
 
 

UNIVERSITI PUTRA MALAYSIA 
 
 
 

MAASS CUSP FORM ON ASYMMETRIC HYPERBOLIC TORUS 
 
 
 
 
 
 
 
 
 
 
 

NOR SYAZANA SHAMSUDDIN 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FS 2018 16 



© C
OPYRIG

HT U
PM

MAASS CUSP FORM ON ASYMMETRIC HYPERBOLIC TORUS

By

NOR SYAZANA BINTI SHAMSUDDIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Master of Science

November 2017



© C
OPYRIG

HT U
PM



© C
OPYRIG

HT U
PM

COPYRIGHT

All material contained within the thesis, including without limitation text, logos,
icons, photographs and all other artwork, is copyright material of Universiti Putra
Malaysia unless otherwise stated. Use may be made of any material contained within
the thesis for non-commercial purposes from the copyright holder. Commercial
use of material may only be made with the express, prior, written permission of
Universiti Putra Malaysia.

Copyright ©Universiti Putra Malaysia



© C
OPYRIG

HT U
PM

DEDICATIONS

To all of my love;
My Husband

Ummi
My Sister
My Family



© C
OPYRIG

HT U
PM
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By
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Chairman : Assoc. Prof. Hishamuddin Zainuddin, PhD
Faculty : Science

The quantum system describing a free particle moving on a cusped hyperbolic sur-
face is represented using the eigenfunction of the hyperbolic Laplace-Beltrami oper-
ator. The eigenspectra contained both continuous and discrete spectra, but the focus
here is only on the discrete part. The eigenfunctions have to be computed numer-
ically and they are known as Maass cusp form (MCF). The hyperbolic surface of
interest here is the singly punctured two-torus. Past research has shown that the case
of the symmetric torus has degenerate eigenvalues. The purpose of this research is to
find the eigenvalues for asymmetric torus, deformed from symmetric torus by mov-
ing the vertices of its fundamental domain at the real axis, as well as to investigate
the degeneracy behavior of its eigenvalues.

There are three models that are being explored, namely F1 with vertices at -1, 1
2 , 1,

and ∞, F2 with vertices at -3, 0, 2 and ∞ and the last one F3 with vertices at -2, 0,
1 and ∞. Despite having different cusp widths, all models are ensured to have the
same area. Since the domain of the torus in the hyperbolic plane needs an equivalent
fundamental domain where the cusp is represented by the point of imaginary infinity
for a convenient computation, a cusp reduction method is constructed including the
equations for the generators in order to act as the side identification.

Consider that the asymmetric torus has no parity symmetry, an algorithm of MCF
with exponential expansion is developed using Mathematica. The computation of
MCF is an adapted algorithm of Hejhal and Then, i.e. based on implicit automorphy
and finite Fourier series. There are 37 eigenvalues found for asymmetric torus F1
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and 24 eigenvalues for asymmetric torus F2 between range [0, 15]. Both domains
have non-degenerate eigenvalues. Remarkably, all eigenvalues of F2 are also eigen-
values for F1, suggesting that the unique MCF for F1 are newforms while those of
F2 are oldforms. In the same range, the computed algorithm for asymmetric torus
F3 gives out 36 eigenvalues and surprisingly these eigenvalues are doubly degener-
ate.

It is believed that the equivalent fundamental domain for F3 has extra symmetry
compared to F1 and F2. Apparently, equivalent fundamental domain for F3 has
symmetry at each vertices, meanwhile the other two does not have. All the candi-
date eigenvalues given by the algorithm went through checking procedure stated in
the literature so that only authentic eigenvalues have been chosen. Those procedures
are y-independent solution, automorphy condition, Hecke relation and Ramanujan-
Petersson conjecture. Later, the eigenstates of selected eigenvalues from each surface
are visualized using contour plot and density plot in the Mathematica.
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HIPERBOLIK BERASIMETRI
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November 2017

Pengerusi : Assoc. Prof. Hishamuddin Zainuddin, PhD
Fakulti : Sains

Sistem kuantum yang menghuraikan pergerakan sesuatu zarah bebas di atas per-
mukaan hiperbolik berjuring diwakili oleh fungsi eigen operator hiperbolik Laplace-
Beltrami. Spektra eigen bagi permukaan meliputi kedua-dua spektra yang selanjar
dan diskrit. Fungsi eigen harus diselesaikan secara berangka dan ianya dikenali se-
bagai fungsi berbentuk juring Maass (MCF). Permukaan hiperbolik yang menjadi
minat di sini ialah permukaan sebuah torus. Kajian lepas menunjukkan permukaan
torus yang simetri mempunyai nilai eigen yang degenerat. Matlamat kajian ini adalah
untuk mencari nilai eigen bagi torus asimetri, yang mana diubah bentuknya dengan
memindahkan bucu torus pada paksi nyata, serta menyiasat kelakuan degenerasi nilai
eigennya.

