

UNIVERSITI PUTRA MALAYSIA

BIOASSAY-GUIDED ISOLATION AND IDENTIFICATION OF BIOACTIVE COMPOUNDS FROM GARCINIA PENANGIANA LEAVES

MOHD LIP BIN JABIT.

IB 2005 12

BIOASSAY-GUIDED ISOLATION AND IDENTIFICATION OF BIOACTIVE COMPOUNDS FROM GARCINIA PENANGIANA LEAVES

By

MOHD LIP BIN JABIT

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

December 2005

DEDICATION

My family

&

Friends

Many thanks for your support and inspiration

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

BIOASSAY-GUIDED ISOLATION AND IDENTIFICATION OF BIOACTIVE COMPOUNDS FROM GARCINIA PENANGIANA LEAVES

By

MOHD LIP BIN JABIT

December 2005

Chairman : Professor Nordin Hj Lajis, PhD

Institute : Bioscience

Preliminary screening was done on 18 extracts of different parts of *Garcinia sp.* These extracts were tested on cytotoxic assay by using MTT Tetrazolium method on MCF-7 cells (hormone dependent breast cancer cells), DU145 (prostate cancer cells), H460 (non-small lung cancer) and HL60 (Leukemic cancer cells). Extracts of *G. penangiana* leaves, *Garcinia urophylla* leaves, *G. maingayi* leaves, *G.maingayi* stems and *G. opaca* fruits were found to have potent cytotoxic activity on MCF-7 cells and their IC₅₀ values are 5, 3, 6, 10 and 8 μ g/mL, respectively. Furthermore, the extract of *G. penangiana* leaves also showed potent cytotoxic activity towards H460 cells (IC₅₀ value of 8 μ g/mL).

Bioassay guided isolation and purification led to the isolation of five xanthones and triterpene compounds from *Garcinia penangiana* leaves extracts. The triterpene and sterol isolated were charaterized as friedelin (23) and stigmasterol (24), respectively. The two isolated xanthones from the hexane fraction were characterized as 1,3,5,8-tetrahydroxy-4-(1,1-dimethyl allyl)xanthone (25) and cudratricusxanthone H (26). The

two xanthones isolated from the dichloromethane extract were characterised as 1,3,5,6tetrahydroxy-2-(1,1-dimethylallyl)-4-(3-methyl-2-butenyl)xanthone or macluraxanthone C (27) and the new penangianaxanthone (25). Compound designated as 29 was also found as a mixture of 27 in dichloromethane fraction. The biosynthesis of 25, 26 and 28 was suggested in the discussion. These compounds were tested for cytotoxic assay by using MTT Tetrazolium method on MCF-7 cells (hormone dependent breast cancer cells), DU145 (prostate cancer cells) and H460 (non-small lung cancer cells). Compound 25, 26, 27, 28 and mixture of 29 and 27 exhibited good and potent cytotoxic activity on MCF-7, NCI-H460 and DU145 cell lines. However, 23 and 24 showed no activity toward MCF-7 and NCI-H460 cell lines. 26, 27, 28 and mixture of 29 and 27 showed similar pattern of cytotoxic activity toward MCF-7 cell line with IC₅₀ values of $3.9 \pm$ 0.8, 3.1 ± 0.1 , 5.8 ± 1.2 and $3.0 \pm 0.2 \,\mu\text{g/mL}$, respectively. Similar patterns of cytotoxic activity were also observed when 25, 26, 27, 28 and mixture of 29 and 27 tested on NCI-H460 cell lines. The compounds showed IC₅₀ values of 13.4 ± 1.1 $\mu g/mL$, 5.0 ± 1.2 $\mu g/mL$, 1.4 ± 0.9 $\mu g/mL$, 4.5 ± 1.4 and 2.0 ± 0.7 $\mu g/mL$, respectively. 26, 27, 28 and mixture of 29 and 27 showed similar pattern of cytotoxic activity toward DU145 cell line with their IC₅₀ values of 4.6 ± 0.2 , 2.6 ± 0.6 , $4.3 \pm 0.4 \mu g/mL$ and 3.0 ± 100 0.4 µg/mL, respectively.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

