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Attitude control and power storage subsystems are two of the essential utilities 
provided on a satellite. As they compromise a significant fraction of a satellite
weight, a synergism concept that integrates these two into one subsystem can reduce 
the mass and volume of a satellite. The reduction will decrease the total cost of 
development and deployment of a satellite. A combined energy and attitude control 
system (CEACS) is an optimization concept that utilizes flywheels as a means of power 
storage and simultaneously as attitude actuators. A series of work on CEACS have 
proposed solutions for attitude control problems. However, the analysis 
disregarded the high non-linearity involved in attitude control itself. In 

presence of unknown disturbances and 
uncertainties were not examined. This thesis addresses a more complex attitude-
tracking problem. This work proposes the use of the sliding mode control technique for 
the attitude-tracking problem of CEACS. Furthermore, an enhanced sliding mode 
control (SMC) technique is introduced to achieve robustness against uncertainties and 
external disturbances. Integral Augmented Sliding Mode Control with Boundary Layer 
(ISMC-BL), a locally asymptotically stable controller, is developed to provide a robust 
and accurate solution for the -tracking problem. The controller 
alleviates the chattering phenomenon influence on the attitude tracking performance 
that is associated with the conventional sliding mode using a boundary layer technique. 
Simultaneously, it reduces the steady-state error using an integral action. The numerical 
evaluation of the proposed controller demonstrates an enhanced attitude control 
accuracy in the presence of the nties and external disturbances. 
However, ISMC-BL suffers from overshoots in its transient response. In addition, the 
model focuses only on mission with small attitude orientations involved. Therefore, 
this thesis proposes a Nonsingular Terminal Sliding Mode (NTSM) control scheme for 
a global attitude-tracking mission of a CEACS. The nonlinear system herein is 
subjected to unknown but bounded disturbances and uncertainties. The Lyapunov 
stability theorem is used to prove the finite-time convergence in both reaching and 
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sliding phase.  The proposed method avoids the inherited singularity of conventional 
terminal sliding mode. The numerical analysis provides proofs of the 
robustness in rejecting the unknown disturbances and keeping the attitude errors as 
small as possible under the influence of uncertainties. The results provided by NTSM 
control method demonstrate the superiority of this sliding mode scheme compared to 
the previous proposed techniques for  
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Kawalan atitud dan penyimpanan kuasa subsistem adalah dua daripada utiliti yang 
disediakan dalam satelit. Oleh kerana subsistem ini berkompromi sebahagian besar 
jisim satelit, satu konsep sinergisma yang mengintegrasikan kedua-dua subsistem 
menjadi satu subsistem boleh mengurangkan jisim dan isipadu kapal angkasa. 
Pengurangan ini akan juga mengurangkan jumlah kos pembangunan dan penggunaan 
satelit. Penggabungan sistem tenaga dan atitud kawalan (CEACS) adalah satu konsep 
yang menggunakan pengoptimuman roda tenaga sebagai satu cara penyimpanan kuasa 
dan pada masa yang sama sebagai penggerak atitud. Satu siri kerja pada CEACS telah 
mencadangkan penyelesaian masalah kawalan atitud sistem. Walau bagaimanapun, 
analisis sebelum ini tidak mengambil kira ketodaklinearan kawalan atitud satelit. Di 
samping itu, prestasi kawalan atitud yang dicadangkan dalam kehadiran gangguan yang 
tidak diketahui dan ketidaktentuan orbit tidak diperiksa. Tesis ini menangani masalah 
atitud yang lebih kompleks : masalah atitud berkembar. Tesis ini mencadangkan 
penggunaan mod kawalan teknik gelangsor untuk kawalan atitud CEACS. Tambahan 
pula, satu teknik baharu mod kawalan teknik gelongsor (SMC) diperkenalkan untuk 
mencapai keteguhan terhadap ketidakpastian dan gangguan luaran. Mod kawalan 
teknik gelongsor integral tingkatan dengan lapisan sempadan (ISMC - BL), suatu 
kawalan asimptot  stabil yang bertujuan untuk menyediakan satu kawalan atitud yang 
mantap dan tepat untuk CEACS. Kawalan ini boleh mengurangkan masalah gelugutan 
fenomena yang berkaitan dengan mod gelongsor menggunakan teknik lapisan 
sempadan.  Penilaian berangka kawalan yang dicadangkan menunjukkan peningkatan 
ketepatan kawalan atitud dalam menghadapi ketidaktentuan sistem dan gangguan luar. 
ISMC - BL mengalami lonjakkan atitud. Di samping itu, model itu hanya sesuai untuk 
misi dengan orientasi atitud yang kecil. Oleh itu, tesis ini mencadangkan satu skim mod 
gelongsor kawalan terminal tidak unik (NTSM) untuk kawalan atitud bagi kawalan 
global CEACS. Katidak stabilan system adalah tertakluk kepada gangguan dan 
ketidaktentuan orbit. Teorem Lyapunov digunakan untuk membuktikan penumpuan 
terhingga masa dalam mencapai gelongsor fasa. Kaedah yang dicadangkan 
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mengelakkan kelemahan yang diwarisi mod kawalan gelongsor terminal konvensional. 
Analisis berangka menunjukkan bukti kemampuan kawalan dalam menangani 
gangguan yang tidak diketahui dan memastikan atitud sekecil mungkin di bawah 
pengaruh ketidakpastian. Perestasi kaedah kawalan NTSM menunjukkan keunggulan 
skim mod gelongsor berbanding dengan teknik sebelum ini yang dicadangkan untuk 
kawalan atitud CEACS . 
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       CHAPTER 1 
 
