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In general, real life’s effects are not linear. To identify and interpret better the phe-
nomena of real life, a flexible statistical approach is needed. Hence, in order to
interpret the real phenomena, among many approaches, generalized additive model,
GAM, seems to be a good tool to describe the non-linear effects. GAMs are similar
to generalized linear models, GLM, in which the linear combination of explanatory
variable is replaced by linear combination of scatter plot smoothers.

This research aims to study a restriction of GAM which concentrates to investigate
the parameter of location. Therefore, the method in this research is based on GAM
approach. Univariate generalized additive model is applied over special data which
are generated from extreme value families. The simulated data are in stationary
and non-stationary cases. Therefore, in stationary case, the study has focused over
measuring the accuracy of estimation of parameter of location, µ . Also, in non-
stationary cases the research has focused on measuring the accuracy of estimation
of parameter of location, µt . Recall that the stationary case has no trend, while the
structure of non-stationary cases are based on trends. The simulated data are belong
to generalized extreme value distribution, GEV, distribution of Gumbel and special
case of generalized pareto distribution, GPD. The GEV and Gumbel distributions
are simulated in four types: stationary case and non-stationary cases which have the
property of non-stationary in location, non-stationary in scale and non-stationary in
location and scale simultaneously. The special case of GPD distribution is simulated
in two types: stationary and non-stationary cases. Thus, there are ten types of special
data which are investigated during this research.

Finally, to evaluate and measure of accuracy of estimation of parameter of location,
a measure of spread is needed. Root mean square of errors as a measure of spread is
applied for these measurements and evaluations. The result of this research strongly
illustrate that the measure of accuracy of estimation of parameter of location which
is obtained based on estimation of univariate GAM, is better than the alternative
calculation which obtains based on maximum likelihood estimation.
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Secara umum, kesan dalam kehidupan sebenar tidak linear. Untuk mengenal pasti
dan mentafsir fenomena kehidupan sebenar dengan lebih baik, ber pendekatan statis-
tik yang fleksibel diperlukan. Oleh itu, untuk mentafsir fenomena yang sebenar, di
kalangan banyak pendekatan, model tambahan umum, GAM, merupakan menjadi
alat yang baik untuk menggambarkan kesan tidak linear. GAM mempungai per-
samaan dengan model linear teritlak, GLM, di mana kombinasi linear pembolehubah
terokaan digantikan dengan kombinasi linear plot berselerak licin.

Kajian ini bertujuan untuk mengkaji sekatan terhadap GAM yang memberi tumpuan
kepada kajian terhadap parameter lokasi. Oleh itu, kaedah dalam kajian ini adalah
berdasarkan kepada pendekatan GAM. Univariat model teritlak digunakan ke atas
data khas yang terhasil daripada famili nilai yang ekstrim. Data simulasi adalah
dalam kes pegun dan tidak pegun. Dalam kes pegun, kajian ini memberi lebih
tumpuan dalam mengukur ketepatan anggaran parameter lokasi, µ. Manakala, dalam
kes yang tidak pegun, penyelidikan ini memfokuskan kepada mengukur ketepatan
anggaran parameter lokasi, µt . Imbas kembali, kes yang pegun tidak mempunyai
trend, manakala struktur bagi kes tidak pegun adalah berdasarkan kepada trend. Data
simulasi ini tergolong kepada taburan nilai ekstrem umum, GEV, Gumbel dan kes
khas taburan pareto umum, GPD. Taburan GEV dan Gumbel telah disimulasikan
dalam empat jenis: kes pegun dan kes yang tidak pegun yang mana mempunyai ciri
seperti tidak pegun di lokasi, dalam skala, di lokasi dan skala secara serentak. Kes
khas taburan GPD telah disimulasikan dalam dua jenis: kes pegun dan tidak pegun.
Oleh itu, terdapat sepuluh jenis data khas yang digunakan dalam penyelidikan ini.