BIOASSAY-GUIDED ISOLATION AND IDENTIFICATION OF BIOACTIVE COMPOUNDS FROM GARCINIA PENANGIANA LEAVES

By

MOHD LIP BIN JABIT

December 2005

Chairman : Professor Nordin Hj Lajis, PhD

Institute : Bioscience

Preliminary screening was done on 18 extracts of different parts of *Garcinia sp.* These extracts were tested on cytotoxic assay by using MTT Tetrazolium method on MCF-7 cells (hormone dependent breast cancer cells), DU145 (prostate cancer cells), H460 (non-small lung cancer) and HL60 (Leukemic cancer cells). Extracts of *G. penangiana* leaves, *Garcinia urophylla* leaves, *G. maingayi* leaves, *G.maingayi* stems and *G. opaca* fruits were found to have potent cytotoxic activity on MCF-7 cells and their IC₅₀ values are 5, 3, 6, 10 and 8 μ g/mL, respectively. Furthermore, the extract of *G. penangiana* leaves also showed potent cytotoxic activity towards H460 cells (IC₅₀ value of 8 μ g/mL).

Bioassay guided isolation and purification led to the isolation of five xanthones and triterpene compounds from *Garcinia penangiana* leaves extracts. The triterpene and sterol isolated were charaterized as friedelin (23) and stigmasterol (24), respectively. The two isolated xanthones from the hexane fraction were characterized as 1,3,5,8-tetrahydroxy-4-(1,1-dimethyl allyl)xanthone (25) and cudratricusxanthone H (26). The

iii

two xanthones isolated from the dichloromethane extract were characterised as 1.3.5.6tetrahydroxy-2-(1,1-dimethylallyl)-4-(3-methyl-2-butenyl)xanthone or macluraxanthone C (27) and the new penangianaxanthone (25). Compound designated as 29 was also found as a mixture of 27 in dichloromethane fraction. The biosynthesis of 25, 26 and 28 was suggested in the discussion. These compounds were tested for cytotoxic assay by using MTT Tetrazolium method on MCF-7 cells (hormone dependent breast cancer cells), DU145 (prostate cancer cells) and H460 (non-small lung cancer cells). Compound 25, 26, 27, 28 and mixture of 29 and 27 exhibited good and potent cytotoxic activity on MCF-7, NCI-H460 and DU145 cell lines. However, 23 and 24 showed no activity toward MCF-7 and NCI-H460 cell lines. 26, 27, 28 and mixture of 29 and 27 showed similar pattern of cytotoxic activity toward MCF-7 cell line with IC₅₀ values of 3.9 \pm 0.8, 3.1 ± 0.1 , 5.8 ± 1.2 and $3.0 \pm 0.2 \,\mu$ g/mL, respectively. Similar patterns of cytotoxic activity were also observed when 25, 26, 27, 28 and mixture of 29 and 27 tested on NCI-H460 cell lines. The compounds showed IC₅₀ values of 13.4 \pm 1.1 μ g/mL, 5.0 ± 1.2 μ g/mL, 1.4 ± 0.9 μ g/mL, 4.5 ± 1.4 and 2.0 ± 0.7 μ g/mL, respectively. 26, 27, 28 and mixture of 29 and 27 showed similar pattern of cytotoxic activity toward DU145 cell line with their IC₅₀ values of 4.6 \pm 0.2, 2.6 \pm 0.6, 4.3 \pm 0.4 μ g/mL and 3.0 \pm 0.4 µg/mL, respectively.

iv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGASINGAN BERPANDUKAN BIOCERAKIN DAN PENGENALPASTIAN SEBATIAN-SEBATIAN BIOAKTIF DARIPADA DAUN *GARCINIA PENANGIANA*.

