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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the Master of Science 

MARANGONI BOUNDARY LAYER FLOW OVER A PERMEABLE 
SURFACE IN THE PRESENCE OF THERMAL RADIATION 

By

NORFARAHANIM BINTI MOHD ARIFFIN 

October 2017 

Chairman: Norihan Md. Arifin, PhD 
Faculty: Science 

Marangoni convection is a flow induced by the surface tension gradients associated 
with either thermal or concentration gradients. In this study, the problem of 
Marangoni boundary layer is derived in three different types of fluid over a 
permeable surface, where there is suction or injection effect. The scope of this thesis 
is restricted to two dimensional, steady, incompressible and laminar flow considered 
in micropolar fluid, nanofluid and viscous fluid. Each problem is considered in 
different type of fluid with respect to the parameters interest. The effect of thermal 
radiation is considered due to its vast applications and large contribution in the field 
of science and technology and it is occurring in the heat equations. The consumption 
of suction or injection effect is also utilized to determine the effect of it on the flow 
and heat transfer characteristics. The governing nonlinear partial differential 
equations are transformed into a system of nonlinear ordinary differential equations 
using similarity transformation. Then the resulting systems of equations are solved
numerically. Numerical results are presented in tables and graphs for the velocity, 
temperature and concentration profiles are analysed with respect to the involved
parameter interest namely types of concentration (weak and strong), radiation,
magnetic field and suction or injection parameter. Comparisons with known results
from the previous literature have been made in order to ratify the numerical results 
obtained in this thesis and the injunction showing very good agreements. All the 
governing parameters affect the flow and heat transfer characteristics of the fluid 
except for the radiation parameter. It only affects the heat transfer rate of the fluid as
it decreases the flow rate. While the suction gave a decrement to the heat transfer 
and injection proposed an opposite results. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk Sarjana Sains 

ALIRAN LAPISAN SEMPADAN MARANGONI ATAS PERMUKAAN
TELAP DENGAN KEHADIRAN RADIASI HABA 

Oleh 

NORFARAHANIM BINTI MOHD ARIFFIN 

Oktober 2017 

Pengerusi: Norihan Md. Arifin, PhD 
Fakulti: Sains 

Olakan Marangoni adalah aliran yang disebabkan oleh kecerunan permukaan 
berkaitan dengan kecerunan haba atau kepekatan. Dalam kajian ini, masalah aliran
lapisan sempadan Marangoni diterbitkan dalam tiga jenis bendalir yang berbeza di 
atas permukaan telap, dimana terdapat kesan sedutan atau semburan. Skop kajian 
tesis ini dihadkan kepada dua dimensi, mantap, tidak boleh mampat dan aliran 
lapisan sempadan berlamina yang dipertimbangkan dalam bendalir mikropolar, 
nanobendalir dan bendalir likat. Setiap masalah adalah dipertimbangkan dengan 
jenis bendalir yang berbeza tertakluk kepada parameter yang dikaji. Kesan radiasi 
haba dipertimbangkan disebabkan oleh aplikasinya yang luas dan sumbangan yang
besar di dalam bidang sains dan teknologi dan ianya berlaku dalam persamaan haba. 
Penggunaan kesan sedutan atau semburan juga dimanfaatkan bagi mengetahui 
kesannya terhadap ciri-ciri aliran dan pemindahan haba. Persamaan terbitan separa 
tak linear dijelmakan kepada sistem persamaan terbitan biasa tak linear 
menggunakan penjelmaan keserupaan. Kemudian sistem persamaan yang terhasil 
diselesaikan secara berangka. Keputusan berangka yang diperoleh dibentangkan 
dalam bentuk jadual dan graf untuk profil halaju, suhu dan kepekatan dianalisis 
berkaitan dengan parameter yang terlibat iaitu jenis kepekatan (lemah dan kuat), 
parameter radiasi, medan magnet dan sedutan atau semburan. Perbandingan dengan 
hasil yang diketahui dari kajian sebelumnya telah dilakukan untuk mengesahkan
keputusan berangka yang diperoleh dalam tesis ini dan perbandingan menunjukkan 
kesepakatan yang sangat baik. Semua parameter yang terlibat mempengaruhi ciri-ciri 
aliran dan pemindahan haba bendalir kecuali parameter radiasi. Ia hanya 
mempengaruhi kadar pemindahan haba kerana ia mengurangkan kadar aliran.
Sementara sedutan memberikan pengurangan pada pemindahan haba dan semburan 
mengusulkan hasil sebaliknya. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background

The research about fluid dynamics is considered in this thesis theoretically. The main 
focused is on the mathematical modeling by computational without experiment. The 
mathematical model used is resembled the reality with the use of mathematical 
language. The model used can be fixed, altered or as a reference to build a more 
good model.  

