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Complex Hopf fibration and quaternionic Hopf fibration provide distinct ways of

describing the state space for two-qubit quantum states. In this research, we have

studied the geometry of quantum states for a two-level quantum system, along with

the correspondence between complex Hopf bundle and quaternionic Hopf bundle.

In the first part of our study, we investigate the behaviour of local coordinates for

both Hopf bundles under different degree of entanglement such as entangled states

and non-entangled states. Fubini-Study metric for complex projective space is also

obtained. Its form suggests that for the intermediate entangled states, complex

projective space CP 3 can be described as a set of flat three-tori parametrized by

a three-sphere. The local inhomogeneous coordinate of CP 3 (base space of com-

plex Hopf fibration) is found to carry the description of both subsystems A and B,

whereas in the case of maximally entangled state, basis elements of local coordinates

CP 3 is not linearly independent of each other.
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Next, we construct a base space map between CP 3 and S4, which is denoted as η

map. After the mapping, we obtained phases in the base space manifold, different

sections and coordinate charts are related by transition functions. We found that

there is an inherent symmetry of coordinate transformation corresponds to different

sections of CP 3, which is expressed in terms of transition functions having the U(1)

group structure. Also under η map, phases and transition function in S4 is doubled

over that of CP 3, indicating subtle symmetric changes after the mapping. The base

space coordinates of quaternionic Hopf bundle are consist of two parts, whereby the

first part is invariant to the coordinate transformation in CP 3 but sensitive to the

coordinate transformation in S4.

iii



© C
O

UPM

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

GEOMETRI SISTEM DUA QUBIT DAN SERATAN HOPF

Oleh

WONG WEN WEI

Mac 2013

Pengerusi: Hishamuddin Zainuddin, PhD

Fakulti: Institut Penyelidikan Matematik

Seratan Hopf kompleks and seratan Hopf berkuaternion memberikan dua cara berbeza

untuk memerihalkan ruang keadaan bagi keadaan kuantum dua qubit. Dalam penye-

lidikan ini, kita telah mengkaji geometri keadaan kuantum bagi sistem kuantum dua

aras bersama-sama dengan kesepadanan antara berkas Hopf kompleks dan berkas

Hopf berkuaternion. Dalam bahagian pertama kajian kami, kami mengkaji sifat ko-

ordinat setempat untuk kedua-dua berkas Hopf bagi darjah belitan berbeza seperti

keadaan terbelit dan keadaan tak terbelit. Metrik Fubini-Study bagi ruang unjuran

kompleks juga diperolehi. Bentuknya menyarankan bahawa untuk keadaan terbelit

perantaraan, ruang unjuran kompleks CP 3 dapat diperihal sebagai set 3-torus datar

yang diparameterkan oleh sfera tiga dimensi. Koordinat tak homogen setempat CP 3

(ruang dasar bagi seratan Hopf kompleks) didapati membawa perihalan kedua-dua

subsistem A dan B, manakala dalam kes keadaan terbelit maksimum, unsur asas

koordinat setempat CP 3 adalah tidak bebas linear antara satu sama lain.
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Seterusnya, kita bangunkan satu pemetaan ruang dasar antara CP 3 dan S4, yang

diberi tatatanda pemetaan η. Selepas pemetaan, kami mendapati fasa-fasa di man-

ifold ruang dasar, keratan dan carta koordinat berbeza terhubung dengan fungsi

peralihan. Kami mendapati bahawa adanya simetri transformasi koordinat sedia

ada berpadanan dengan keratan rentas CP 3 yang berbeza, terhurai dalam sebu-

tan fungsi peralihan yang berstruktur kumpulan U(1). Juga di bawah pemetaan

η, fasa dan fungsi peralihan dalam S4 adalah dua kali ganda bagi kes CP 3, yang

menunjukkan perubahan simetri tersirat selepas pemetaan. Koordinat ruang dasar

berkas Hopf berkuaternion dapat dibahagi dua yang mana bahagian pertama adalah

tak varian di bawah transformasi koordinat CP 3 tetapi sensitif kepada transformasi

koordinat S4.
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CHAPTER 1

INTRODUCTION

This chapter gives an overview of our work as well as introductions to some of the

central ideas pertaining to this research. Attention is given to quantum entanglement

and qubits along with their physical and geometrical properties.

1.1 Geometric Quantum Mechanics

Quantum entanglement, the spooky action at the distance as it is called by Ein-

stein, is a phenomenon whereby two physical entities are correlated in such a way

that one cannot describe the one quantum system without the knowledge of another,

and they are sharing a single superposition state until a measurement is made [25].

Mathematically, quantum entanglement is associated with the existence of vectors

in the Hilbert space H1 ⊗ H2 that are not of the tensor product form �ψ1 ⊗ �ψ2,

where �ψ1 and �ψ2 are two vectors correspond to their respective quantum subsys-

tem. Another important property of entanglement is that it can persist over a long

distance, which indicates that the entanglement is a non-local correlation. This un-

intuitive behaviour has seen potential application in real world, such as quantum

teleportation. Furthermore, quantum entanglement has played a major role in the

development of various fields of study in physics, in particular, quantum information

science and quantum computing.