Oleh

MOHD LIP BIN JABIT

Disember 2005

Pengerusi : Professor Nordin Hj Lajis, PhD

Institute : Biosains

Kajian awal yang telah dilakukan ke atas 18 ekstrak pelbagai bahagian *Garcinia sp.* Ekstrak tersebut telah diuji aktiviti sitotoksik menggunakan kaedah mikrotitratan (MTT Tetrazolium) terhadap sel MCF-7 (Sel kanser payudara yang bergantungan dengan hormon), DU145 (Sel kanser prostat), H460 (Sel kanser paru-paru) dan HL-60 (Sel kanser Leukimia). Ekstrak daun *G. penangiana*, daun *G. urophylla*, daun *G. maingayi*, batang *G. maingayi* dan buah *G. opaca* didapati mempunyai aktiviti sitotoksik terhadap MCF-7 dan IC₅₀ masing-masing adalah 5 μ g/mL, 3 μ g/mL, 6 μ g/mL, 10 μ g/mL dan 8 μ g/mL. Seterusnya, ekstrak daun *G. penangiana* juga didapati menunjukkan aktiviti

Pengasingan dan penulenan ekstrak daun *G. penangiana* berpandukan biocerakin telah membawa kepada penemuan sebatian triterpena, sterol dan lima sebatian xanthone. Sebatian triterpene dan sterol masing-masing telah dicirikan sebagai friedelin (23) dan stigmasterol (24). Dua sebatian xanthone yang diasingkan dari fraksi heksana telah

1,3,5,8-tetrahidroksi-4-(1,1-dimetilallil)xanthone dicirikan sebagai (25)dan cudratricusxanthone H (26). Dua sebatian xanthone yang diasingkan dari fraksi diklorometana telah dicirikan sebagai 1,3,5,6- tetrahidroksi-2-(1,1-dimetilallil)-4-(3atau macluraxanthone C (27) dan xanthone baru, metil-2-butenil)xanthone penangianaxanthone(28). Sebatian 29 juga diasingkan dari fraksi diklorometana dalam bentuk campuran bersama 27. Biosintesis bagi 25, 26 and 28 telah dicadangkan di dalam perbincangan. Sebatian-sebatian tersebut diuji aktiviti sitotoksik menggunakan kaedah mikrotitratan (MTT Tetrazolium) terhadap sel MCF-7 (Sel kanser payudara yang bergantungan dengan hormon), DU145 (Sel kanser prostat) dan H460 (Sel kanser paruparu). 25, 26, 27, 28 dan campuran 29 dan 27 menunjukkan aktiviti baik hingga tinggi ke atas sel MCF-7, NCI-H460 dan DU145. Walau pun begitu, 23 dan 24 tidak memberikan aktiviti ke atas sel MCF-7 dan NCI-H460. 26, 27, 28 dan campuran 29 dan 27 menunjukkan profil aktiviti sitotoksik yang sama terhadap sel MCF-7 dengan IC₅₀ masing-masing 3.9 ± 0.8 , 3.1 ± 0.1 , 5.8 ± 1.2 and $3.0 \pm 0.2 \ \mu g/mL$. Profil aktiviti sitotoksik yang sama juga diperhatikan apabila 25, 26, 27, 28 dan campuran 29 dan 27 diuji ke atas sel NCI-H460. Sebatian tersebut menunjukkan IC₅₀ masing-masing $13.4 \pm$ 1.1, 5.0 \pm 1.2, 1.4 \pm 0.9, 4.5 \pm 1.4 and 2.0 \pm 0.7 μ g/mL. 26, 27, 28 dan campuran 29 dan 27 menunjukkan profil aktiviti sitotoksik yang sama terhadap sel DU145 dengan IC_{50} masing-masing 4.6 ± 0.2 , 2.6 ± 0.6 , 4.3 ± 0.4 dan 3.0 ± 0.4 µg/mL.

ACKNOWLEDGEMENTS

Glory and praise be to God, the Omnipotent, Omniscient and Omnipresent, for providing me with the strength and perseverance to complete this dissertation despite several obstacles encountered throughout the course of this research, which at times seemed insurmountable.