A fluid is anything that flows, usually liquid or gas, the latter being distinguished by 
its great relative compressibility. Fluids are treated as continuous media, and their 
motion and state can be specified in terms of the velocity, pressure, density, etc. 
evaluated at every point in space and time. Fluid dynamics is part of fluid mechanics 
that deals with the fluid flow and can be divided into two major sections which is 
aerodynamics and hydrodynamics. Aerodynamics is the flow of the fluid related to 
gases while hydrodynamics is the fluid flow entangled with liquids. There are two 
type of fluid flow existed which is the laminar flow and the turbulent flow. Laminar 
flow is the flow at which the motion of particles in the fluid flow is predictable and it 
follows the streamlines. It occurs at the low flow rates at which the fluid particles 
moving in straight lines along the tube and by symmetry, all fluid particles at the 
same distance from the axis of the tube would have the same velocity so that the 
fluid could be thought as flowing in layers or laminar. The turbulent flow indicated a 
flow which characterized by an unpredictable, pseudo random behavior, some very-
strong mixing properties and a broad spectrum of time and length scales. In this 
thesis, we are considering the laminar flow type. 

Heat is the exchange of energy between two medium and the energy exchange is 
called as thermal energy. It occurs because of two different temperatures between 
two mediums which basically the transfer of heat happened from the higher 
temperature to the lower one in a medium or across a medium. In a solid body,
liquids or gases the flow of heat is the result of the transfer of internal energy from 
one molecule to another. This process is called conduction. In addition there is still 
another mode of heat transfer in liquids and gases. In such a medium, motion of a 
macroscopic nature may exist and heat may be transported from one point to another 
by being carried along as internal energy with the flowing medium. This process is 
called heat transfer by convection. A third mode of heat transfer is the result of 
radiation. Solid bodies, as well as liquids and gases, are capable or radiating thermal 
energy in the form of electromagnetic waves and of picking up such radiant energy 
by absorption.  In this thesis we are dealing with the heat transfer by convection.
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A fluid motion can either be set up by some external source like a blower or be 
caused by temperature differences in the fluid which is developed as a result of local 
heating. Heat exchange between a wall and a fluid when the flow is forced along the 
wall by external means is called heat transfer by forced convection. The heat 
exchange between a wall and a fluid when the fluid is set in motion by temperature 
differences between the wall surface and the surrounding fluid is called heat transfer 
by free or natural convection. Free or natural convection flow arises in various ways, 
for instance, when a heated object is placed in a fluid, otherwise at rest, the density 
of which varies with temperature. Heat is transferred from the surface of the object 
to the fluid layers in its neighborhood. The density decrease which in a normal fluid 
is connected with a temperature increase causes these layers to rise and create the 
free-convection flow which now transports heat away from the object. Physically 
such a flow is described by stating that it is caused by body forces. For this thesis, 
we are considering the free or natural type convection of heat transfer. 

1.2 Marangoni Convection 

Convection can be understood as the transfer of heat from one place to another 
location by mean of the movements of groups of molecules either within fluids or 
rheids, a non-molten solid. The transfer of heat can happen either through advection, 
known as the heat transfer by bulk fluid flow or can be either through conduction 
which is the heat diffusion or can be happened through combination of both. 
Marangoni convection is generally known as a phenomenon resulted from the flow 
of the liquids from the lower surface tension area to the higher one. The name of 
Marangoni is taken after an Italian physicist in nineteenth century name Carlo 
Marangoni, 1965. It can be divided into two general cases which is solutal 
Marangoni convection on which the flow is caused by the surface tension gradients 
originating from the concentrations while the other case is the thermocapillary flow 
on which it is induced by surface tension gradients originating from the temperature 
gradients. It can be either through gas-liquid or liquid-liquid interface. It was 
believed that Napolitano (1979) is the first person who works on this area and 
consequently then gives a bunch of contribution within wide range of area including 
industries, engineering, bio-medical, etc., due to the ability of the Marangoni 
convection to be applied for the fluid movements when there is no gravity exist, see 
Zhang and Zheng (2014). Marangoni became an important part in microgravity 
science and space craft due to its possibility of material processing in space craft, 
where the gravity force is very small in comparison with the thermo-capillary, see 
Zheng et al. (2004) and Chen (2007).

