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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Master of Science 

 

ELECTROCHEMICAL DETECTION OF Zn(II) USING AN ELECTRODE 

MODIFIED WITH CALIXARENE 

 

By 

NUR IZZAH BINTI ROSLAN  

April 2016 

Chairman: Shahrul Ainliah Alang Ahmad, PhD  

Faculty: Science 

 

 

This work demonstrates a simple approach of developing electrochemical heavy metal 

ions sensor by employing calix[4]arene on indium tin oxide (ITO) electrode. The 

method involves the formation of self-assembled monolayers (SAMs) of  

3-aminotrimethoxysilane (APTMS) on ITO, acting as a template for calix[4]arene 

attachment in which the different formation time of APTMS was initially studied. 

Contact angle and atomic force microscopy (AFM) characterizations were performed 

to study the surface wettability, roughness and topography. With the increasing 

immersion time, the values of contact angle and roughness increased. The values 

continue to increase after modifying the surface with calixarene. The surface 

modification with APTMS and calix[4]arene was confirmed using X-ray photoelectron 

spectroscopy (XPS) by analyzing the nitrogen and carbon regions. Cyclic voltammetry 

was used to monitor the blocking properties of films formed on ITO. It showed that the 

blocking properties modified with APTMS were improved by the modification of 

calix[4]arene on amine terminated ITO surfaces. Subsequent step was, the introduction 

of common heavy metal ions (Zn(II), Cu(II), and Fe(II)) towards the modify electrode. 

The electrochemical study was done by using differential pulse voltammetry (DPV) 

analysis by comparing the current produced for concentration of Zn(II), Cu(II) and 

Fe(II); the linear range of  1 x 10-2 M to 1 x 10-10 M, detection limit of  1.51 x 10-13 M 

for Zn(II); while with the linear range of 6 x 10-5 M to 2 x 10-6 M, detection limit of 

1.31 x 10-7 M  for Cu(II); and with the linear range of 1 x 10-2 M to1 x 10-7 M, 

detection limit of 2.06 x 10-8 M  for Fe(II). The effect of simultaneous ions was studied 

by comparing which ion interfere the most at the same concentration of analytes. The 

interference study also was done by using interfere ions such as Cu(II), Fe(II), Pb(II), 

Cd(II), and Ni(II) towards up to 1000-fold concentration of Zn(II). The sensitive and 

selective determination of Zn(II) make calix[4]arene a promising candidate for 

practical application in the field of detecting heavy metal ions. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Sarjana Sains 

 

PENGESANAN ION Zn(II) SECARA ELECKTROKIMIA MENGGUNAKAN 

PENGUBAHSUAIAN ELEKTROD DENGAN KALIKSARENA 

 

Oleh 

NUR IZZAH BINTI ROSLAN 

April 2016 

Pengerusi: Shahrul Ainliah Alang Ahmad, PhD 

Fakulti: Sains 

 

Kajian ini menunjukkan satu pendekatan mudah untuk membangunkan sensor ion logam 

berat secara elektrokimia dengan menggunakan kaliks[4]arena di atas timah oksida 

indium (ITO). Kaedah ini melibatkan pembentukan ekalapisan dipasang sendiri (SAMs) 

3-aminopropiltrimethoxysilana (APTMS) di atas ITO, yang bertindak sebagai templat 

untuk melekatkan kaliks[4]arena di mana perbezaan masa pembentukan APTMS telah 

dikaji terlebih dahulu. Karakteristik sudut sentuh dan daya mikroskop atom (AFM) telah 

dilakukan untuk mengkaji kebolehbasahan, ketidakrataan dan topografi permukaan. 

Dengan peningkatan masa rendaman, nilai sudut sentuh dan ketidakrataan meningkat. 

Nilai tersebut terus meningkat selepas mengubahsuai permukaan dengan kaliks[4]arena. 