I would like to express my sincere and whole-hearted gratitude to my supervisors, Prof Dr. Hj. Nordin bin Hj Lajis, Assoc. Prof. Dr. Khozirah bin Shaari and Dr. Johnson Stanslas, for their unrelenting guidance, concern, understanding and support.

I would like to thank Assoc. Prof. Dr. Daud Israf Ali in particular for giving me constructive comments and giving me permission to use his laboratory for bioassay screening.

I must also thank the staff and students of Natural Products Laboratory, Animal Tissue Culture Laboratories at Institute of Bioscience and Animal Tissue Culture Laboratory at Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Putra Malaysia.

Last but not the least, is my utmost, and heart-felt gratitude to my beloved wife and sons, parents and sister for their unremitting love, encouragement, inspiration and continuous support which inspired me to accomplish this work time.

TABLE OF CONTENTS

	rage
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	x
LIST OF TABLES	xiii
LIST OF FIGURES	xv
LIST OF PLATES	xix
LIST OF ABBREVIATION	XX

CHAPTER

1	INTRODUCTION	1
	Plant as a Source of Medicinal Agent	1
	Isolation of the Compounds	3
	Bioassay Guided Isolation	4
	Overview of cancer	5
	Development of Cancer	6
	Anti-tumor Compounds Isolated from Plants	8
	Objective of the research	12
2	LITERATURE REVIEW	14
	Introduction to Garcinia genus	14
	Garcinia penangiana Pierre	16
	Cytotoxic Activity Study of Garcinia species	18
3	METHODOLOGY	30
	General instrumentation	30
	Chromatographic methods	30
	Solvents	31
	Statistical Analysis	31
	Preliminary screening Garcinia species .	31
	Preparation of incomplete RPMI-1640 medium	32
	Culture of Cells	33
	MTT Cytotoxic assay	33
	Plant material	34
	Extraction and Isolation of Garcinia penangiana leaf	35

xi

D.....

	extract	
	Preparation of crude methanol extract	35
	Solvent-solvent fractionation of Garcinia	36
	Penangiana leaves extract	
	Isolation of 23 (friedelin) and 24 (stigmasterol),	36
	25 and 26	
	Fractionation of DCM fraction by using vacuum	41
	liquid chromatography (VLC)	
	Isolation of 27 from fraction D	42
	Isolation of 28 and 29 from fraction E	43
4	RESULTS AND DISCUSSION	51
	Screening for cytotoxic activity	51
	Cytotoxic activity of the fractions from the crude methanol	53
	extract of G. penangiana leaves	
	Structure elucidation of friedelin (23)	54
	Structure elucidation of 24	63
	Structure elucidation of 25	68
	Structure elucidation of 26	79
	Structure elucidation of 27	93
	Structure elucidation of 28	103
	Structure elucidation of 29	117
	Biosynthesis of 1,3,5,8-tetrahydroxy-4-(1,1-	130
	dimethylallyl)xanthone (25)	
	Biosynthesis of 28 and 26 from macluraxanthone C (27)	131
	Cytotoxic activity of compounds isolated from G.	133
	penangiana leaves extracts	
5	CONCLUSION	135
REFERENCES		135
BIODATA OF THE AUTHOR		142