Marangoni is widely used in the applications of semiconductor processing and 
drying silicon wafers (Sastry, 2015). Moreover it has a vast contribution in the 
industrial field especially in the art work of dyeing on the ground, see Kuroda (2000) 
and in the field of crystal growth, see Arafune and Hirata (1999). The elementary 
mechanism of Marangoni convection can be seen from Gelles  
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(1978) and Okano et al. (1989). Then a more details analysis of Marangoni boundary 
layer was done by Napolitano and Golia (1981). Their investigation is basically on 
the structure, properties and the behaviour of Marangoni boundary layers. Then the 
further development of theory of Marangoni flow was done by Napolitano (1986) 
and focused on the study of the main features of the flow regimes. Currently, there 
are two type of models exist for Marangoni boundary layer which are model for non-
isobaric discussed by Golia and Viviani (1986)  and model for Marangoni boundary 
layer over a flat plate studied by Christopher and Wang (2001). The models of 
Marangoni boundary layer flow been studied in this thesis is Marangoni boundary 

layer over a flat plate. For a flat plate, the external flow for velocity, eu x in Golia 
and Viviani (1986) is neglected. In this thesis, we are considering the Marangoni 
boundary layer flow in three different types of fluids which are micropolar fluid, 
nanofluid and vicsous fluid. 

1.3 Boundary Layer Flow

In fluid dynamics, boundary layer emerges in many situations. A boundary layer is 
defined as the flow region next to a solid boundary where the flow field is affected 
by the presence of the boundary. In other word, boundary layer is the layer of fluid 
in the immediate vicinity of the bounding surface where the effects of viscosity 
cannot be ignored. The concept was originally introduced by Ludwig Prandtl in 1904 
(Anderson, 2005), a German physicist and aerodynamicist, when he explained that 
the viscosity of a fluid plays a role in a very thin layer adjacent to the surface, which 
he called as boundary layer. It occurs when a molecule stick to the surface, as the 
fluid passes through an object; collide with the molecules just above the surface area. 
It is called a boundary layer because of it occurs on the boundary of the fluid. 
Boundary layer flow can be simplified into two major disciplines which are laminar 
boundary layer flow and turbulent boundary layer flow. The different between 
laminar and turbulent flow is that laminar creates less skin friction drag than the 
turbulent flow. The case of laminar boundary layer flow is taking into account in this 
thesis. Prandtl says that the flow can be divided into two types which are inviscid 
flow at the main section and thin layers adjacent to body surface (boundary layer). In 
the thin layers, friction force needs to be considered but for the outer thin layers, the 
friction forced can be neglected, see Schlichting (1979). Boundary layer theory is an 
extensively developed sub-area of fluid mechanics. 

1.4 Micropolar Fluid 

Microfluids are a class of fluids which exhibit a certain microscopic effects arising 
from the local structure and micro-motions of the fluid elements. These fluids are 
influenced by the spin inertia and can support stress moments and body moments. 
Micropolar fluids are a subclass of these fluids which exhibit the micro-rotational 
effects and micro-rotational inertia and it is consist of randomly oriented molecules 
where it named by Eringen (1966). These micropolar fluids however can support 
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couple stress and body stress only. It may represent fluids consisting of bar-like or 
sphere-like elements, physically. Eringen (1964) was the first to propose the 
micropolar fluid theory which takes into account the inertial characteristics of the 
substructure particles which are allowed to undergo rotation and was continued to 
develop by Eringen. He proposed new kinematic variables for example the gyration 
tension and micro inertia. Many classical flows are being re-examined to determine 
the effects of the fluid microstructure. 

