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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfillment of the requirements for the degree of Master of Science 

EFFECT OF BENDING DEGREE OF DOWN CONDUCTOR ON LIGHTNING 
CURRENT DIVERSION IN LIGHTNING PROTECTION SYSTEMS 

INSTALLATION 

By 

NORPISAH MOHD. YUSOFF 

July 2015 

Chairman : Jasronita Jasni, PhD 
Faculty : Engineering 

The major role of protection against lightning are to secure structures and every 
component connected to it from lightning damage by directing the high currents 
and dispersed it to the ground safely. Lightning protection of structures and 
premises becomes crucial in order to provide the safety and to ascertain that 
the installation of Lightning Protection System (LPS) is reliable and comply with 
the standards and specification assigned by the authority to assure the quality 
of services. LPS have been designed deliberately to get the overall protection 
via an external grid arrangement depends on the building constructions and 
level of protection needed as per standard.  A LPS is composed of three main 
parameters which are the air termination network, the down conductor and the 
earth termination.  The down conductor is the medium to divert the lightning 
current from the air termination to the earth termination system of protected 
structures. This research focused on the down conductor and its effects when it 
meets the bending part in the LPS installation. According to the standards and 
specifications, the down conductor shall be installed as short and straight as 
possible with particular attention shall be carried out eliminating sharp bends 
and curves to provide a low impedance path between the air termination network 
to the earth termination. However, due to the modern architecture and to fulfill 
aesthetical requirement of the building, the bending seems unavoidable. The 
aim of the research is to investigate and analyze the effect of the bending degree 
of the down conductor in the LPS installation since no particular experiment has 
been channeled away to this topic so far. Numerical (simulation) analysis has 
been applied using Ansoft Maxwell software. The down conductor in concern for 
the simulation is an Annealed Copper Tape that was injected with lightning 
impulse current waveforms as per standard at the various bending degree.The 
potentials and the fields involved are analyzed and the result was discussed in 
comparison with the straight conductor and the standard. The main findings 
conclude that the bending of the down conductor does give an effect where the 
distribution properties of magnetic field, electric field and current densities can 
be seen nonuniform along the conductor. The maximum value of magnetic field 
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and current densities located at the vertex of the bent part and are influenced 
by the bent angle. The magnetic field strength concentrated at the location of 
the bent and getting stronger as the bending angle getting sharper which is could 
lead to self-induced coupling and this behavior could cause current to directly 
flow or short through it and ignite dangerous sparking during lightning strike. The 
stronger the magnetic field, the greater will be the induced voltage produced 
along the bent conductor compared with the straight conductor which is 
hazardous in practice. The magnetic forced also may cause distribution of 
current densities at the bent part nonuniform in the sectional area and form a 
void. This phenomenon known as skin effect where current concentrated near 
the surfaces of the conductor caused by electromagnetic induction and current 
crowding that could reduce the cross sectional area for current conducting ability 
to the ground. 
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Fakulti  : Kejuruteraan 
 