Terdapat tiga model yang dikaji, iaitu F1 dengan bucu di -1, 1
2 , 1 dan ∞, F2 den-

gan bucu di -3, 0, 2 dan ∞, dan yang terakhir F3 dengan bucu di -2, 0, 1 dan ∞.
Walaupun mempunyai lebar juring yang berbeza, permukaan torus dipastikan su-
paya mempunyai luas yang sama. Memandangkan domain torus dalam satah hiper-
bolik ini memerlukan domain asas setara di mana juring diwakili oleh titik khayalan
tak terhingga bagi memudahkan pengiraan, maka kaedah pengurangan juring dibina,
termasuklah persamaan bagi penjana yang bertindak sebagai pengecaman sisi torus
tersebut.

Oleh sebab torus asimetri tidak mempunyai simetri pariti, satu algoritma MCF den-
gan pengembangan eksponen dihasilkan menggunakan perisian Mathematica. Pen-
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giraan MCF ini adalah algoritma terubahsuai Hejhal dan Then yang berlandaskan
automorf tersirat dan siri Fourier terhingga. Program ini dijalankan ke atas torus
simetri dan hasilnya bertepatan dengan kajian lepas. Oleh itu, dilaksanakan ke atas
model torus asimetri dengan yakin. Terdapat 37 nilai eigen bagi torus asimetri F1
dan 24 nilai eigen bagi torus asimetri F2 di antara julat [0, 15]. Kedua-dua domain
menunjukkan nilai eigen yang tidak degenerat. Semua nilai eigen bagi F2 adalah
nilai eigen bagi F1, menunjukkan bahawa MCF unik bagi F1 adalah bentukkan
baru manakala F2 adalah bentukkan lama. Dalam julat yang sama, pengiraan al-
goritma bagi torus asimetri F3 menghasilkan 32 nilai eigen dan yang mengejutkan
nilai eigen ini berganda dua.

Ia dipercayai bahawa domain asas setara F3 mempunyai simetri tambahan jika
dibandingkan dengan domain asas setara F1 dan F2. Secara jelasnya, domain asas
setara F3 memiliki simetri pada setiap bucu, manakala tidak pada domain yang lain.
Kesemua nilai eigen yang dihasilkan oleh algoritma akan melalui prosedur-prosedur
pemeriksaan supaya hanya nilai eigen yang sahih dipilih. Prosedur-prosedur terse-
but adalah penyelesaian y-bebas, syarat automorf, hubungan Hecke dan andaian
Ramanujan-Petersson. Seterusnya, keadaan eigen bagi nilai eigen terpilih untuk
setiap model divisualisasikan menggunakan plot kontur dan plot ketumpaan dalam
perisian Mathematica.
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CHAPTER 1

INTRODUCTION

1.1 Briefly on Quantum Chaos

One of the uses of Schrodinger’s equation in the quantum mechanics is to describe
the quantum system of a particle. The probability function of the solution to the
Schrodinger’s equation provides the informations of the probability of finding the
particle in certain region and time (Griffiths and Harris, 1995). The Schrodinger
equation in Euclidean space is defined as Hψ = Eψ , where the Hamiltonian oper-

ator for Euclidean space is H = − h̄2
2m ∇2 +V with ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂ z2 , V is the

potential of the system considered and E is the energy of the particle (Robinett and
Murphy, 1997; Griffiths and Harris, 1995). It can be said that Schrodinger’s equa-
tion in quantum mechanics is comparatively as Newton’s second law of motion in
the classical mechanic, and all the information about the system are embodied in the
solution function of the equation.

In this study, we are interested in particle moving freely in hyperbolic space where
the metric on the surface is defined as ds2 = 1

y2
(
dx2 +dy2) (Anderson, 2005).