The prolongation of the main equations for Newtonian fluids, so that more complex 
fluids such as particle suspensions, liquid crystals, animal blood, lubrication and 
turbulent shear flow can be described by this theory, is the gist of the theory of the 
micropolar fluids. Through this theory, a transport equation which represents the 
principle of conservation of local angular momentum must be added to the usual 
transport equations for the conservation of mass and momentum, and additional local 
constitutive parameters are also introduced in practice. Non-Newtonian fluid 
specifically micropolar fluids has been part of the research fields that are widely 
studied due to its contribution especially in the area of industrial important fluids 
like paints, polymeric suspensions and in the field of physiological fluids for 
instance human blood and synovial fluids. It has become a great assist to many 
research related to this complex fluids convenient to its special capability and for 
such Peddieson (1972) claimed that the model is capable of predicting results which 
exhibit some characteristics found in the turbulent wall shear layers when he 
investigated the problems of axisymmetric stagnation-point flow of micropolar 
fluids over a flat plate. Arimen et al. (1973) discussed the special features of 
micropolar fluids in the reviewed paper of the subject and application of micropolar 
fluid mechanics.

1.5 Nanofluid

The main restriction in enhancing the performance and the succinctness of many 
engineering electronic devices is due to the low thermal conductivity of conventional 
heat transfer fluids such as water, oil, and ethylene glycol mixture. To cope with the 
limitation in enhancing the performances and the compactness of such system, 
scientist has found an innovative way to improve the thermal conductivities of a 
fluid by suspended metallic nanoparticles within it. The resulting mixture which is 
called as nanofluid is the concept believed to be done first by Choi (1995). 
Nanoparticles have been made of various materials such as ceramics, nitride 
ceramics, etc. The used of nanofluids is to achieve a better possible thermal 
properties with the least possible 1%  volume fraction of nanoparticles in base
fluid (Godson et al., 2010). Nanofluids generally own a substantially larger thermal 
conductivity compared to that of the traditional fluids (Eastman et al., 2001). The 
presence of the nanoparticles in the fluids increases appreciably the effective thermal 
conductivity of the fluid and consequently enhances the heat transfer characteristics. 
There exist a few nanofluid models considered in studies and among them, the well-
known models are the model proposed by Buongiorno (2006) and Tiwari and Das 
(2007). For Buongiorno’s model the nanoparticle absolute velocity can be viewed as 
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the sum of the base fluid velocity and a relative velocity. He discussed all the
convective properties of nanofluids by developing a more generalize model. While 
the model by Tiwari and Das (2007) take the solid volume fraction into account 
while studied the behavior of the nanofluids. 

Nanotechnology is widely used in industry since materials with sizes of 
nanoparticles possess unique physical and chemical properties. Convective heat 
transfer in nanofluids has a wide range of applications in both sciences and 
engineering especially in the technology that involving the heat transfer fluids, solar 
energy and nuclear reactors. The importance of nanofluids leads to many researches 
and studies related to nanotechnology. Trisaksri and Wongwises (2007) presented a 
critical review about heat transfer characteristics of nanofluids. Some numerical and 
experimental studies on nanofluids including the thermal conductivity, convective 
heat transfer boiling heat transfer and natural convection. Through the model existed, 
research about nanofluid has been furthered for various factor in many areas. For 
such, Santra et al. (2004) analysed the laminar natural convection in a square cavity 
using nanofluid and Oztop and Abu-Nada (2008) studied the effect of using 
nanofluid in the natural convection flow field and temperature distributions in 
partially heated square enclosure. They claimed that the type of nanoparticles used is 
the key factor to gain a better enhancement in heat transfer.  

1.6 Viscous Fluid 

Viscous fluids are the fluid that can resist movements or the movements of object 
through it, depending on how viscous they are. In general, all fluids have viscosity, 
but viscous fluid is the type of fluid that has high level of viscosity. It can move 
slowly or does not budge at all depending on their level of viscosity. Viscosity of the 
fluids can be measured between 1 to 1000 millipascal seconds. The more viscous the 
fluid is, the higher the value measure. The viscosity of the fluids can be measured by 
the type of fluid is made up, temperature, pressure and other surrounding factors. 
Basically, for liquids, the higher the temperature applied the less viscous it will 
become. Butter and glass is an example of extremely viscous fluid which make them 
behave like a solid than a liquid. Viscosity has been long understood as a friction 
force tending to destroy a velocity gradient. The simple description of this effect, 
known as Newtonian viscosity, considers the force between neighbouring laminar 
planes of fluid in differential motion. The flow is assumed to be unidirectional and 
the velocity gradient normal to the planes containing the flow. The force is 
proportional to the area of the planes and to the velocity gradient normal to the 
planes. The generally form for viscosity was first given by Navier in 1827 based on a 
model of dubious validity. 