 

1 INTRODUCTION 
 

1.1 General Overview 

Satellites are substantial components of space exploration for understanding the outer 
space and addressing issues such as climate change, natural hazards and resources 
availability. This structure plays an important role in numerous technical fields such as 
long distance communications systems, weather forecasting, GPS (Global Positioning 
System) systems, remote sensing, satellite television, and many more applications. 
 

Starting from the early days of space era, the satellites with bulky structures were 
designed for expensive and complex space project. However, the high costs, 
complexity and long development; and deployment schedules associated with the usual 
larger satellites have urged the scientists to plan and execute space missions differently.  
 

A very substantial fraction of the costs involved in a satellite mission is devoted to 
deployment. The cost of launching a satellite depends on the volume and weight of the 
structure. Therefore, small satellites with smaller structures and lighter weights such as 
microsatellites and nanosatellites are great alternatives to have quicker and cheaper 
missions and more frequent research opportunities. Moreover, the new programs have 
prompted universities from all around the world to get more involved in space 
researches with no fear of modest budgets and little experience in space technology 
(Bearden, 2001; Curto & Hornstein, 2005; Sandau, 2010). 
 

Despites of all advantages introduced by small satellite programs, the typical 

compounded by the limitation of the mass and volume constitute a challenge to the 
development process. In addition, t
extreme optimization in the design process. 
 

Synergism of different subsystems of a satellite is an optimization approach to tackle 
the expanding demands and costs for space missions. Integration of two or more 
subsystems reduces the total size and weight of the structure and allows a greater 

better overall performance, e.g., reliability and mass/cost saving. 
 

Synergis
subsystems on-board, is very convenient. The implementation of mechanical flywheels 
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for controlling the orientation of a satellite and for simultaneous energy storage is; 
therefore, an attractive synergism concept.  
 

Possessing a great deal of rotational kinetic energy, flywheels can provide electrical 
energy in collaboration with a motor/generator unit integrated onboard. The promising 
characteristics of flywheels such as high depth-of-discharge, long life cycle and 
temperature independence make these actuators and power storage systems greatly 
competent (Ginter et al., 1998). This on-board combined subsystem decreases the 
mass/volume budgets of a platform allowing the payload mass increment. The concept 
of simultaneous application of flywheels for energy storage and attitude control was 
investigated for International Space Station (Roithmayr, 1999). In addition, this 
concept was adopted for larger satellites in several studies (Richie et al., 2001; Tsiotras 
et al., 2001; Yoon & Tsiotras, 2002). Although the previous researches highlighted 
some enhanced performance and numerous advantages for this combined system, the 
implementations were limited to massive platforms.  
 