Permukaan yang diubahsuai dengan APTMS dan kaliks[4]arena disahkan menggunakan 

spektroskopi fotoelektron sinar-X (XPS) dengan menganalisis kawasan nitrogen dan 

karbon. Voltametri siklik digunakan untuk memerhatikan sifat penyekatan lapisan yang 

terbentuk di atas ITO. Ia menunjukkan sifat penyekatan bertambah baik dengan 

pengubahsuaian APTMS dengan mengubahsuai kaliks[4]arena di atas permukaan ITO 

yang diakhiri oleh amina. Seterusnya, pengenalan kepada logam (Zn(II), Cu(II), dan 

Fe(II)) kepada elektrod yang diubahsuai. Kajian elektrokimia telah dijalankan dengan 

menggunakan analisis voltammetri getaran kebezaan (DPV) dengan membezakan arus 

yang terhasil untuk setiap kepekatan yang dikaji di antara 1 x 10-2 M hingga 1 x 10-10 M 

untuk Zn(II) dengan had pengesanan pada 1.51 x 10-13 M; sementara untuk Cu(II) di 

antara 6 x 10-5 M hingga 2 x 10-6 M dengan had pengesanan pada 1.31 x 10-7 M; dan 

untuk   Fe(II) di antara 1 x 10-2 M hingga 1 x 10-7 M dengan had pengesanan pada  

2.06 x 10-8 M. Kesan ion gangguan telah dikaji dengan membandingkan ion yang mana 

paling menganggu pada kepekatan analit yang sama. Kesan ion gangguan luar juga dikaji 

dengan menggunakan ion seperti Cu(II), Fe(II), Pb(II), Cd(II), and Ni(II) terhadap 

sehingga 1000 kali kepekatan Zn(II). Penentuan Zn(II) yang sensitif dan selektif 

menjadikan kaliks[4]arena sebagai calon yang sesuai bagi aplikasi yang praktikal di 

dalam bidang menentukan ion logam berat. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Heavy Metal Pollution 

 

The water contamination by heavy metals in our environment is dangerous due to their 

toxicity that cause to long term side effects. The heavy metals such as cadmium, lead, 

zinc, nickel, copper, chromium and their components are often used in industries  for 

metal finishing, mining and chemical industries (Shi et al., 2008) that lead to natural 

water contamination. This phenomenon becomes a major problem all over the world as 

the metals presence in excessive quantity will affect the quality in water consumption. 

Thus, the accumulation of heavy metal in human body will lead to kidney injury, 

respiratory failure, central nervous system disorder and if severe can cause death 

(Mohammed et al., 2011). Due to those problems, an exploration in developing a method 

to simple, sensitive and accurate heavy metal detection needs to be studied.  

 

There are various sensitive and accurate techniques available for tracing heavy metals 

for example atomic absorption spectroscopy (AAS), inductively coupled plasma mass 

spectroscopy (ICP-MS), and inductively coupled plasma atomic spectroscopy (ICP-

AES). However, these instruments are expensive and  require high cost of maintenance, 

and highly trained personnel (Fei et al., 2014; Shi et al., 2008; Zhang et al., 2013). Thus, 

this limit the use of these techniques for demands in various types of heavy metal trace 

fields applications. 

 

1.2 Calixarene 

 

1.2.1 History 

 

Calixarene can be defined as a macrocycle or cyclic oligomer compound that made up 

from hydroxyl alkylation of phenols and aldehydes. The first calixarene was synthesized 

by Adolph von Baeyer in year 1872 using formaldehyde heated with phenol by 

producing a resinous yield. Then, the study was ignored until 1905-1909 where Leo 

Baekland  invented a procedure using phenol-formaldehyde reaction to produce the 

strong resin that get well-known with vast commercial success and marketed as Bakelite 

(Grady et al., 1996). After a long time, in 1944, Alois Zinke and Erich Ziegler at 

University of Graz in Austria described the synthesis of p-tert-butylcalix[4]arene 

compound that made from p-tert-butylphenol and aqueous formaldehyde with sodium 

hydroxide. The formation ofthis cyclic tetrameric structure was called as 

“mehrkernmethylenephenolvorbindungen” (Jose and Menon, 2007). David Gutsche in 
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year 1975 presented his results regarding synthesis of five cyclic tetramers in two 

symposia. The name of calixarene was then being invented. The name was suggested 

based on the design similarity of cyclic tetramer with ancient Greek vases named ‘calyx 

krater’, the aromatic macrocycles is ‘arene’  

(Sharma and Cragg, 2011) (See Figure 1.1). In addition, the paper published by Gutsche 

summarized that “The products obtained from the base-catalyzed condensation of 

formaldehyde with several para-substituted phenols have been shown to be mixtures of 

two or more components which appear to be cyclic oligomers with five or more aromatic 

units in the cyclic array”. After that, the modern period of calixarene chemistry began 

(Kappe, 1994). 