The quantum system of the particle moving on those surfaces is governed by time-
independent Schrodinger equation Hψ = Eψ with the Hamiltonin H =−∆, where ∆

is the non-Euclidean Laplace operator (assume h̄ = 2m = 1). The surface considered
here have a cusp where the particle can enter from infinitely far away or leaving the
surface (Gutzwiller, 1990). Thus, the eigenstates of the particle can be corresponded
to the bounded motion on the surface or unbounded motion involving points at in-
finity. As a result of the presence of the cusp, the spectrum of the Laplacian consists
of both discrete and continuous parts, where the former are for the bound states and
the latter are for the scattering states (Then, 2007). In this research, the considered
quantum states are for the discrete part where they are spanned by a discrete eigen-
function namely Maass waveform, a non-holomorphic modular form originated by
Hans Maass in 1949 (Terras, 1985). In general, such eigenstates are not known ana-
lytically and hence require development of complex programs

Classical mechanics on the hyperbolic surface are known to exhibit chaotic be-
haviour. Due to this, in 1898, Hadamard studied the free motion of a ball on a surface
of negative curvature without boundary (Avelin, 2003) rather than flat billiard table.
This led to Hadamard’s research in 1898 which is the first proved example of the
chaotic dynamics known as Hadamard dynamical system or fevered as Hadamard
billiards. In this system, the motion of the particle is considered to be free (friction-
less) on a compact Riemann surface of constant negative curvature (Avelin, 2007;

1
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Gutzwiller, 1990). He then showed that the system is chaotic when the long-time
behavior of the system is very insensitive to initial conditions, plus every trajectories
of the particle move away from every other.

The study of modified billiard of the Hadamard billiard is introduced by Emil Artin
in 1924, later known as Artin billiard, which is characterized by the point particle’s
free motion on a non-compact Riemann surface of constant negative curvature. The
configuration space of this billiard has the topology of a sphere containing an open
end (cusp) at infinity. The cusp represented as vertices that are located infinitely
far away and hence the domain of non-compact Riemann surface with finite area.
These kind of domains can be regarded as mathematical models for many physical
situations which illustrate the point particle coming from infinitely far away outside
the domain and entering the domain as in the scattering problem (Gutzwiller, 1990).

Since the investigation by Lobachevsky, Poincare and Hadamard in the 19th century,
the motion on these kind of dynamical system becomes attention to researchers due
to mathematical connection in number theory, differential geometry and group the-
ory. Meanwhile, in physics, it can be related to string theory and Quantum Hall effect
(Pnueli, 1994). Another significant related topic is quantum chaos. The quantum en-
ergy levels are connected to the classical periodic orbits through the trace formula
of Gutzwiller (Bogomolny et al., 1995), or known as Selberg’s trace formula, one
of the important results in mathematics. Gutzwiller (1980) was the first to indicate
that the results of Selberg’s trace formula is crucial for the understanding of quantum
chaos. Quantum chaos is said to have application in cosmology (Then, 2007) and
condensed matter (Hurt, 2000; Gubin and Santos, 2012).

Quantum chaos are not well understood and studying quantum systems on hyper-
bolic surfaces maybe useful. The study on quantum chaos generally presumed to
constitute all complication related to the quantum mechanical behavior of classically
chaotic system (Stöckmann, 2000). Quantum chaology by definition in Berry (1989)
is the study of semiclassical, but nonclassical, phenomena characteristic where clas-
sical counterparts exhibit chaos. He emphasized that semiclassical treatment is
meant to take the Plank constant, h, in an equation describing the system to tend
to zero. One can refer Nonnenmacher (2008), Berry (1977) and Stöckmann (2000)
for more details on this topic.

1.2 Problem Statement

A punctured surface (with one or more cusp) defines on constant negative curvature,
such as the Artin billiard, becomes an object of study in the context of quantum
chaos. Artin billiard, as mentioned before, can be described by the use of modular
group, i.e. a discrete subgroup of the Projective Special Linear group, PSL(2,R).
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There are other surfaces and groups that can be considered to this kind of research
such as singly punctured torus (commutator subgroup of modular group) (Gutzwiller,
1983; Antoine et al., 1990; Pnueli, 1994; Chan et al., 2013a; Siddig, 2009), triply
punctured two-sphere (principal congruence subgroup of level two) (Chan et al.,
2016), punctured surfaces characterized by ∑g,k where g denotes the genus and k is
the number of cusp (Lévay, 2000), moonshine group (Jorgenson et al., 2014; Conway
et al., 2004; Cummins and Gannon, 1997), Picard group (Aurich et al., 2004; Then,
2006; Then, 2007), Bianchi group (Steil, 1999) and deformation of cusp for subgroup
of modular group (Avelin, 2003; Avelin, 2007; Farmer and Lemurell, 2005)

One of listed the surfaces at the beginning of this subsection, and being the focus
in this research is the singly punctured torus (Chan et al., 2013b). The symmetric
torus is generated by the commutator subgroup of modular group Γ′, and the side
identifications of the torus are made using the generators of the subgroup Γ′. The
fundamental domain of Γ′ is well-known to have a parity symmetry at x = 0. Thus
the domain can also be generated by the reflection operator J, leading to possibility of
two different eigenfunctions of even and odd class. Surprisingly, when both classes
are considered together, their eigenvalues are doubly degenerate, i.e. having the same
eigenvalue for two different eigenstates. The result by Chan et al. is of interest here
namely what cause the degeneracy of the eigenvalues.