Combined Energy and Attitude Control System (CEACS) adopts the above-mentioned 
synergism concept for small satellites. A double counter rotating flywheel assembly 
that serves simultaneously for the satellite energy and attitude management is the main 
building block of this system. Typically, CEACS consists of high speed composite 
rotors, magnetic bearings, motors/generators, and control electronics for the 
energy/attitude management (Varatharajoo & Fasoulas, 2002). 
 

The linear control of CEACS has been examined in several studies using classic control 
techniques such as PD, PID, PID-Active Force Control (AFC) (Renuganth 
Varatharajoo, 2011; Varatharajoo, 2006a; Varatharajoo & Abdullah, 2004). However, 
linear feedback control techniques applied in the aforementioned studies disregarded 

initial assumptions and simplifications associated with the linearization affected the 
precision of the results adversely.   
 

In addition, it is of particular importance to address the uncertainties of the existing 
ms of control 

characteristics. The variation of external or internal parameters such as disturbances 

instability.  
 

The influence of uncertainties on the attitude performance of CEACS was examined 
using optimal controls such as H2 and H . However, the pointing accuracy degraded 
significantly for a system subjected to internal uncertainties (Ban & Varatharajoo, 
2013; Ban et al., 2012). Therefore, it is of great interest to use an attitude control 
technique for CEACS that is robust to external disturbances and uncertainties.  
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In addition, the capabilities of CEACS have only been examined for attitude pointing 
missions. It is of great interest to investigate the feasibility of the system in more 
complex missions such as attitude-tracking. 
 

One of the well-known approaches that deal with model uncertainty in complex 
nonlinear dynamic systems is sliding mode control (SMC). The most promising feature 
of the SMC is its invariance to parametric uncertainties and external disturbances. For 
aforesaid properties along fast dynamic response and good transient performance, SMC 
has been applied to a wide variety of applications including satellite control, robot 
manipulators, underwater vehicles, automotive transmissions and engines, high-
performance electric motors and power systems (Kaynak et al., 2001; Slotine & Li, 
1991; Vecchio et al., 2009) .  
 

The limitations of classical control techniques have inspired many researchers to adopt 
-

tracking missions (Lo & Chen, 1995; McDuffie & Shtessel, 1997; Yongqiang et al., 
2008). 
 

state trajectory does not slide along the sliding surface smoothly but with a high-
frequency oscillation known as chattering phenomenon. This oscillation, highly 
undesirable, is the major drawback of pure SMC (Kaynak et al., 2001; Vecchio et al., 
2009). Therefore, a variety of strategies has been proposed to solve the chattering 
problem. Sliding mode control with boundary layer (SMC-BL) is a convenient solution 
with easy implementation and relatively good results (Utkin & Lee, 2006). However, 
an effective alleviation of chattering subjects the system to a high steady-state error 
(Slotine & Li, 1991). The well-known properties of integral controls in reducing the 
steady-state error can be used to conquer the disadvantages of SMC-BL. However, the 
inherited overshoot characteristic of integral control actions hinders the performance of 
the controller. Consequently, more advanced types of sliding mode technique are 
recommended to achieve a desirable performance. 
 

Hence, designing an efficient sliding mode controller for the attitude-tracking problem 
of CEACS that is invariant to external disturbances and uncertainties of the system is 
the primary motivation herein. In addition, this work intends to provide solutions to 
overcome the chattering phenomenon and to reduce its influence on the attitude 
tracking performance of CEACS. Furthermore, it aims to improve the steady-state error 
as well. Furthermore, finite-time sliding mode control techniques such as terminal 
sliding mode control (TSM) and non-singular terminal sliding mode control (NTSM) 
are also introduced to improve the transient response and to overcome the typical 
challenges of linear sliding mode controls. 
 



© C
OPYRIG

HT U
PM

4 
 

1.2 Problem Statement 

The attitude control of a satellite featuring CEACS has been addressed in a series of 
work initiated by Varatharajoo (Varatharajoo & Fasoulas, 2002). Several linear control 
techniques and two optimal control methods were proposed to investigate the 
feasibility of CEACS in attitude pointing missions in terms of control performance; 
however
nonlinear parameters involved were not addressed. In addition, the feasibility of 
CEACS in more complex missions such as attitude tracking has not been studied. 
 