xii

LIST OF TABLES

Table		Page
1	The common death leading cancers in Kuala Lumpur	5
2	The examples of human tumor suppressor genes	6
3	The side effects of anti-tumor drugs	11
4	The List of identified Garcinia sp. in Peninsular of	15
5	Malaysia Cytotoxic data for compounds 17a and 17b	19
6	Cytotoxic data for compound 17a-i, 17k and 17m	20
7	Cytotoxic data for EtOAc fraction, EtOH fraction and isolated compounds	21
8	The list of different parts of several <i>Garcinia</i> species were tested <i>in vitro</i> for their potential antitumor activities	32
9	The different parts <i>Garcinia</i> materials used, the weights of the plant materials and yield of the methanol extract	35
10	The IC ₅₀ of the extracts from different parts of <i>Garcinia sp</i> . with different types of cell lines	52
11	The cytotoxic IC_{50} for hexane, dichloromethane, ethyl acetate and butanol fractions on MCF-7 cell line	53
12	The comparison of chemical shift of 8 methyl proton and 13 CNMR spectrum of 23 with literature values (Crawford <i>et al.</i> ,1975; Queiroga <i>et al.</i> ,2000)	57
13	The comparison of 13 C chemical shift from 24 and literature (Forgo and Kover, 2004)	67
14	¹ H and ¹³ C assignment for 25	70
15	¹ H and ¹³ C assignment for compound of 26	83
16	The comparison of ¹³ C spectrum, between 26 and cudratricusxanthone H from literature	92
17	The comparison of ¹ HNMR spectrum, between 26 and cudratricusxanthone H from literature	92

18	Comparison of ¹³ C spectrum, between 27 and macluraxanthone C from literature	102
19	Comparison of ¹ HNMR spectrum, between 27 and macluraxanthone C from literature	102
20	¹ H and ¹³ C assignment for 28	106
21	The assignment of C-H according to HNMR spectrum, ¹³ C NMR Spectrum, HSQC and DEPT	118
22	Comparison of ¹³ C spectrum, between 29 and gerontoxanthone C from literature	128
23	Comparison of ¹ HNMR spectrum, between 29 and gerontoxanthone C from literature	129
24	The cytotoxic activity of isolated compounds from G. <i>penangiana</i> leaf extract	133

LIST OF FIGURES

Figure		Page
1	The role of drugs in modern medicine	2
2	Typical schematic diagram of bioassay guided isolation	4
3	The simplified outline of the genesis of cancer	7
4	The solvent-solvent partitioning followed by the cytotoxic bioassay	47
5	Isolation of 25 and 26 from hexane fraction	48
6	Isolation of 27 from DCM fraction	49
7	Isolation of 28 and 29 from fraction E	50
8	Mass spectrum of 23	55
9	IR spectrum of 23	55
10	The ¹ HNMR (CDCl ₃) spectrum of compound 23	56
11	The ¹³ CNMR spectrum of compound 23 in $CDCl_3$	59
12	The expanded HSQC spectrum of 23 in CDCl ₃	60
13	The expanded HSQC spectrum of 23 in CDCl ₃	61
14	The expanded HSQC spectrum of 23 in CDCl ₃	62
15	The mass spectrum of compound 24	63
16	The IR spectrum of compound 24	64
17	¹ HNMR spectrum of 24 in CDCl ₃	65
18	The ¹³ CNMR spectrum of 24 in CDCl ₃	66
19	The mass spectrum of 25	71
20	The uv spectrum for 25	71
21	The ¹ HNMR spectrum for 25 in CD_3COCD_3	72
22	The 13 CNMR spectrum for 25 in CD ₃ COCD ₃	73