As a comparatively new coherent discipline of physics, quantum information began

to emerge in the 1980s and blossomed in 1990s, during which many breakthroughs

such as quantum teleportation and formulation of the entanglement of formation

measure are made [35, 36]. Besides entanglement, other properties of quantum

1
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theory that have made quantum information to be quite different from classical in-

formation are the non-deterministic nature of quantum process (at least according

to Copenhagen interpretation) and uncertainty principle. The latter has the impli-

cation that measuring one observable A will inevitably influence the outcomes of

succeeding measurement of an observable B [28], and that to acquire information

about a quantum system will disturb the quantum system itself. Classical physics

(in particular, Newtonian physics) saw no such limitation.

Closely associated with these properties of quantum theory is the investigation on

the geometry of quantum mechanics, which is pioneered by von Neumann in his

discovery that a quantum system can be considered as a point in a Hilbert space

[33]. In recently years, the works of Kibble and his collaborators have shown that

quantum mechanics exhibits a natural Hamiltonian phase-space dynamics, which

means that quantum theory possesses an intrinsic mathematical structure that has

an equivalent counterpart in Hamiltonian phase-space dynamics [5]. The state space

of a quantum system is represented by complex projective space CP n, and its relation

to quantum states is widely studied [1, 2, 7, 8, 14, 20]. For a two-qubit system, the

underlying projective space is CP 3, which was studied by [2] and [20] (see chapter

2).

The quantum state space can also be described in the language of fibre bundle and

related geometrical concepts. For a two-qubit quantum system, quaternionic Hopf

fibration is a useful mathematical tool for reducing Hilbert space of the composite

system. Basically, it is a fibre bundle whereby the total space is a unit sphere S7

and a map from that total space to a base space S4. Quaternionic Hopf fibration

was studied by Mosseri and Dandoloff [21] for two qubits, and it was extended to

2
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the study of three-qubit quantum system in the works of Bernevig [4] and Pinilla

[26].

1.2 Quantum Bits

In quantum information and quantum computing, one of the underlying fundamental

concepts other than entanglement is the qubit (or quantum bit) representation of

physical states as the information units. In analogous to the classical bits having

the state either 0 or 1, a qubit for a two-level quantum system also has two possible

states, written in Dirac notation as |0〉 and |1〉. However, qubit is different from a

classical bit as it can be in a superposition state of |0〉 and |1〉. This superposition

can be understood as a linear combination of states:

|Ψ〉 = α|0〉+ β|1〉. (1.1)

where the states |0〉 and |1〉 are the orthonormal basis vectors which may represent

the spin up and spin down of a spin 1/2 particle (such as electron) in a vector space,

with α, β ∈ C. Note that in this context, a qubit is treated as an abstract mathe-

matical object instead of actual physical states and this would allow a construction

of a general theory of quantum computation and quantum information, independent

of any particular physical realization.

Despite the fact that there could be an infinite number of linear combinations for the

equation (1.1), quantum mechanics tells us that there is restriction about the amount

of information we could extract from the equation [23]. For instance, measurement

of a qubit yield either |0〉 or |1〉, with respective probabilities |α|2 and |β|2. Since

3
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probabilities are required to sum to one, complex coefficients can be written as

|α|2 + |β|2 = 1, (1.2)

which is known as the normalization condition. To introduce entanglement into a

system, we require the state space to describe a composite system where at least

two qubits are involved. The state space of a separable (without entanglement)

composite physical system is the tensor product of the state space of the component

physical systems. This is however not true for entangled qubits, taking the example

of this state:

|ψ〉 = |00〉+ |11〉√
2

. (1.3)

This quantum state cannot be described as a product state of two component states.

A composite system that fulfill this property is called an entangled state.

1.3 Background Theory of Projective Spaces

The linear representation of state that is described in the equation (1.1) and the

normalization condition in the equation (1.2) have profound geometrical meanings.

The earlier equation implies that it corresponds to the dependence of the physical

properties of the system on the wave function up to an overall complex factor, while

the latter equation (1.2) implies that in general, a normalized quantum state is a

unit vector in a complex vector space. Based on these conditions, we can define the

pure states in the Hilbert space H as

|Ψ〉 =
∑
i,j

aij|i〉 ⊗ |j〉, (1.4)

4
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where |i〉 and |j〉 represent the bases of quantum state of each system in the respec-

tive Hilbert space, i.e. |i〉 ∈ HA and |j〉 ∈ HB, aij are complex coefficients.