 

 

 

 

 

 

 

 

 

1.2.2 Structural Characteristic of Calixarenes 

 

Calixarenes, the receptor family received much interest for research purposes due to their 

unique characteristics as a receptor for molecules recognition  

(Yilmaz and Erdemir, 2013). Calixarenes is referred to a macrocyclic oligomers that 

linked the phenolic units via methylene bridging groups at positions (Zhang and 

Srinivasan., 2004). These macrocyclic molecules possess the hydrophobic upper rim and 

hydrophilic lower rim that can be modified depending on the needed and surrounded by 

a hollow cavity and exist in a ‘cup’ like shape with many dimensions dependent on 

phenolic units incorporated (Lo and Wong, 2008) (See Figure 1.2). The nomenclature 

for calixarene used a bracketed number that place in between calix and arene, that gives 

as “calix[n]arene”, where n denoted the number of aryl groups. For that reason, a cyclic 

tetramer was called “calix[4]arene”, a cyclic hexamer was called “calix[6]arene” and a 

cyclic octamer was called “calix[8]arene”. 

 

 

 

Figure 1.1: Calix crater (Jose and Menon, 2007). 
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1.3 Applications of Calixarene and Its Derivatives 

 

Calixarenes and its derivatives have been explored their extension ranging from optical 

and electrochemical sensors, extractant and stationary phases for more than past four 

decades. The availability and readily of calixarene to undergo chemical alteration make 

it suitable platforms to assemble various functional groups (Mikulásek et al., 2006). This 

fact enables calixarene to be used in biosensor (Perret et al., 2006) and chemical gas 

sensor (Cao et al., 2007; Tabakci et al., 2005). The recognition and formation of 

complexes with ions or molecules are obviously fascinating applications for derivatized 

calixarenes.  

 

The complexation ability of calixarenes with ionic and neutral species paid a growing 

attention among researchers. The complexation of calixarene and metal ions draw a huge 

interest especially for environmental preservation. The applications include nuclear 

waste treatment especially uranium (Becker et al., 2008), strontium (Casnati et al., 2001) 

and cesium (Mohapatra et al., 2006). The removal of metal complexation involving 

alkali metal ions, alkaline earth metal ions (Zhang et al., 2004), and transition metal ions 

(Ak et al., 2008). This causes the calixarenes and  its derivatives  have widely been used 

for detection of  heavy metal ions in aqueous solution including iron metals removal 

(Zareh et al., 2014), strontium, silver, mercury and copper (Benounis, 2012), chromium 

(Qiao et al., 2011), mercury (Bingol et al., 2010; Mahajan et al., 2008) cobalt, nickel, 

copper and cadmium (Ghaedi et al., 2009), lead (Honeychurch et al., 2001; Parsa et al., 

2007). 

 

In the family of calixarene, calix[4]arene is the most favored due to the rigid structures 

and its vase-like structure ideally make them complex with neutral molecules or ionic 

molecules. The designation of synthetic receptors by using calix[4]arene as molecular 

scaffold also was due to its stability and unique three-dimensional structure (Lo and 

Figure 1.2: Schematic representation of typical cone conformation of 

calix[4]arene. 
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Wong, 2008).  The parent calix[4]arene structure is easily to be modified either at lower 

rims or upper rims or both, with an increase solubility in organic solvent and improves 

the binding ability and selectivity for molecules or ions recognition (Zhou et al., 2005). 