 
Peranan utama perlindungan kilat adalah memastikan struktur dan segala 
komponen yang bersambung kepadanya terlindung dari kerosakan atau bahaya 
yang berpunca dari panahan kilat yang membawa arus tinggi dengan 
mengalirkannya ke bumi dengan pantas dan selamat. Perlindungan kilat untuk 
struktur dan premis menjadi sangat penting bagi memberikan perlindungan dan 
tahap keselamatan yang diperlukan disamping memastikan bahawa 
pemasangan Sistem Perlindungan Kilat yang diaplikasikan adalah boleh 
dipercayai serta mematuhi piawaian dan spesifikasi yang ditentukan oleh pihak 
berkuasa demi menjamin kualiti perkhidmatan yang dikehendaki. Sistem 
Perlindungan Kilat direkabentuk secara terperinci bertujuan untuk mendapatkan 
perlindungan yang menyeluruh melalui susunan grid luaran bergantung kepada 
struktur sesuatu binaan bangunan itu dan tahap perlindungan yang diperlukan 
berdasarkan ketetapan piawaian.Sistem Perlindungan Kilat terdiri daripada tiga 
parameter utama iaitu rangkaian penamatan udara, pengalir turun dan 
rangkaian penamatan pembumian. Pengalir turun merupakan medium untuk 
melencongkan arus kilat dari rangkaian penamatan udara ke rangkaian 
penamatan bumi bagi struktur yang dilindungi. Tumpuan utama kajian ini adalah 
mengenai kesan lentur pada pengalir turun di dalam pemasangan Sistem 
Perlindungan Kilat. Menurut piawaian dan spesifikasi, untuk mengalirkan arus 
ke bumi dengan cepat dan selamat, pengalir turun perlu dipasang dengan laluan 
yang paling lurus dan pendek dengan perhatian khusus diberikan untuk 
mengelakkan sebarang lenturan tajam dan lengkungan bagi menyediakan 
laluan yang bergalangan rendah diantara rangkaian penamatan udara dan 
rangkaian penamatan pembumian. Namun begitu, disebabkan oleh senibina 
bangunan moden sekarang dan sebagai memenuhi ciri-ciri estetik sesuatu 
bangunan itu lenturan tersebut tidak dapat dielakkan dari berlaku. Tujuan kajian 
ini dilaksanakan adalah untuk menyiasat dan menganalisa kesan tahap lenturan 
terhadap pengalir turun berikutan tidak banyak kajian yang dibuat berkaitan 
dengan topik ini sebelum ini. Analisa berkomputer (simulasi) telah diaplikasikan 
dengan menggunakan perisian Ansoft Maxwell. Pengalir turun yang dipilih untuk 
analisa simulasi ini ialah pita kuprum yang disuntik dengan denyutan arus kilat 
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yang berbeza berdasarkan piawaian pada pelbagai sudut lenturan. Potensi dan 
medan yang berkaitan yang terhasil pada pengalir telah dianalisa dan hasil 
analisa tersebut dibincangkan serta dibuat perbandingan dengan pengalir tanpa 
lenturan dan juga ketetapan piawaian. Penemuan utama kajian merumuskan 
bahawa lenturan pada pengalir turun memberi kesan ke atas pengalir di mana 
pengagihan ciri-ciri medan magnet, medan elektrik dan kepadatan arusnya 
didapati tidak seragam sepanjang pengalir. Nilai maksima medan magnet dan 
kepadatan arus didapati bertumpu di kawasan lenturan dan nilai-nilai tersebut 
dipengaruhi oleh sudut lenturan. Medan magnet yang terbentuk di sepanjang 
pengalir menjadi bertambah kuat di kawasan lenturan bilamana sudut lenturan 
semakin tajam. Keadaan ini boleh mengakibatkan kepada penggabungan 
aruhan kendiri dan menjurus arus yang mengalir memintas kawasan lenturan 
dan boleh menjadi punca tercetusnya percikan bahaya semasa kilat 
menyambar pengalir. Semakin kuat medan magnet tersebut maka semakin 
tinggi voltan aruhan yang dihasilkan di sepanjang pengalir yang mempunyai 
sudut lenturan berbanding pengalir tanpa lenturan yang mana voltan tinggi ini 
adalah bahaya. Kekuatan medan magnet ini juga boleh menyebabkan 
kepadatan arus di kawasan lenturan menjadi tidak seragam di kawasan tertentu 
dan membentuk lompong pada pengalir. Fenomena ini dikenali sebagai kesan 
permukaan dimana kepadatan arus berada di permukaan pengalir disebabkan 
oleh aruhan elektromagnetik dan arus pusuan yang boleh mengecilkan ruang 
keratan rentas pengalir dan seterusnya mengurangkan keupayaan mengalirkan 
arus kilat ke bumi. 
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CHAPTER 1 
 

INTRODUCTION 

 

1.1   Background 

Malaysia categorized as prone to high lightning and thunderstorm activities due 
to its location that lies near the equator of latitude 1° - 7°N and longitude 100° - 
119°E, where it is recorded to receive a high level of lightning activity throughout 
the year [1], [2]. Lightning discharges contain of several thousand amps to over 
200,000 amps of electrical energy and even though a lightning discharge is 
within microseconds only, but it is able to cause enormous damage and 
destruction [3]. It is significant to understand the phenomenon and characteristic 
of the lightning because lightning cannot be prevented totally in the real 
condition, thus, it can only be intercepted and diverted to the ground via LPS that 
designed and constructed in such a manner to minimize the damage [4]. 
 
When LPS is struck, the potential of the conductor with regard to earth is raised 
and, unless suitable precautions are taken, the discharge may seek alternative 
paths to ground by side flashing to other metal in structure [5]. There is a 
probability of a risk of flashover from the protection system to any other metal on 
or in the structure. If such flashover occurs, part of the lightning current is 
discharged through internal installations such as pipes and wiring and hence 
constitutes a risk to occupants and the fabric of the structure [6]. Thus, a reliable 
LPS installation must encompass structural lightning protection and transient 
over voltage (electronic systems) protection. 
 
The principal component of LPS of a building consists of the air terminal or 
lightning rod, the down conductor and the earth termination. Lightning tends to 
strike at the highest object, thus the air termination network, which is consists of 
lightning air terminal (LAT) or lightning rods installed along its ridges, performed 
to capture the lightning strike and become the preferred strike point in the 
lightning protection zone (LPZ) [7].  LAT(s) are connected by means of a down 
conductor arrangement to provide low impedance path to conduct the lightning 
current directing to the earth termination via the grounding grid, which dissipate 
the high surge which usually in the range of several kA into the earth [8]. Since 
the down conductor is the pathway to conduct the lightning current safely to the 
ground, keeping the impedance of down conductor as low as possible is thus 
indispensable to avert the development of excessive electric potential [9].  
 