Each component state falls on the complex line and it admits an equivalence relation

aij ∼ zaij , z ∈ C/{0}. This construction defines a complex projective space CP n,

which is the set of all lines that pass through the origin in C
n+1 space. If we further

impose the normalization condition, the space of all lines will become a (2n + 1)-

sphere. Geometrically speaking, we can think of the quantum state as a complex

line modulo a global phase factor,eiθ ∈ S1, therefore every points in C
n+1 that varied

by a factor of eiθ is identified. To illustrate the case more clearly, we will give an

example on CP 3, which is the space of two subsystems. Mathematically speaking,

the complex projective space can be described as quotient of the S7 space by the

action of S1, S1 ↪→ S7 → CP 3. This is the definition of a complex Hopf fibration

(more rigorous definition about Hopf fibration will be discussed for the cases of

single qubit and two qubits in chapter 3 and chapter 4 respectively). It is by itself

a principal fibre bundle of which the S1 as a group acts on the total space S7.

For the two qubit system, there is also a type of Hopf fibration that is not solely

based on complex number field but also quaternionic number field H, this Hopf

fibration is known as quaternionic Hopf fibration (it is called just Hopf fibration

if no comparison to the complex counterpart is made), it can be described with a

surjective map from the total space S7 to the base space S4, which is also called

quaternionic Hopf map and is denoted as ξ. For two-qubit system, this means that

we can write the homogeneous coordinates of a point as (q0, q1, . . . , qn), where qα are

quaternions such that not all of them are zero. Similar to complex projective space,

we may define the quaternionic projective space by identifying all the points that

5
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are differed by one quaternion,

(q0, q1, . . . , qn) ∼ q(q0, q1, . . . , qn), q ∈ H, (1.5)

this construction is denoted as HP n, which is a projective space of dimension n over

H field. For example, HP 1 is the quaternionic projective line for which (q0) ∼ Q(q0).

Moreover, since quaternion is the extension of complex number, there are some

analogies between quaternionic projective line and complex projective line CP 1 in

their respective roles in Hopf fibration. For example, HP 1 is isomorphic to S4, base

space of the quaternionic Hopf fibration, while CP 1 is isomorphic to the base space

of complex Hopf fibration, which happens to be S1.

1.4 Problem Statement

As far as current literature is concerned, there is no effort in bridging the quaternionic

Hopf fibration and complex Hopf fibration with respect to two-qubit system. It is

therefore considered the best of our interest to see the correspondence between these

two fibre bundles that are different in formalism yet bear the description of the same

quantum system. Our aim here is to extend the previous research of [2, 4, 19, 21],

by exploring the geometry of quaternionic Hopf fibration in detail. At a first glance,

both complex and quaternionic Hopf fibration share the same total space, S7, hence

we could construct a map from the local section of CP 3 in S7 to S4 to identify their

correspondence. The geometry of two qubits under complex Hopf fibration will also

be studied and compared with the quaternionic one, using the above mentioned

base space maps. Our next aim is to develop how symmetries in term of phases

6
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and transition functions are carried along with the fibres when such mapping is

constructed.

1.5 Objectives

• To compare and contrast the local coordinates of complex Hopf fibration and

quaternionic Hopf fibration for two-qubit state space.

• To identify the correspondence between complex Hopf fibration and quater-

nionic Hopf fibration for two qubits with respect to their degree of entangle-

ment.

• To calculate the transition functions over local sections of CP 3 and the coor-

dinate charts of HP 1.

1.6 Importance of Study

The study of the geometric properties of two-qubit quantum system will provide a

new insight on the physical nature of the quantum system. The research goal is to

investigate the geometric relation between the quaternionic Hopf fibration and com-

plex Hopf fibration, by using suitable maps that connects the base space and total

space of each fibration. This will give a clearer understanding about the correspon-

dence between complex Hopf fibration and quaternionic Hopf fibration for different

states of entanglement.

7
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1.7 Structure of Thesis

This thesis is organized in six chapters. The second chapter consists of review

sessions of several papers pertaining to our research. The central paper is Mosseri’s

paper on quaternionic Hopf fibration [21], other papers which touch on various

topics surrounding Hopf fibration are also included in this literature reviews, such

as Urbantke’s paper on the single qubit and Hamiltonians [30], Symplectic Geometry

[29], Bengtsson’s paper on two-qubit complex projective space [2], and Peter Levay’s

work on the connection in Hopf bundle [19].

The third chapter is about theory and methodology, where we aim to give an

overview of the mathematical ideas and geometrical concepts that are important

in our study. These include a brief introduction to the concept of fibre bundle and

principal bundle, Hopf fibration for a single qubit and some other mathematical

tools.

Our main calculations and results are discussed in chapter 4 and chapter 5. The

main content of chapter 4 is the investigation of the state space of two qubits for

both quaternionic and complex projective space, where details regarding both spaces

are explored including the Fubini-Study metric for complex projective space. In

chapter 5, we try to construct a map from the six-dimensional complex projective

space to quaternionic projective space, and study the transition functions and fibres

structures.

In chapter 6, conclusion of our research is given and some remarks regarding future

work are discussed.

8
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