23	The HMBC spectrum for 25 showing the two chelating hydroxyl correlations to their neighboring 13 C (run in CD ₃ COCD ₃)	74
24	The HMBC spectrum for 25 showing H-2 correlated to C-4 and C-9a, and correlation of H-7 to C-8a (run in CD_3COCD_3)	75
25	The HMBC spectrum for GP3 showing H-2 correlated to C-4 and C-9a, and correlation of H-7 to C-8a (run in CD ₃ COCD ₃)	76
26	The HMBC spectrum for 25 showing H-5' correlated to C-2' and C-3' (dimethyl), and H-4' correlated to C-1' (run in CD_3COCD_3)	77
27	The HMBC spectrum for 25 showing ${}^{3}J$ and ${}^{2}J$ correlation of H-2, H-7 and H-6 (run in CD ₃ COCD ₃)	78
28	The connectivity of 1,1-dimethylallyl group in 26	80
29	The HMBC correlations (² J and ³ J) of H-1" and H-2" to their neighbouring carbons	81
30	The HMBC correlations for H-8 and H-7 of 26	82
31	The mass spectrum of 26	84
32	The UV spectrum of 26	84
33	The IR spectrum of 26	85
34	The ¹ HNMR spectrum for 26 (run in CD ₃ COCD ₃)	86
35	The ¹³ CNMR spectrum for 26 (run in CD ₃ COCD ₃)	87
36	The expanded HSQC spectrum for 26 (run in CD ₃ COCD ₃)	88
37	The HMBC spectrum for 26 showed the chelating hydroxyl having correlation with C-1, C-2 and C-9a (run in CD_3COCD_3)	89
38	The HMBC spectrum for 26 showed the correlations of proton in the pyran ring moiety, correlations of ortho coupling proton (H-7, H-8) and the correlations of allyl protons in the 1,1- dimethylallyl side chain with their neighbouring carbon (run in CD_3COCD_3)	90
39	The expanded COSY spectrum for 26 (run in CD ₃ COCD ₃)	91

xvi

ż

40	The mass spectrum of 27	95
41	The IR spectrum of 27	95
42	The ¹ HNMR spectrum of 27 in CD ₃ OD solvent	96
43	The HMBC spectrum correlations of 27 in CD ₃ OD solvent	97
44	The HMBC spectrum correlations showing dimethyl peak, H-4" and H-5" correlated to carbon signals in 27.	98
45	The HMBC spectrum showing the correlation of chelating proton to C-9a, C1 and C-2 of 27.	99
46	The ¹³ C spectrum of 27 in CD ₃ OD solvent	100
47	The ^{2}J HMBC correlation of H-1 ^{••} with C-4 in 27	101
48	Chelated hydroxyl showed correlation with ^{13}C signals at $\delta_C 158.3,\delta_C 113.5$ and $\delta_C 104.9$	103
49	The connection of 1,1-dimethylallyl group to xanthone skeleton	104
50	The HMBC correlations of methines in the furan ring	105
51	The ${}^{3}J$ HMBC correlations of H-7 and H-8 in 28	106
52	The mass spectrum of 28	107
53	The UV spectrum of 28	108
54	The IR spectrum of 28	108
55	The ¹ HNMR spectrum of 28 in CD ₃ COCD ₃ solvent	109
56	The ¹³ CNMR spectrum of 28 in CD ₃ COCD ₃ solvent	110
57	The ¹ H- ¹ H COSY spectrum of 28 in CD ₃ COCD ₃ solvent	111
58	The DEPT experiment of 28 in CD ₃ COCD ₃ solvent	112
59	The HMBC correlation of chelated hydroxyl proton with ^{13}C signal at δ_C 158.3, δ_C 113.5and δ_C 104.9 in 28 (run in CD ₃ COCD ₃)	113
60	The HSQC correlation of H-1", H-2", H-4' and H-5' signals	114

xvii

	with their respective carbon in 28 (run in CD_3COCD_3)	
61	The HMBC correlation of H-2' and H-3' signals with carbon signal at δ_C 148.1 and δ_C 113.5 in 28 (run in CD ₃ COCD ₃)	115
62	The ${}^{3}J$ HMBC correlation of H-7 and H-8 signals with carbon signals in 28 (run in CD ₃ COCD ₃)	116
63	The HMBC correlations in 4,4,5-trimethyldihydrofuran ring moiety	120
64	The HMBC correlations of the chelating hydroxyl and connection of the 4,4,5-trimethyldihydrofuran ring to xanthone skeleton	120
65	The HMBC correlations and connection of H-8 and H-7 in xanthone	121
66	The HMBC correlations in Prenyl side chain	121
67	The mass spectrum of 29	122
68	The IR spectrum of 29	123
69	The ¹ H NMR spectrum for mixture of 29 and 27 in CD_3COCD_3 (Underlined peaks are signals from 29 , non-underlined peaks are signals from 27)	124
70	The 13 C NMR spectrum for mixture of 29 and 27 in CD ₃ COCD ₃ (Underlined peaks are signals from 29 , non-underlined peaks are signals from 27)	125
71	The HSQC spectrum of compound 29 in CD ₃ COCD ₃ solvent (The labelled peaks are the signals from 29 only)	126
72	The DEPT experiment for compound of 29 in CD ₃ COCD ₃ solvent (The labelled peaks are the signals from 29 only)	129
73	The biosynthesis of 1,3,5,8-tetrahydroxy-4-(1,1-dimethylallyl)xanthone (25).	130
74	The biosynthesis of psoralen and xanthyletin	131
75	Biosynthesis of 28 and 26 compounds from macluraxanthone C	132