The suspected explanation of the results is that there are extra symmetries on the
torus described in Chan et al. (2013b). In our study, the torus is to be deformed, in
order to reduce the symmetries of the fundamental domain and the deformed torus is
being named as asymmetric torus since the major radius of the torus is not equal to
its minor radius. At the same time, the symmetry which gives the degeneracy is also
being studied here.

1.3 Objectives

The intent of the present research is to acquire the eigenvalues of the Hamiltonian
of a quantum particle moving on a asymmetric hyperbolic torus. The objectives
are motivated by the possible degeneracy or nondegeneracy of eigenvalues for the
hyperbolic torus in general. The objectives of this study are as follows:

1. To deform the torus in order to reduce the symmetry of the fundamental do-
main, forming an asymmetric torus.

2. To find the generators of a group that represents the asymmetric torus.

3. To construct a method which transforms the fundamental domain of the asym-
metric torus with the cusp represent by four vertices at the boundary to the
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equivalent fundamental domain with only a point at the boundary, namely at
y = ∞.

4. To compute the eigenvalues of the Hamiltonian of a particle moving on the
corresponding asymmetric torus.

1.4 Scope of study

The study will focus on determining the eigenvalues of three specific hyperbolic
asymmetric tori and check whether those tori have degenerate or non-degenerate
eigenvalues. The computation will be done by using a Mathematica program, devel-
oped based on the MCF algorithm with both exponential and cosine/sine expansion.
Along the way, a general equation for the generator of the torus and also the general
cusp reduction method will be developed. In addition, a program to verify the au-
thenticity of the eigenvalues has been constructed based on methods mention in the
literature, where each candidate eigenvalue, output from the Mathematica program,
will go through four procedures before being declared as valid eigenvalues.

The proposed MCF computation can be done numerically, and each model needs to
have different programs in Mathematica due to the different geometries of the asym-
metric tori where it will affect the computation. Only three models of the asym-
metric torus are chosen because the cusp reduction method can only be applied to
some range of the major and minor radii. A bigger deformation will not result in the
needed hyperbolic tori.

1.5 Outline of the Thesis

The thesis is divided into eight chapters. In Chapter One, a brief motivation of the
study has been presented, as well as the problem statements and objectives of this
research.

Chapter Two presents the review of Maass waveforms and the literature that is re-
lated to the study of the punctured surfaces. In addition, a description on Hejhal’s
algorithm and published work related to the algorithm are given in this chapter.

Chapter Three analyzes the mathematical groundwork for the hyperbolic geometry
and also the discrete subgroup of PSL(2,R). An attention is given to the surfaces of
symmetric torus, including the subgroup of the PSL(2,R) generating such torus. The
theoretical framework on the Maass waveform, which consist of modified K-Bessel
function and Hecke operator are also discussed.
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Chapter Four introduced a construction of the general torus, covering also establish-
ing the generators for the side identifications which can be applied on both symmet-
ric and asymmetric tori. The chapter continues with the description of the method
to reduce the vertices representing the cusp. A few examples of the cusp reduction
method are given at the end of this chapter.

Chapter Five is dedicated to the computation of Maass cusp form both exponential
expansion and cosine/sine expansions, where the former is for a general domain and
the latter is for domains with parity symmetry. Pullback algorithm, one of the impor-
tant algorithm for the needed computation is also demonstrated there. A comparison
of the eigenvalues for the symmetric torus resulting from computation of both ex-
pansions is made to check the accuracy of the modified algorithm.

Chapter Six presents the computational work in Maass cusp form for the models
of asymmetric torus that give no degeneracy in the eigenvalues. A Maass cusp form
algorithm with the exponential expansion and the pullback algorithm on the previous
chapter is deployed here. The numerical results and topoghraphies of the eigenstates
are also shown here. Meanwhile, the same description as Chapter Six is applied to
Chapter Seven, but for the model of the asymmetric torus with doubly degenerate
eigenvalues.

The final Chapter contains the conclusion of this research. At the same time, we
give some suggestions of the causes of the degeneracy of the eigenvalues. There are
also some recommendations for the future work related to the study of hyperbolic
asymmetric torus.
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