To examine the efficiency of each controller, an ideal and a non-ideal cases were 
introduced. The former considered an ideal case where all parameters were known 

motor/generator gain constant. The values of the errors were considered to be known 
and relatively small.  
 

Table 1.1 illustrates the pitch accuracy of several control techniques for both ideal and 
non-ideal cases.  
 

Table 1.1: Pitch Accuracies of Control Techniques Applied to CEACS 

Control Technique Pitch Accuracy (Degree) 
Ideal Non-ideal 

PD Controller 
(Varatharajoo, 2006a) 

Nanosatellite 0.148 0.2  

Microsatellite 0.104 0.3  

Enhanced Microsatellite 0.102 0.28  

AFC-PD Controller  
(Varatharajoo et al., 2011) 0.0039 0.01  

Controller  
(Ban et al., 2012) 

0.00541 0.01251  

Controller  
(Ban & Varatharajoo, 2013) 

0.0185 0.043  

 

It is apparent that the controllers were susceptible to errors and the pitch accuracy 
degraded significantly for the non-ideal cases. In addition, the errors were considered 
to be exactly known, in contrast to real applications where the system is subjected to 
unknown but bounded uncertainties.  
 
 

 inertia was acknowledged in 
previous works, the uncertainty of this model parameter was not investigated. The 
value of the inertia matrix changes during the operation due to the possible motion of 
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the payloads onboard, rotation of the solar panel arrays and fuel consumption (Cai et 
al., 2008). The limitation of the existing technology does not allow a precise calibration 
of model errors, therefore, the exact value of the inertia matrix is uncertain over the 
course of the mission (Cao et al., 2013). However, the variation can be considered as 
bounded in practice (Jin et al., 2008).  
 
 
In addition, the determination of the external disturbances including aerodynamics, 

information of the inertia matrix. For a satellite with an uncertain inertia matrix, the 
values of the external disturbances are not exactly known, but can be considered to be 
bounded (Du et al., 2011; Li et al., 2009). However, none of the preceding researches 
on attitude control of CEACS considered the uncertainty of the external disturbances. 
The failure to address these bounded uncertainties results in poor control performance 
and a slow convergence rate. 
 

Therefore, robust control strategies are required to make the system insensitive to 
disturbances and unknown but bounded uncertainties. Although sliding mode control 
(SMC) has proven its capability in that regard, it suffers from certain drawbacks. The 
conventional SMC suffers from a phenomenon called chattering that may cause 
instability in the system. In particular, this phenomenon degrades the attitude tracking 
accuracy of the system. The chattering  influence on the attitude tracking performance 
can be effectively alleviated with boundary layer techniques but the steady-state error 
increases as a result (Utkin & Lee, 2006). The introduction of integral actions can 
enhance the error but an undesirable overshoot may occur before the system stabilizes 
(Utkin & Shi, 1996).  
 

Further, most of the SMC techniques provide asymptotic stability with exponential 
convergence rate. As a result, the system tracking errors cannot converge to the 
equilibrium in a finite time. Control strategies with finite time convergence can 
stabilize the system with faster convergence rates and higher accuracies. Moreover, the 
systems under their influence demonstrate better disturbance rejection properties and 
better robustness against uncertainties (Bhat & Bernstein, 2000; Du & Li, 2012; Li et 
al., 2011). Terminal sliding mode control (TSMC) is well-known for its finite time 
convergence properties. However, it suffers from a singularity problem and it has 
relatively a slow convergence rate which could be critical for many applications. Non-
singular TSMC (NTSMC) proposed by Feng, Yu, & Man (2002) is an adequate 
solution to eliminate the singularity problem of the original TSMC (Zou et al., 2011).  
 
 
Consequently, the application of a finite time control strategy such as NTSMC is 
recommended to achieve the desirable performance in finite time and at the same time 
address the disturbances and unknown but bounded uncertainties (Song et al., 2014). 
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1.3 Research Objective 

This thesis aims to propose suitable sliding mode control strategies for the attitude-
tracking control problem of a satellite featuring CEACS. The specific objectives of this 
research are: 

 To design robust sliding mode control techniques which are invariant 
to disturbances and uncertainties for the attitude-tracking control of 
CEACS. 
 