 

One interesting fact about calix[4]arenes is that they can form in 4 different 

conformations due to the flexibility in rotation of Ar-CH2-Ar bonds; cone, partial cone, 

1,2-alternate and 1,3-alternate conformation (Jose and Menon, 2007). The proper 

modified calix[4]arenes can act as host for various types of metal ions, also a perfect site 

for platforms to build up receptor for molecular recognition in the incorporation of 

suitable sensor system (Zhang et al. 2004). The different conformation of derivatized 

calix[4]arene had been applied as metals ions determination, for example; determination 

of Pb2+ ions by modified partial-cone conformation calix[4]arene(Buie et al., 2008), the 

synthesized derivative cone and 1,2-alternate calix[4]arene for Pb2+ and Hg2+ ion 

extraction (Zhang et al., 2007), the synthesis of novel proton di-ionizable p-tert-

butylcalix[4]arene-crown-6 compounds were modified in cone, partial-cone and 1,3-

alternate conformations for (Zhou et al., 2005). Other than that, the novel 

calix[4]arenederivatized receptor with cone and 1,3-alternate conformation were 

synthesized for fluoride and chloride anions binding (Kim et al., 2015). The novel 

calix[4]arene-based glycoclusters were made to form the cone and 1,3-alternate structure 

for binding of galectin-3, a carbohydrate-binding proteins (Bernardi et al., 2014).  

 

1.4 Self-assembled monolayer (SAMs) 

 

1.4.1 History 

 

The studies on self-assembled monolayers (SAMs) were performed as early 1950 s by 

Zisman, and Blackman and Dewar. The SAM method is the one of a branch in organic 

thin films other than Langmuir films, Langmuir-Blodgett (LB) films, and Organic 

molecular beam deposition (OMBE) and organic molecular beam epitaxy (OMBE) 

(Schreiber, 2000). The SAMs formation on surface was first reported in 1980s on 

adsorption of thiols and disulfides on gold; due to strong affinity of S- Au, multiple 

bonds with surface metal clusters of the transition metal surfaces were formed (Nuzzo 

and Allara, 1983). 

 

1.4.2 Structural Characteristics and Applications 

 

The SAM is more or less like a simple alkane on surface. SAM is formed from 

spontaneous chemisorption of a molecule onto a surface to form a stable and uniform 

layer of packing. SAMs consist of organic hydrocarbon molecules that bound to a 

surface and formed ordered monolayers due to Van der Waal’s interactions between the 

molecules. The ideal SAMs structure can be divided into three parts: end group (act as 

terminal surface), alkyl chain and head group (molecules attached to surface of 

substrates) with substrates consist of hydroxylated surface (Figure 1.3). Two of the most 
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widely studied systems of SAMs are gold-alkylthiolate monolayers and 

alkylsilanemonolayers (Biddle, 2001). 

 

 

 

 

 

 

 

 

 

 

 

Once a SAM is formed on a substrate, the surface is completely filled with organic 

molecules. The presence of SAMs on the surface will alter the surface physical and 

chemical properties compared to the bare substrate. The most widely studied SAMs are 

alkysiloxane (Sagiv, 1980) and alkanethiol (Folkers et al., 1992) formed on hydroxyl 

surfaces and metallic surfaces, respectively. 

 

Basically, the formation of alkysiloxane SAMs can be divided into 3 steps. Firstly, the 

alkoxy group (OX-Si) where X = alkyl group, of the head group undergoes hydrolysis 

in presence of absorbed water on a surface to form silanol containing species. Next, the 

silanol groups undergo condensation with the hydroxyl groups on the substrate. Finally, 

they will self-order themselves by forming hydrogen bond and covalently bonded. This 

covalent bond stabilizes the monolayer and as a preparation for further chemical 

modification (Pujari et al., 2014). The silane SAMs formation can be produced by using 

aminosilanes, chlorosilanes, alkoxysilanes, alkylchainsilanes and others on silicon oxide 

(Kulkarni et al., 2006; Zhang and Srinivasan, 2004) and ITO surfaces (Chong et al., 

2007).  

 

As many types of SAMs, organosilane with terminated amine group molecules on 

hydroxyl groups bearing surfaces has grown a great interest. Many research applications 

were done using amine-terminated SAMs in biosensors development. The amine 

terminated group  is reactive in immobilization of enzymes (Ulman, 1996) and 

antibodies, DNA (Sugimura and Nakagiri, 1997), metal ion sensing (Crego-Calama and 

Reinhoudt, 2001), modification of electrodes and adhesion promotion (Lee et al., 2007). 

As an example; 3-aminopropyltriethoxysilane (APTES) (Liu et al., 2005) was used to 

Figure 1.3: Basic structure of SAM. 
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gain the amine-terminated group for promoting protein adhesion and cell growth on 

biological implant.  