xviii

LIST OF PLATES

Plate

Page

1	The bark of G. penangiana	16
2	The leaves of G. penangiana	17

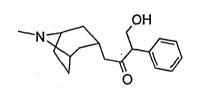
xix

LIST OF ABBREVIATIONS

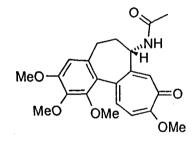
- μg/mL Microgram per mililitre
- μL Microlitre
- CGM Complete growth medium
- CHCl₃ Chloroform
- DMSO Dimetylsulfoxide
- ED₅₀ 50% Effective dose
- HePG2 Human hepatocellular carcinoma
- IC₅₀ 50% Inhibitory concentration
- LL/2 Mouse Lewis lung carcinoma
- mL Mililitre
- MeOH Methanol
- MOLT4 Lympoblastic leukemia
- P388 Mouse Leukemia
- TLC Thin Layer Chromatography
- VLC Vacum liquid chromatography

WEHI1640 Mouse fibrosarcoma

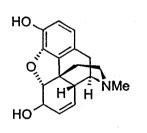
XX


CHAPTER 1

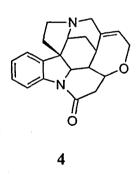
INTRODUCTION


Plants as a Source of Medicinal Agent

Man has utilized plants as medicinal agent since the history of humankind itself. The oldest record comes from Mesopotamia and dated from about 2600 BC where at least one thousand types of plants have been used in drug formulations (Newman *et al.*, 2000).


It is only in the early 19th century that the active principles from plants were isolated. There are several notable active principles isolated from plants such as atropine (1), colchicine (2), morphine (3) and strychnine (4).

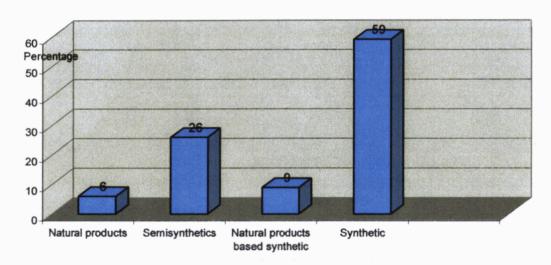
1

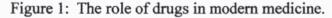


3

Morphine

Colchicine


2



Strychnine

A report by the World Health Organization (WHO) claimed that about 80% of the world's population still relies on traditional medicine for treatment of disease or health sustenance (Farnworth, 1985). This is not surprising since such medicinal remedy is cheaper and believed to be safer than the modern medicines. However, there is also the possibility that the herb used in the traditional medicine is harmful and thus treatment may do more harm than good (Elvin-Lewis, 2001). There is also the possibility that the herb used are not effective at all. Cragg *et al.* (1997) reported that between 1983 and 1994, 41% of new drugs approved by Food and Drug Administration (FDA) have natural products as their sources (Figure 1).

These included the semisynthesis and natural products based on synthesic drugs. Scientists continue to investigate the active compounds from plants, which are involved in so many bioactivities, such as antiinflammatory (Nakatani *et al.*, 2002), anti-HIV (Lin *et al.*, 1997), antibacterial (Permana *et al.*, 2001; Rukachaisirikul *et al.*, 2003) and