Akhir sekali, untuk menilai dan mengukur ketepatan anggaran parameter lokasi, uku-
ran bagi serakan diperlukan. Punca bagi ralat min kuasa dua sebagai alat mengukur
serakan telah digunakan kepada pengiraan dan penilaian ini. Hasil daripada kajian
ini jelas menggambarkan bahawa ukuran ketepatan anggaran parameter lokasi yang
diperolehi berdasarkan anggaran GAM univariat, adalah tepat daripada pengiraan
alternatif yang diperoleh berdasarkan anggaran kemungkinan maksimum.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The conception of generalized additive models (GAM) as a type of regression mod-
elling is so close to generalized linear model, hence, the preface about structures
and aims of linear model and GLM, help to understand GAM better.

In this chapter there is a thorough introduction to explain the linear models,
generalized linear models and additive models with particular concentrate on gen-
eralized additive models. This research focuses to show the univariate generalized
additive model. The data via this research, have been simulated from extreme value
distributions family. These distributions are generalized extreme value, Gumbel
and generalized pareto distribution. One of the applications of extreme value
distributions is in rare events (Chavez-Demoulin & Davison, 2005). As an instance,
the phenomena such as floods, climates, stock marketings and engineering are
included rare events. Therefore, the aim of this thesis is to model the simulation
data of these phenomena by GAM.

1.2 Background

1.2.1 Linear Model

Linear model as a regression model can illustrate the expectation of a random
variable, Y, as a linear summation or combination of functions of explanatory
variables such as: X1,X2, . . . ,Xn (Breslow & Clayton, 1993).

The structure of definition can be shown step by step as an example in the
following model:

Example 1.1
µi = β0 +β1xi +β2x2

i +β3x3
i .

In this relation i : number of rows = 1, . . . ,n in matrix of µn×1, and β0,β1,β2 and
β3 are unknown coefficients or unknown parameters. The values of these unknown
parameters should be estimated. By substitute µi in the Yi = µi + εi, a model will be
obtained. With regards to the model below, Yi, there is a cubic model of relationship
between x and y:

Yi = µi + εi.

Linear models are known as statistical models where a univariate response is formu-
lated as an amount of a linear predictor, plus a zero mean random error term. The
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linear predictor is depended upon some other predictor variables that should be es-
timated with the response variable and some unknown parameters. One of the most
important properties of the linear predictor is that it is linearly depend on the param-
eters (Breslow & Clayton, 1993). Linear model indicates that the random variable Y,
and the variable X are depend to each other by:

Y = α +βx+ ε,

in which α, is the intercept, β , is the slope of the predicted line, and ε, displays a
random error. The error term has ε ∼ N(0,σ2) (MacCullagh & Nelder, 1989). The
usage of linear models is so broad. It means that, linear models are applied in many
branches of sciences such as modelling tasks, analysis of designed experiments and
polynomial regressions.

1.2.2 Generalized Linear Models

Generalized linear models (GLM) allows the expected value of the response to re-
duce the rigid linearity assumption of linear models. In other words, there is an
assumption that the distribution of expected response, is smoothed by allowing it to
follow up any distribution of the exponential class such as binomial, normal, gamma,
and poisson etc (McCullagh & Nelder, 1989). The basis of the inference in GLMs,
is centred on likelihood theory. Nelder & Wedderburn (1972) have specified any
model that relates µ, expectation of response variable Y, to a linear summation of
the explanatory variables: x1,x2, . . . ,xn. Thus, in the structure of defined model

g(µ) = β0 +β1x+ · · ·+βnxn,

where β1,β2, ...,βn are unknown parameters and g is a link function. Some instances
of the link function can be also indicated as follow:

g
(
µ
)
= µ, identity link,

g
(
µ
)
= log

(
µ
)
, logarithmic link,

g
(

p
)
= log

(
p

1−p

)
,
(
0≤ p≤ 1

)
, logistic link or logit link,

g
(

p
)
= log

{
− log

(
1− p

)}
,
(
0≤ p≤ 1

)
, complementary log-log link,

g
(

p
)
=− log

{
− log

(
p
)}

,
(
0≤ p≤ 1

)
, the negative log-log link,

g
(

p
)
= tan

{
π

(
p− 1

2

)}
,
(
0≤ p≤ 1

)
, the inverse Cauchy-link,

g
(

p
)
= Φ−1

(
p
)
,
(
0≤ p≤ 1

)
, probit.