 

1.5 Indium Tin Oxide (ITO) 

 

Indium tin oxide (ITO) is a transparent semiconductor that widely used for attachment 

of organic molecules onto the surface by means of formation of thin films. ITO has many 

advantages including the availability and its transparency toward visible light where it 

has been broadly used as transparent electrodes in spectroelectrochemical studies (King 

et al., 2006). Other than that, the optical properties of ITO are more efficient for signal 

transduction for applications in visible and near infrared regions (Garten et al., 1996; 

Sheng et al., 2006) and besides the low electrical resistivity. Many studies show that ITO 

can be used as an ideal electrode for electrochemical study of biomolecules (King et al., 

2006) and a suitable surface for immobilization of phosphonic acids, carboxylic acids 

and amines for electron transport study at the interface (Oh et al., 1999). The 

chemisorption of phosphonic acid onto hydroxyl surface of ITO had been done for self-

assembled monolayer (SAMs) formation or spin-cast multilayer formation by chemical 

reaction (Cui et al., 2002; Huang et al., 2005). 

 

Other than that, ITO is also very sensitive upon hydrogen peroxide (H2O2) treatment in 

basic condition in which produce hydrophilic groups on surface. The surface 

modification of ITO is same as other types of surface as it also needs a pre-treatment 

before any chemical modification to be done. The used of H2O2 treatment in liquid 

ammonia and water is to offer a good adhesion between the SAM and the ITO surfaces 

through an introduction of hydroxyl and oxygen upon the treatment (Jee et al., 2006).  

 

Since ITO is a conducting material, it is mainly used as a substrate for electrochemical 

analysis. The studies made by Zehner et al. showed that the dipolar moments form a 

SAM on gold, and with that the SAM can be used to control the function. As a matter of 

fact, this hypothesized that a SAM have the ability to increase the work function of ITO 

and improve its performance (Robert W. Zehner et al., 1999). Basically, there are various 

chemical modifications of self-assembled monolayer (SAMs) on ITO that can increase 

the work function of an ITO without changing the transmittance. This has been studied 

by Jee et al. where they formed various types of SAMs on ITO surface. This includes 4-

chlorophenyl trichlorosilane (4-CPTS), chloromethyltrichlorosilane (CMTS), 4-

chlorophenyl phosphonic acid (4-CPPA), 3-nitrophenyl phosphonic acid  

(3-NPPA), and 2-chloroethyl phosphonic acid (2-CEPA) SAMs on ITO that increased 

ITO work function. The CMTS SAM on ITO produced a highest work function (5.695 

eV) in which this is the highest work function of ITO with a SAM. This is due to the 

increment of bonding energy of oxygen in ITO with CMTS SAM generated, thus 

increased the work function of ITO with SAM. This happened when the interface layer 

between the organic layer (SAM) and the ITO electrode showed a possible ohmic contact 

to occur, as the work function of ITO with SAM increase, thus removed the energy 

barrier between the interfaces. The energy barrier removal will improve the performance 

and efficiency of the organic devices.  The increment of work function of ITO caused 
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by the increase of bonding energy of oxygen atoms with combination of indium and tin 

atoms in ITO modified with SAMs (Jee et al., 2006). 

 

1.6 Electrochemical Measurement 

 

The electrochemical techniques can be divided into two categories; voltammetric and 

polarography techniques. The voltammetry techniques had been choosen as the most 

preferable method for chemical and biochemical research. 

 

Voltammetry is defined as the measurement of current in an electrochemical cell under 

complete concentration polarization condition where the rate of oxidation and reduction 

of the analyte is limited by the rate of mass transfer of the analyte to the electrode surface. 

This method was developed from polarography method that was discovered by 

Czechoslovakian chemist Jaroslav Heyrovsky in early 1920s. The polarography method 

uses dropping mercury electrode (DME) that differs it from other types of voltammetry.  

 

Voltammetry is widely applied for electron transfer studies at chemically modified 

electrode surfaces (Muthurasu and Ganesh, 2012), adsorption processes on surfaces 

(Park et al., 2001), and oxidation and reduction processes at interfaces (Chong et al., 

2007; Lukkari et al., 1998).  