Viscous fluids are categorized in the type of Newtonian fluid. Simple examples of 
Newtonian fluids are water and air. Newtonian fluids are the simplest mathematical 
models of fluids that account for viscosity. While a non-Newtonian fluid, is 
a fluid with properties that are different in any way from those of Newtonian fluids
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for example micropolar fluids and nanofluids. Viscous fluids are the most type of 
fluid that being studied by plentiful of researchers. Thus numerous of work and 
publication have been manifested such as from Zaturska et al. (1988) where they 
analysed theoretically the flow of a viscous incompressible fluid driven along a 
channel by steady uniform suction through porous parallel rigid walls by considering 
asymmetric flows, unsteady flows and three-dimensional perturbations. Arifin and 
Abidin (2009) considered the effect of feedback control on the commencement of 
Marangoni convection in their study under the influence of variation viscosity and 
surface deformation. Puvi Arasu et al. (2011) where they studied to obtain the 
solutions for heat and mass transfer from natural convection flow along a vertical 
surface with temperature-dependent fluid viscosity embedded in a porous medium 
due to thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects. 

1.7 Thermal Radiation 

There are two primary goals of scientists throughout the world which is to control 
the spreading of ferocious disease and the cultivation of plenteous energy sources. 
To achieve this goal, the manipulation and the control of ionizing radiation is taking 
into account. This makes the science of radiation chemistry more significant than 
ever before. Radiative effect generally has important applications through many 
different fields such as physics and engineering particularly in the high temperature 
processes and space technology (Mukhophadyay and Layek, 2008). This is basically 
due to their ability to transfer the heat when there is no medium existed between two 
locations for the radiant interchange to occur. Some of the important applications of 
radiation are in the area related to diagnosis and therapy, medical studies and 
research and agriculture and environment, Hurst and Turner (1970). By Siegel and 
Howell (1981), the radiation-convection interaction problems are found in 
consideration of the cooling high temperature components, furnace design where the 
heat transfer from surfaces occurs by parallel radiation and convection, convection 
cells and their effect on radiation from stars, the interaction of incident solar 
radiation with the earth’s surface to produce complex free convection patterns and 
thus to complicate the art of weather forecasting and marine environment studies for 
predicting free convection patterns in the oceans and lake. Technology of solar 
energy utilization, reject waste heat from a power plant operating in space, 
wavelength region that give mankind heat, light, photosynthesis and all the attendant 
benefits are some of the factors why radiation is important. Combination or coupling 
of radiative heat transfer with convection or conduction was considered by several
authors.

1.8  Permeable Surface (Suction or Injection)

Suction is the process of sucking while injection is the act of injecting through the 
plate. One of the applications of suction or injection is in the field of aerodynamic 
and space sciences (Singh, 1984). It can control the fluid flow on the surface of 
subsonic craft which can be benefit properties for the other important aspects such as 
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fuel saving and operating costs, see Shojaefard et al. (2005) and Braslow in (1999). 
Basically, suction acts as the factor that reduces the skin friction and heat transfer 
coefficients while injection serves an opposite manner, Al-Sanea (2004). An
approximate solution to the uniform suction has been given by Ariel (1994).
Generally, suction or injection gave a physical effect on the local Nusselt number, 
(Afify, 2009). The studied with the consideration of suction or injection has been 
widely investigated by many researchers.
For example, Attia (2005) studied the effect of suction and injection on the unsteady 
flow between two parallel plates with variable viscosity and thermal conductivity. 
Suali et al. (2012) utilize the influence of suction or injection in their study of 
unsteady stagnation point flow where both stretching and shrinking sheet is taking 
into consideration.