The first two link functions, g(µ) = µ and g(µ) = log(µ), are related to random
variables which have normal and poisson distributions, respectively. The last five
link functions provide different families of models for dealing with, as an instance,
variation in the parameter of a binomial distribution (MacCullagh & Nelder, 1989).
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1.3 Additive Model

The method of additive models expresses a generalization of multiple regression
model. Multiple regression model itself is a particular general linear model (Hastie
& Tibshirani, 1990). A linear least square fit, in linear regression is calculated for
a collection of predictors variables, X , to see a dependent variable, Y. This linear
regression with k predictors can be shown in the example below:

Example 1.2

Recall that the linear regression model is:

Y = A+
k

∑
j=1

B jX j + ε,

where A is the intercept of model and B j represent linear effects, j = 1,2, . . . ,k.
Hence, for additive model, it models Y , as an additive combination of non-parametric
functions of the Xs :

Y = A+
k

∑
j=1

f j(x j)+ ε.

One approach of generalizing of the multiple regression model, is to maintain the
additive’s content of the model. This maintenance of content, is substitution the
non-parametric function with coefficient, B j, in the linear equation. Non-parametric
function means that there is no accurate and definite parametric form of function.
In other words, in additive models, instead of using a single coefficient for each
variable, a non-parametric function is approximated for any predictor (Hastie & Tib-
shirani, 1993).

1.3.1 Generalized Additive Model

The concept of generalized additive models has been structured based on ideas of
additive models plus generalized linear models. This combined idea is illustrated by
the following formula:

g
(
µ(i)

)
= ∑

i

(
fi(xi)

)
,

where i : number of rows = 1, . . . ,n in matrix of µn×1, fis are non-parametric
functions and xis are explanatory variables. Maximizing the quality of prediction of
a dependent variable, Y, from different distributions, is the most significant aim of
generalized additive models. This is done by estimating non-parametric functions
of the predictor variables which are connected to the dependent variable via a link
function (Hastie & Tibshirani, 1986).
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GAMs are a nonparametric extension of GLMs. GAMs are used often for the
cases when there are no a priori reasons for choosing a particular response function
(such as linear, quadratic, etc). GAMs fulfil this duty via a smoothing function,
similar to locally weighted regressions. GAMs take each predictor variable in
the model, then apply knots to separate model into sections. Next step is fitting
polynomial functions to each section separately. In this step, there is no particular
complexity on the knots. It means that second derivatives of the separated functions
are equal at both sides of the knots. The number of parameters used for such fitting
is obviously more than what would be necessary for a simpler parametric fit to the
same data. The degrees of freedom of the model, are usually lower than the amount
of expectation from a line with so much ’wiggliness’ (Wood, 2006). Indeed, this
is the fundamental statistical issue associated with GAM modeling: minimizing
residual deviance, while maximizing lowest possible degrees of freedom. The fitted
models are directly comparable with GLMs using likelihood techniques like AIC,
since the model fit is based on deviance/likelihood. Even more, all the link and error
structures of GLMs are accessible and useful in GAMs. A major cause why GAMs
are often less preferred than GLMs, is that the results are often difficult to interpret
because no parameter values are returned (Hastie & Tibshirani, 1990).

Therefore, generalized additive model is a model that is similar to a general-
ized linear model in which a linear combination of explanatory variables is
substituted by the linear combination of scatter plot smoother (Everitt, 2005). To be
able to use GAMs practically, it needs to extend the GLM structure (Green et al.,
1994). There are three main methods that can be used for GAM:

1. Representation of the smooth functions (Silverman, 1985).

2. Controlling the degree of smoothness of the functions, in order to evaluate the
models with different degrees of smoothness (Wang, 1998).

3. Some methods are required to choose the most suitable degree of smooth-
ness, if the models be applicable for merely exploratory and analytical studies
(Bowman & Azzalini, 1997).

Generalized additive model investigates three general areas of research. The first
area is to address the usage of basis developments of smooth functions (Craven
& Wahba, 1978; Hutchinson & De Hoog, 1985). The second area is stated by
estimating models with penalized likelihood maximization, in which wiggly models
are more penalized in comparison to smooth models (Gu & Kim, 2002; Fahrmeir
et al., 2004). The third area is implemented by applying methods that are based on
cross validation by Hastie & Tibshirani (1990).

