) that was 
shown to be superconducting at the temperature above 30 K. However, the critical 
temperature of La-Ba-Cu-O compound was increased above 40 K when a pressure was
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applied (Chu et al., 1987). One interesting part was that scientists had never thought of 
ceramic could be HTS candidates because ceramic is normally insulating and cannot 
conduct electricity (Eck, 1999).  

Since then, researchers began to study every combination of ceramics to get higher Tc.
However, in January of 1987, a research team from University of Alabama-Huntsville 
achieved 92 K of Tc, when they substituted yttrium for lanthanum in yttrium barium 
copper oxide (YBa2Cu3O7-x) which is the first superconductor with Tc above the boiling 
point of liquid nitrogen (Wu et al., 1987; Cyrot and Pavuna, 1992). Later, in 1988, Maeda 
and co-workers at the National Research Institute, Japan discovered Bi-cuprate oxides 
(Bi2Sr2Ca2Cu3O10) with Tc value at 110 K (Maeda et al, 1988) and Tl-cuprate oxides 
(Tl2Sr2Ca2Cu3O10) was discovered by Sheng and Hermann with Tc value at 125 K (Sheng 
and Hermann, 1988).  

The search for new HTS materials with higher Tc reached the climax when the mercury 
based HTS compounds were discovered. The highest temperature superconductor was 
found in the three-layer system of HgBa2Ca2Cu3O8+δ (Hg-1223) with Tc value at       133.5 
K. In January 2008, a research group led by Hideo Hosono in Japan discovered a new 
class of high-temperature superconductors (non-Cu-based superconductors) in layered 
iron arsenic compounds with Tc of 26 K. It was found that the parent compound, 
LaOFeAs became a superconducting upon replacing some of the oxygen with fluorine 
and this is known as “pnictides” (compounds of the nitrogen group) (Kamihara et al., 
2008). In 2015, the highest Tc value at 203 K was found in hydrogen sulfide (H2S) under 
extremely high pressure around 150 GPa (Drozdov et al., 2015).  

1.3 Application of HTS 

Superconductors have made a significant breakthrough in technological applications, 
especially in transportation, electronic, medical and superconducting energy storage 
system. A few of these applications are discussed as follow: 

1.3.1 Maglev Train 

In 1934, the train based on superconductivity was proposed and known as the Maglev 
train. Maglev stood for magnetic levitation. Maglev train is moved when the magnetic 
fields created by electrified coils within the track walls that propel the train. These strong 
superconducting magnets eliminate the friction between the trains and its tracks. Due to 
the frictionless properties, it allows the train to travel over long distances at speeds of 
hundreds of miles per hour (Galiano, 2011; Liu et al., 2015). The principle used for 
maglev trains to levitate is “Meissner effect” that will be explained later.
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1.3.2 SQUID 

Superconducting quantum interference device or SQUID magnetometer have been used 
to measure and recording small magnetic signals from the brain, heart, stomach and other 
organs. Besides, magnetic field sensors based on SQUIDs also has been widely used in 
geophysics for measuring the magnetic field oscillations of the earth and in some other 
fields (Wikswo, 1995).

1.4 Problem Statement and Research Objectives

Over the years, scientists had studied high temperature superconductor (HTS) 
extensively. HTS is very useful for industries because of their special properties which 
are zero resistance and perfect diamagnetism. However, there are some limitations of 
HTS application. For example, it only can behave as a superconductor below the room 
temperature which is above the Tc value. Therefore, a lot of studies had been done to 
improve the critical temperature, Tc and the critical current density, Jc (Klie et al., 2005; 
Horvath et al., 2008; Barnes et al., 2009). With this improvement, it can save lots of cost 
and energy since the current can be transported without any loss of energy. But, it is 
challenging to improve both the Tc and Jc value.  

In this work, the addition of BaZrO3 (BZO) nanoparticles and the co-addition of BZO 
nanoparticles and Y2O3 into Y-123 were studied. It is believed that both the addition and 
co-addition into Y-123 samples will improve the Jc without affecting much the Tc value. 
Previous study of bulk Y-123 composite with BZO by applying hot isostatic pressing 
(HIP) for sintering claimed that the nanoparticles size of BZO (30 - 50 nm) gave a good
dispersion of pinning centres in the matrix and the introducing of BZO enhanced the Jc
value up to 20000 A/ cm2 (Awano et al., 2000). It was supported by Jin et al. (2015),
when a smooth surface and a good texture have been observed in the YBCO + 5.0 mol.% 
BZO film, which exhibited the best Jc value (4.9 MA/ cm2) for the YBCO + 5.0 mol.% 
BZO film at 77 K  and 0 T. Although the Jc value was increased, it did not affect much 
the Tc values of these films that can be obtained around ~ 90 K. Ding et al. (2012),
claimed that the co-addition of 7.0 mol.% BZO and 7.0 mol.% Y2O3 into Y-123 films 
showed a higher self-field Jc value of 6.5 mA/ cm2 compared to the pure Y-123 film as 
3.2 mA/cm2. Besides, the Tc value of Y-123 film with co-addition of 7.0 mol.% BZO and 
7.0 mol.% of Y2O3 was ~ 90 K, a value which is closed to that of the pure Y-123.

The method used was co-precipitation (COP) which is being used widely in the industry 
compared to solid-state method (Ochsenkuhn-Petropoulou et al., 2002; Cardwell and 
Ginley, 2003). The samples from COP method can be produced at large scale for various 
applications such as fly wheel motor, transmission power cable, wires, tapes and 
magnets. Until now a few conventional materials, like NbTi or Nb3Sn have been 
commercialized (Wang, 2013). The wires made of HTS oxides such as YBCO and 
BSCCO are still under development. Since the previous studies had focused more on the 
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thin films (Haugan et al., 2007; Ciontea et al., 2008), therefore this work focused more 
on bulk superconductor.

Hence, the objectives of this work are: 

i. To prepare high purity of Y-123 precursor by using co-precipitation method. 

ii. To study the influence of nanoparticles addition, BZO on structural, magnetic 
and electrical properties of Y-123 bulk superconductor. 

iii. To investigate the effects of co-addition of BZO nanoparticles and Y2O3 on 
structural, magnetic and electrical properties of Y-123 bulk superconductor.

1.5 Thesis Overview 

Basically, this thesis is consist of six chapters. The first chapter is about introduction of 
superconductor and the history of high temperature superconductor. Then, the 
applications of superconductor, the problem statement and the objectives of this work 
are given here too. Chapter 2 reviews some previous studies of Y-123 superconductor 
especially the study involved the co-precipitation method, the addition of BZO 
nanoparticles and the co-addition of BZO and Y2O3. Chapter 3 explains the theory and 
fundamental of superconductivity. The phenomena of superconductivity, classification 
of superconductors, properties of superconductors, vortex state, and the Cooper pair’s
formation are discussed here. Then, chapter 4 discusses the materials and method used 
for this work. Discussion in this chapter also includes sample characterization such as 
TGA, XRD, SEM, temperature dependence of electrical resistance measurement and AC 
Susceptibility. In chapter 5, the results obtained from all the samples are analyzed and 
discussed. Lastly, chapter 6 concludes the results for this work and the recommendation 
for future research is given. 
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