In order to reduce the possibility of side flashing, the down conductor route(s) 
should be as direct as possible with no sharp bends neither stress points where 
inductance, and hence impedance, is increased under impulse conditions. 
Gradual bends in the minimum of 200mm radius should be adopted whenever 
the bend is unavoidable to avoid flash over [10]. Besides that, there is 
mechanical effect occurring throughout the down conductor during the lightning 
strike [11]. Even though sectional area of a down conductor is given to satisfy 
the requirement for mechanical strength, but conductor with sharp bends tends 
to produce mechanical forces being raised in the bending area which could 
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degrade the conductor and susceptible the conductor to electromagnetic 
interference [12]. Furthermore, cloud-to-ground lightning in the vicinity induces 
significant current in tall down conductors and other conducting structures [13]. 
The high lightning current could generate dangerous sparking in the degraded 
area and if there is any metal located nearby, the spark will invite dangerous 
flame and spread the fire to the surrounding.  
 
 
1.2   Problem Statement 

 
Modern architectures had brought up the varied conceptions of the roofs and 
ridges to the modern building completion. The placement and spacing of down 
conductors is often governed by architectural convenience. It is sometimes not 
possible to avoid the bending of the down conductor in the LPS installation for 
building and premises. It is an engineer’s responsibility to design suitable LPS 
for the edifice to accommodate the architecture plan. To the best of the author’s 
knowledge, open literature on this bending topic seems to be limited. There is 
no specific discussion regarding the potential due to the lightning impulse current 
in a bent conductor when lightning strikes. 
 
None of the available standards had scientifically brought up the permissible of 
the bending angle that allowed for the down conductor in LPS. CKE, IPJKR 
Malaysia has a responsibility to design and maintain all the Electrical Installation 
inclusive LPS for government buildings and has issued the Specification For 
Lightning Protection System For Structures, L-S9 that compliance to the MS IEC 
62305 as an additional specification to be applied in all their projects. According 
to the L-S9, the bending radii of the down conductor shall equal or shall not be 
less than 200mm and deep re-entrant loops also routing the round parapet or 
cornices shall be avoided, but a maximum height increase of 400mm is 
permissible for passing over the parapet wall with a slope of maximum 45˚ [14].  
 
A typical pattern of roof usually can be done well and the LPS can be seen 
constructed as per layout and carry through the stipulation. Unfortunately, not all 
buildings had the same roof type. Multiple roof design effectuated the routing of 
down conductor to become more complicated. The efficiency of the existing 
bending degree allowed in the specification is always questionable during 
construction and installation of the LPS. Figure 1.1 shows the examples of the 
bent down conductor that does not satisfy the specification. 
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Figure 1.1: Down conductor installed in the actual site where bending 
degree does not meet the prescribed specifications 

 
 
The transient current distribution and the transient magnetic field generated 
along the straight and curved conductor have been investigated by a few 
researchers [15] - [20]. Liu et.al revealed the result that under the large current 
curved conductor could possibly exhibit the magnetic force and surface 
temperature concentrated at the vertex [15]. In another experiment Liu et.al 
divulged the obstruction of heat transferred from the surface caused by the 
curvature and Hall Effect decreased current conducting ability on curved 
conductor [16]. The ohmic heating caused by curved shape with bending angle 
have influent by the electromagnetic force along the conductor was found by Hu 
et.al [17] - [19] and later they discovered the magnetic force, skin effect and joule 
heating affected and deformed curved conductor and finally broke [20].  
 
However, the transient potential has not been mentioned in those experiments. 
The current and conductor used also do not comply with the lightning protection 
standard. In order to define the effect of the bending degree scientifically, the 
challenge is to investigate the distribution of potential, magnetic field, electric 
field and current density along the bent conductor when lightning strikes. Hence, 
proper analysis of those parameters on the straight conductor with different 
bending degrees is needed to see the effect of the bending for the down 
conductor. Due to a lack of facilities to do the experimental analysis, a 
computational method or numerical analysis (simulation) using software will 
assist to obtain those parameters required for the analysis. One of the methods 
used to study lightning effects consists of a simulation of lightning strike by 
injecting a surge current. 
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1.3 Objectives 
 

The aim of this project is to investigate and thoroughly understanding the effect 
of bending degree of down conductor in LPS. In order to accomplish this 
purpose, the objectives are as follows: 
 
1) To design and simulate the down conductor inclusive design the dataset for 

the excitation of surge waveform as per standard using software, with the 
different bending degree to obtain the distribution of potential, magnetic field, 
electric field and current density mapping. 