In this research, R is used as a statistical software which is accessible in CRAN
(Team et al., 2005).
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1.4 Problem Statement

There are some points of view about modelling by univariate generalized additive.
One of this point is estimation of smoothing parameters and the other point for
discussion is coefficients via a penalized regression spline. Practically, the solution
of the problem of penalized regression splines is removed by penalized regression
methods. The cross validation is one of the solution to estimate the smoothing
parameters. Determining a suitable degree of smoothness for smooth functions, f j,
has a crucial role. This role is similar to role of coefficients in a linear regression
(Wood, 2006).

The data which are applied into models in this research belong to GEV, Gum-
bel and GPD in stationary and non-stationary cases. It is clear that the duty of a
statistical model is description of the population of a collection of data. Hence,
it is really important to evaluate this ability of the model. A suitable statistical
measurement to check the model accuracy is essential, otherwise, the probability of
model’s wrong fitting, will be raised.

Accordingly, the measurement of accuracy of model to estimate the parame-
ters, is arguable. In other words, after implementation univariate generalized
additive models in simulated extreme data, it should be evaluate the accuracy
of estimated parameters. Whereas in this research it is focused on parameter of
location, having another approach to estimate this parameter for comparison is
necessary. Hence, MLE is applied to estimate the parameter of location via the
extreme data. Therefore, this model is a linear model which its parameters obtained
by maximum likelihood estimator.

As the topic of this research presents, it is worked on univariate generalized
additive model. Since, it is appeared that the measure of accuracy of estimation
of parameter of location among extreme value data by MLE is not enough, hence,
to increase the accuracy of estimation of parameter of location, it is important to
find a new method with better estimation. In this work, it is intended to solve this
problem by suggesting a method based on GAM. The novelty of this thesis is to
display the ability of univariate generalized additive model to calculate the accuracy
of estimation of parameter of location among stationary and non-stationary GEV,
Gumbel and GPD data. Then, a comparison between univariate GAM and linear
model based on MLE is applied to show the accuracy of estimation of parameter of
location. The benchmark for this comparison is root mean square of errors, RMSE.
This research is able to show that the univariate GAM can give, an alternative
promising of modelling through GEV, Gumbel and GPD models. In addition, in this
thesis, a comparison between empirical λ , and the λ which is based on minimum of
GCV function is illustrated for the first time.
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1.5 Objective of the Thesis

This research concentrates on accuracy of estimation of parameter of locations, µ

and µt , for stationary and non-stationary cases respectively. The estimation is ac-
complished by univariate GAM. Therefore, the objectives of this thesis are:

• To identify appropriate number of knots and suitable λ for cubic spline, CB,
and for penalized regression spline, PRS, respectively, as a suitable empirical
methods which are used in GAM.

• To introduce an alternative promising of modelling to estimate the measure of
accuracy of parameter of location for GEV, Gumbel and GPD by univariate
GAM.

• To calculate the MLE functions of simulated stationary and non-stationary of
GEV, Gumbel and GPD data to obtain the optimized value of parameter of
location to use in linear models: µ and µt , in order to comparison with GAM.

• To identify better estimator to the parameter of location, the estimator which
is based on MLE or the estimator which is based on GAM.

1.6 Organization of the Thesis

This thesis has five chapters:

Chapter One is an introduction which explains step by step the background of
generalized additive models.

Chapter Two is allocated to literature review which introduces the context of
generalized additive models and some of its applications. In addition, there is a pref-
ace about stationary and non-stationary processes as a basic statistical modelling.
Likewise, the extreme value theory is mentioned and reminded some discussion
about simulation and its implementation in R. This chapter ends by description of
method of maximum likelihood.

Chapter Three deals with the applied methodology. It discusses about idea,
relevant theory, development of method and improving steps of proposed method.

Chapter Four is related to results and discussion of univariate GAM over spe-
cial data. These data are belong to GEV, Gumbel and GPD functions. The data are
divided into two parts, stationary and non-stationary cases.

The final chapter summarizes the obtained results and makes an overall con-
clusion with the glance to future work and activities in order to investigate the other
parameters of extreme value functions.
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