 

The electrochemical cell consists of, a working electrode, a reference electrode, and a 

counter electrode (Figure 1.4). All the reaction or transfer of interest happened on 

working electrode surface. The reduction or oxidation of the substance occurs on 

modified working electrode surface at certain applied potential. This result in the mass 

transport of a new material to the electrode surface and produced a current.  
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The electrochemical heavy metal detection offers high sensitivity and selectivity with 

low operational cost, simple instrumentation, along with fewer samples requires. As 

studied by Thompson and co-workers, the used of voltammetry technique such as cyclic 

voltammetry (CV) analysis was performed along with ICP-MS/AES technique for 

determination of uranium cation (UO2
2+) by using gold electrode modified with 

calix[4]arene(Evans-thompson et al., 2002).  Other than that, Zhang and co-workers also 

synthesized calix[4]arene derivative and growth a SAMs on gold surface for Ba2+ and 

Ca2+ ions detection. The detection was done using cyclic voltammetry and impedance 

spectroscopy (Zhang et al., 2004). The work done by Park and co-workers which also 

successfully detected their Ca2+ ions using self-assembly of quinone-functionalized 

calix[4]arene on silver electrode by cyclic voltammetry and square wave voltammetry 

(SWV) analysis (Park et al., 2001). 

 

1.6.1 Cyclic voltammetry (CV) 

 

Cyclic voltammetry (CV) has been widely used in electroanalytical studies in chemistry. 

This technique is based on varying the potential at a working electrode in both forward 

and reverses directions at some scan rate while observing the current. 

 

The advantage of CV technique is that it offers on half-reactions occurring at the working 

electrode, providing information regarding the chemical or physical phenomena 

happened to the studied electrochemical reaction. 

 

The important parameters in cyclic voltammogram are the peak currents (ipa, ipc) of 

anodic and cathodic peak current, and peak potentials (Epa, Epc). The electron transfer 

Figure 1.4: Cell setup for electrochemical analysis using potentiostat 

(Culebras et al., 2014). 
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process is said to be fast is when the reaction is electrochemically reversible where the 

peak separation is determined by: 

 

∆𝐸𝑝 =  |𝐸𝑝𝑎 − 𝐸𝑝𝑐| =  2.303 𝑅𝑇/𝑛𝐹 

For a reversible redox process at 25ºC with n electrons ∆𝐸𝑝 should be 0.0592/n V or 

about 60 mV for one electron. But, in reality this value is difficult to obtain due to many 

reasons such as cell resistance. Irreversible reaction is caused by slow electron transfer 

rate results in ∆𝐸𝑝 >
0.0592

𝑛
𝑉 or greater than 70 mV for one electron (Kounaves, 

1997). 

 

Cyclic voltammetry was discovered to be a significant method as an analysis tool that 

gives information about the mechanisms of oxidation or reduction reactions under 

various conditions. 

 

1.6.2 Differential Pulse Voltammetry (DPV) 

 

The innovation of pulse voltammetric technique is due to the fact that by adjusting the 

potential, the current measured in a pulsed method, a considerable discrimination of the 

charging (non-faradic) current can be attained. Differential pulse voltammetry is one of 

the types of pulse methods where the speed and sensitivity were improved from over the 

years. 

 

DPV is an electrochemical method with the addition of a pulse of constant amplitude at 

the end of each potential step. The current is sampled before and at the end of pulse. This 

sampling point permits the decay of the non-faradic (charging) current. The difference 

in current is recorded as the result with presence of peaks for observation. The difference 

between current measurements is plotted against the base potential. The discrimination 

opposes to the charging current resulting to lower detection limits (as compared with 

linear sweep technique), thus causes DPV technique is well-suited for quantitative 

analysis (Kounaves, 1997). This ability makes this pulse technique is more sensitive to 

faradaic currents (reduction or oxidation currents) than conventional voltammetry.  