1.9 Magnetohydrodynamic (MHD) 

Magnetohydrodynamic (MHD) is the study of the feature of magnetic in the 
electrically conducting fluid such as liquid metals and plasmas. Electric currents 
induced in the fluid as a result of its motion modify the field; at the same time their 
flow in the magnetic field leads to mechanical forces which modify the motion. The 
beginning creation on the field of MHD about the basic properties and work related 
to it was proposed by Alfvén (1942). Magnetohydrodynamic set a main role in many 
applications especially in industrial and technologies applications and it can control 
the quality of the product demand in industrial applications due to its feature that it 
can control the rate of cooling. Furthermore, in general magnetic field can degrade 
the fluid velocity, heat transfer rate and surface concentration gradient.  Magnetic 
field can reduce the fluid velocity, the rate of heat transfer and concentration 
gradient at the surface. Magnetic field somehow became a primary factor that could 
control the rate of cooling which consequently the quality of the product desired can 
be characterized as demand. Due to that necessity, many researchers tend to 
investigate a problem related to electrically conducting fluid. Especially in the 
metallurgical processes that involved the cooling of continuous strips or filaments. 
Another important application of hydromagnetics to metallurgy lies in the 
purification of molten metals from non-metallic inclusion by the application of 
magnetic field (Datti et al. (2004)). Magnetic field can reduce the fluid velocity, the 
rate of heat transfer and concentration gradient at the surface. 

1.10 Stability Analysis 

Stability analysis is a study to determine the stability of solutions whenever non-
unique solutions exist. It arises after the existence of more than one solution in 
computational results which give a resistance on which of the solution is stable to be 
applied. Hence, it is important to determine which of the solution is stable and 
physically realizable. Thus, a stability analysis is performed to specify the physical 
realizable of a multiple solutions in the computations. It is known that Merkin (1985) 
developed a stability analysis to determine the stability of the solutions exist in his 
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work and he stated that the solution is not stable when the eigenvalue obtained is 
negative which indicated the instability. Later, Weidman et al. (2006) improved the 
work done by Merkin (1985) by proposed a new parameter related to the initial value 
problem. In this thesis, we consider the stability analysis developed by Weidman et 
al. (2006). For mathematical formulation of stability analysis it deals with the 
unsteady-flow. Flows with unsteady effects dealt with large-scale fluctuations, 
including those leading to transition and oblique waves. Driven unsteadiness effects 
included forced flow oscillations, sudden injection and immersion, and other 
variations in thermal heating boundary conditions.

1.11 Objectives and Scope

The objective of the thesis is to analyse the following three problems: 

1. Marangoni boundary layer flow in micropolar fluid with the effects of thermal
radiation where the flow is assumed to be laminar and the wall is permeable.

2. Marangoni boundary layer flow in nanofluid with the effects of thermal
radiation and MHD where the nanofluids were made by dispersion of Cu,
Al2O3 and TiO2 in a water-based fluid.

3. Stability analysis of Marangoni boundary layer flow in viscous fluid with the
effects of thermal radiation and MHD under the influence of heat and mass
generation or consumption.

The scope of the study is restricted to two-dimensional, steady compressible laminar 
boundary layer flows in micropolar fluid, nanofluid and viscous fluid with the effect 
of radiation or MHD through a permeable surface to allow the case problem of 
suction or injection. Problem 1 is related with the micropolar fluid while problem 2 
is associated with nanofluid cases where it followed the model by Tiwari and Das 
(2007) and problem 3 is related to viscous fluids.  

1.12 Outline of the Thesis 

This thesis consists of seven different chapters. Begin with Chapter 1, describing the 
introduction of the thesis, including the brief introduction of background of the 
research, objectives, scope of the research and the outline of the thesis.  

Chapter 2 is basically the literature review related to the problem studied including 
the Marangoni convection, the fluid considered and the parameters involved in the 
study. There are some summary of books and journals been discussed in this chapter. 
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Chapter 3 is about the general mathematical formulation used in this thesis and the 
numerical methods are given. It is worth to mention that, this thesis is the extending 
work by the previous authors on the Marangoni boundary layer problem.  
 
 
Next, Chapter 4 to Chapter 6 is the further discussion of the problem considered in 
this thesis. Beginning with the brief introduction of each problem involved as the 
first section. Then, the second section is the mathematical formulation of the 
problem and the method of solution applied. Continued with the third section about 
numerical results and discussion of each problem and finally followed by the 
conclusion as the final section. 
 
 
In Chapter 4, we analyze the effect of radiation on the micropolar fluid of Marangoni 
boundary layer flow with suction/injection. While in Chapter 5, we studied the 
influence of magnetohydrodynamic (MHD) on the flow of Marangoni boundary 
layer in nanofluid through a permeable surface. The stability analysis of 
thermosolutal Marangoni boundary layer flow of a viscous Newtonian fluid with the 
effect of radiation and suction/injection is considered and discussed in Chapter 6. 
 
 
The summary of the study in the thesis is in Chapter 7 with the possible further 
research that can be carried out in future. 
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