 To enhance the performance of linear sliding mode controller by 
alleviating the influence of chattering on the attitude tracking 
accuracy, and by decreasing the steady-state error using boundary 
layer and integral augmentation techniques. 

 

 To utilize finite-time sliding mode control technique as a global 
solution to the attitude-tracking problem of CEACS to achieve a 
finite-  

 

1.4 Scope of Study 

The primary focus of this research is to design a sliding mode controller that is 
invariant to uncertainties and disturbances for the attitude-tracking control of a Low 
Earth Orbit (LEO) small satellite utilizing CEACS.  
 

The satellite is assumed to be a rigid body that rotates under the influence of a body-

the detail mathematical m
Two attitude tracking error dynamics are defined for two different types of missions, 
the first one is developed for missions during which the Euler anglers are relatively 
small and less precise attitude-tracking is required, and the other one considers all 
possible orientations. The former is suitable when less precise attitude-tracking is 
required, and the later supports missions with high tracking accuracy requirements.  
 

Two uncertain parameters namely the uncertainty of the inertia matrix and the external 
disturbances are considered in this work. Further, their influences on the tracking error 
dynamics are mathematically formulated. 
 
 
Several techniques including the boundary layer and integral augmentation options are 
used to enhance the performance of the conventional sliding mode controller. Finite 
time sliding mode techniques provide a further enhanced performance for attitude-
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tracking problem of CEACS. The linear SMC technique is provided for missions 
during which the Euler anglers are relatively small. This technique is suitable for 
missions that require less precise attitude-tracking. A global solution is provided using 
finite-time SMC. The computational method is relatively intense; however, it is an 
adequate solution for a very precise attitude-tracking. The Lyapunov stability theorems 
are used to verify the stability of the proposed controllers and their robustness against 
uncertainties and disturbances. The study is conducted using mathematical modeling of 
the system and the controllers, and numerical analysis is performed using Matlab®-
SimulinkTM.  
 
 
A small satellite utilizing CEACS is the main benchmark with different controllers for 
each numerical in-orbit evaluation. Each controller is tested under both the nominal and 
the uncertain cases. The nominal case considers the disturbances rejection performance 

its value is constant for the duration of the 
mission. Consequently, the disturbance accommodation term of the control law is 
known and it is defined based on a worst-case estimate of the disturbance torque. 
 
 

 invariance to uncertainties. The inertia 
matrix of the satellite, and the external disturbances are considered to be uncertain but 
upper-bounded. The inertia matrix changes within a certain limit but its variation is 
assumed to be time-invariant. In the uncertain case, a 10% of variation is considered 
for the inertia matrix of the satellite. The upper-bounds on the inertia and disturbances 
uncertainties are later used for the computation of the control gains. In addition, the 
stability analyses provide the sufficient and necessary conditions for the computation of 
the control gains. 
 
 
Further, a comparison is made between the conventional sliding mode and the modified 
linear SMC technique. The performance of finite-time SMC is also compared with the 
linear SMC to emphasize its superior characteristics. A final comparison between all 
techniques accentuates the best controller.  
 
 
 
1.5 Thesis Outline 

This thesis consists of five chapters. The outlines are as follows: 

 
Chapter 1 provides a general overview about satellite synergism and combined energy 
and attitude control system (CEACS). A brief description about sliding mode control 
(SMC) highlights the advantages and disadvantages of this control technique. The 
problem statement, research objectives and the scope of study are also included in this 
chapter. 
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Chapter 2 reviews the literature on CEACS and the sliding mode techniques. It covers 
the examination of CEACS in terms of attitude control characteristics conducted by 
other researchers. In addition, the development of linear and finite-time SMC; and their 
advantages and disadvantages are covered.   
 

motion in space. The architecture of CEACS is described in addition to a description of 

and the stability analysis are provided in this chapter. 
 

Chapter 4 is devoted to the numerical study of the system controlled by the proposed 
controllers. The attitude performance of CEACS is presented for nominal and uncertain 
cases. The relevant discussions explore the feasibility of each controller in attitude-
tracking control of CEACS. Chapter 5 concludes this study and provides suggestions 
for future researches. 
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