 
2) To validate the result obtained on related fields from the simulation by a 

comparison with the theory and standard.  
 
3) To analysis the result and propose the limit of minimum and maximum 

bending degree that are suitably best to be recommended to improvise the 
existing L-S9 specification if any. 

 
 
1.4 Scope of work 

 
The limitations and scope of work involved in this research are as follows: 
 
1)  Since lightning strike nearby generates an electromagnetic field that 

responsible for inducing currents in down conductor, the assigning of the 
down conductor to be utilized for the simulation must be based on an 
electromagnetic model to get the best result. ANSYS Maxwell 3D that uses 
FEA to solve electric, magnetostatic, eddy current and transient problems 
was chosen. 

 
2) Design down conductor for the simulation, where Annealed Copper Tape 

with the datasheet as per Appendix A, in the dimension of 25mm (width) X 
3mm (thickness) X 1000mm (length) as per L-S9 specification has been 
employed. Annealed copper tape has been used widely in LPS due to its 
high electrical conductivity, reliable and comparative price. 

 
3) Design the surge waveform to be used in the simulation in accordance with 

IEC 60060 and MS IEC 62305. Both standards have been determined many 
types of surge waveform used for lightning experiment. For this project three 
types of surge waveforms will be used which are 1.2/50μs waveform (open 
circuit voltage), 8/20μs (short circuit current) and 10/350μs waveforms (short 
circuit current).  

 
4) The peak value of the current injected for the simulation is 100kA, the value 

suggested and recommended by IEC 60060 and MS IEC 62305-1 Class III 
or Class IV lightning protection level, buildings with a low level of risk as 
housing or office buildings.  
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5) As part of the aim of this project is to investigate the effect of bending degree 
that does not meet the requirements of the L-S9 specification, as shown in 
Figure 1.1, which mostly made at an angle of 90°, the bending angle to be 
applied in the simulation is set running from 0° angle to 90° with step of 10° 
sequentially. 

 
6) Results from the simulation are then compared with the theoretical and the 

standards to validate that the simulation which was carried out on down 
conductor is trustworthy and acceptable.  

 
The weaknesses employing numerical analysis (simulation) on electromagnetic 
models are too much computation time, instability and requires high 
performance HD computer. Therefore, problems usually encountered when 
using Ansoft Maxwell is the time required to run the simulation often very long. 
The time period has not accounted for the time needed to repeat the process in 
the event of errors. 
 
Despite the time required to complete one simulation is quite long, the software 
also very sensitive and vulnerable to lock or corrupted. Once the software 
running a simulation, if it happened that the computer lagging, then the 
simulation file will lock and corrupted. The new file need to be create and start 
all the steps all over again from the beginning and running new simulation. 
 
 
1.5   Thesis Layout 

 
This thesis comprises of five chapters specifically aim to define the effect of 
bending degree of down conductor. 
 
1) Chapter 1 embraces the preliminaries of the research begin with the 

background overview followed by the problem statement on why the 
research needs to be performed. Then the objective of the research had 
pointed away and lastly scope of work involved was described. 

 
2)  Chapter 2 discloses literature review on lightning phenomena included GFD, 

damage due to lightning and risk assessment. Review continues to LPS and 
its standards and specification, LPL and LPZ followed by the main 
components of LPS. The characteristics of the lightning current and its 
parameters also have been reviewed followed by the lightning transient and 
simulation of lightning transient according to the standard. Later, reviews in 
related work on the successful previous similar experiments also have been 
conducted. Lastly, Ansys Maxwell Software, the software that has been 
chose in this project also has been reviewed thoroughly. 

 
3) Chapter 3 emphasizes the methodology used in the experiment started with 

the literature review, including previous experiment done related to the 
objective of the project. Relevant standards also were reviewed for 
guidelines on designing and simulation. This followed by the design set up 
for the simulation, the properties of material used and selection on the 
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lightning waveform to be employed as per standard and the detail on the 
construction of the simulation also has been presented. 

 
4) Chapter 4 presents the introduction and the results obtained from the 

simulation. The result and discussion made from the distribution of potential, 
magnetic fields, electric fields and current density captured for each bending 
angle that have been set up earlier in Chapter 3.  

 
5) Chapter 5 concludes all the previous chapters in this thesis. Summary of the 

overall outcome such as results, findings and problems are provided. 
Suggestion and future recommended for future work then will be presented. 

 
 
1.6.  Summary 
 
This chapter imparts the preliminaries of the overall research begin with the 
background overview followed by the problem statement on why the research 
need to be performed. The aim of the thesis is defined as comfortably as the 
relevant scope of study involved and lastly the overview of thesis layout is 
depicted briefly in each chapter. 

. 
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