 

DPV however produces peaks for faradic currents rather than sigmoidal waveform 

obtained from normal pulse techniques. Due to that, this results in improvement of 

resolution for multiple analyte systems and various quantitation (“Application Note S-

7,” 1982). Other reason is the current measured is also known as differential pulse 

voltammogram (Refer Figure 1.5), in which the difference measurement between 

currents for each single pulse enables increase of sensitivity of DPV and normal pulse 

voltammetry (NPV) (Gulaboski and Pereira, 2008). 
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1.6.3 Electrochemical Impedance Spectroscopy (EIS) 

 

EIS technique is an electrochemical technique that typically used to determine kET for 

redox-active SAMs. EIS measures the frequency response of a system by quantifying its 

impedance, Z. This is performed by putting on a small AC signal over a range of 

frequencies at a certain potential. Measuring impedances over a wide range of 

frequencies permits the value of each of individual element for electron transfer of redox 

species attach to a monolayer.  

 

EIS was applied to determine the electron transfer reactions of the redox probes on SAM 

modified surfaces. The data were used to get the charge transfer resistance (RCT) value, 

that give an information on blocking ability of the monolayer towards the redox species 

diffusion process (Ganesh, 2006). 

 

EIS data commonly been plotted in two ways, a Bode plot or a Nyquist plot. For Bode 

plots, the log of impedance magnitude, log(Z), and the phase, φ are plotted splitly versus 

log(frequency). For Nyquist plot, the ordinate denoted by the imaginary axis, ZIm, and 

the abscissa is the real axis, ZRe. Many data analysis are using Nyquist plots as compared 

with Bode plots. 

 

For monolayer analysis, at high frequencies, the plot appeared in ellipse shape where no 

electron transfers to occur with Rct become negligible. But, at low frequencies the 

Figure 1.5: a) Potential form, b) resulting simulated voltammogram in DPV 

(Gulaboski, 2008). 
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Nyquist plot ellipse never reach ZRe, and the plot becomes a vertical line (Eckermann et 

al., 2010). 

 

1.7 Problem Statement 

 

Heavy metals such as Zn(II), Cu(II) and Fe(II) were basically natural constituents from 

the earth crust, but they are discharged to the environment due to natural phenomena and 

human actions.  The pollution of natural waters by copper, zinc and ferum give a great 

concern among researchers. Cu(II) ions play an important role in physiological processes 

in human body, and known to be an essential element for human life. The amount of 

copper that required for normal metabolism is about 40 µgL-1, but if it was present in 

excessive amount, it will become toxic for the body. The presence of copper excessively 

can cause diseases to human body such as kidney problem and lung cancer (Hu et al., 

2011). While the abundance of zinc ions in atmosphere causes it to be easily consumed 

by human and lead to many diseases such as pulmonary manifestations, fevers, chills 

and gastroenteritis (Yilmaz et al., 2009). Ferum is a second most abundant metal in 

earth’s crust, and it also a crucial element in human nutrition. The presence of ferum (II) 

salts in drinking water supplies are unstable and appeared as precipitation as insoluble 

iron (III) that settles out as a rust-coloured silt (Iron in Drinking-water, 1996).  There are 

various sources of zinc, copper and ferum contamination. They may come from 

industrial and household waste discharges, the leakage from sewage systems into water 

sources (Raj et al., 2013). The long-termed exposure from these types of heavy metals 

may result in slow progressing of physical and muscular, Parkinson’s disease, and the 

long-term contact will cause cancer. So, this is how critical it was to detect these ions in 

real life.   

 

Most of the traditional instruments that were used for metal ions detection such as ICP-

MS, AAS and ICP-AES are high cost and bulky. They required a well-trained personnel 

and time consuming analyses. 

 

In this work, by using electrochemical method, it offers a better alternative to detect 

metal ions such as Zn(II), Cu(II) and Fe(II) which are portable, ultrasensitive and 

selective. 
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1.8  Objectives of the studies 

 

1.8.1 General Objective 

 

The objective of this research is to develop electrochemical heavy metal ions sensor by 

employing calix[4]arene on self-assembled monolayer on indium tin oxide (ITO) 

electrode. 

 

1.8.2 Specific Objectives 

 

1. To modify electrode of 3-aminopropyltrimethoxysilane (APTMS) SAMs on 

ITO that act as template for calix[4]arene attachment. 

 

2. To investigate the optimization of electrode based on the choosing of correct 

supporting electrolyte and deposition time. 

 

3. To study the electrochemical detection of Zn(II), Cu(II) and Fe(II) based on 

modified calix[4]arene/APTMS/ITO Electrode  
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